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Wind instability, defined as the vortex analog of the Kelvin-Helmholtz instability in 
inhomogeneous flow with a velocity profile, is discussed. It is shown that, when a magnetic 
field and supersonic streaming are present (under both relativistic and nonrelativistic 
conditions), wind instability may give rise to the development of helical perturbations with 
characteristic wavelength and azimuthal number on the surface of the jet. The corresponding 
growth-rate maximum is determined by a resonance between the surface wave and vortices 
located at a distance from the separation boundary that is a definite fraction of the 
perturbation wavelength. The results obtained are used to interpret the wave picture observed 
in cosmic outflows from quasars and active galactic cores. 

1. INTRODUCTION 

The instability of a tangential discontinuity stabilized 
by a magnetic field, which simulates a common form of shear 
flow with a large local velocity gradient, has been used to 
explain a wide range of phenomena, including those occur- 
ring in cosmic plasmas. In particular, in this paper, we shall 
consider the wave structure of one of the most interesting 
objects, namely, cosmic outflows (jets) joining the cores of 
active galaxies to radiating radio clouds. This structure is 
usually associated with the Kelvin-Helmholtz instability 
that develops on the surface of a magnetized jet (see the 
review given in Ref. 1 and the references cited therein). 
However, this explanation encounters a number of difficul- 
ties because the Kelvin-Helmholtz instability growth rate 
does not have a maximum in the long-wave region." Nonlin- 
ear mechanisms are then brought in to escape from this diffi- 
culty. 

We shall show that the Mi l e~ -Ph i l l i~ s~ .~  vortex shear 
instability, currently used to explain wind-driven waves on 
the sea surface, is more suitable as a way of explaining the 
observed wave picture than the Kelvin-Helmholtz instabil- 
ity. We shall use the phrase, "wind instability," to emphasize 
that we shall be dealing with the instability of a free separa- 
tion boundary. For a magnetized nonrelativistic plasma, this 
instability was examined in Ref. 5 in the case of an incom- 
pressible medium. 

The motion in jets is most likely to be supersonic, and 
this has a significant effect on the developing wave picture. 
L. D. Landau has shown6 that, under symmetric conditions 
with u > u,,, = 2l1*c,, the tangential discontinuity becomes 
stabilized for waves propagating along the discontinuity (224 
is the discontinuity in velocity and c, the velocity of sound). 
This result has recently found a striking confirmation in the 
case of a two-dimensional system (shallow water experi- 
ments'), for which there are no perturbations propagating at 
an angle to the flow, and complete stabilization is attained. 
According to Syrovatski?,' in the three-dimensional case, 

there is a growing wave instability for waves propagating at 
an angle 8 to the velocity discontinuity vector. 

Even for discontinuities below the critical Landau val- 
ue, but greater than 3ll2c,, the maximum y occurs in the 
region of nonzero angles Om,, > 0 (although, for u < uCrit, we 
have y ( 8  = 0) #O]. When looked upon as a function of ve- 
locity, y ( 8  = 0) passes through a maximum for 2u = 3l1*c, 
(see Appendix). We shall show below that qualitatively sim- 
ilar behavior occurs in the case of wind instability, but there 
may be significant detailed differences. For cosmic jets, the 
analysis is usually relativistic, although the observed veloc- 
ities have so far been subrelativistic (with the exception of 
jets - 1 pc long, for which ultrarelativistic motion has been 
definitely observed). 

The high degree of polarization of the emitted radiation 
can be regarded as evidence for the presence of a regular 
magnetic field in jets and, for many situations that are of 
interest to us (for example, one-sided jets), this field is longi- 
tudinal (oriented along the jet) .' 

We shall examine the wind instability of a relativistic jet 
that is partially stabilized by a magnetic field. The analysis 
will be confined to planar geometry, but the parameters that 
we shall obtain can be relevant for a cylindric jet. This has 
been confirmed in a particular case for which an analytic 
solution has been found for the latter. 

In Section 2 we give a formulation of the problem and 
obtain a dispersion relation for the wind instability of a rela- 
tivistic flow in the case of a plane separation boundary. In 
Section 3 we analyze the growth rate and its angular depen- 
dence, and show that the supersonic jet must take the form of 
a helix. The sense of the helix is random, and the angle of 
twist is ~ / 4 .  In Section 4 we consider a limiting case in which 
cylindric geometry can be analyzed. The results are used in 
Section 5 to examine observed wave perturbations in cosmic 
outflows. The angular dependence of the Kelvin-Helmholtz 
instability growth rate (tangential discontinuity) is exam- 
ined in the Appendix, both in the relativstic and nonrelati- 
vistic limits. 
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1 dh 
curl e = - - - , div e=O, div h=O. 

c dt 

FIG. 1 .  Mutual disposition of,the flow velocity vector, the magnetic field, 
and the direction of wave propagation for a plane separation boundary 
between the media. 

2. DERIVATION OF DISPERSION RELATION FOR SURFACE 
WAVES 

Consider two media separated by the z = 0 plane (Fig. 
1 ) . The region z > 0 is occupied by plasma of density pa and 
velocity U(z) along the X axis, which can be described by the 
following equations of relativistic hydrodynamics: 

where Ti, is the energy-momentum tensor 

Pis the pressure, 8 is the internal energy density, and ui the 
4-velocity. For z < 0, the plasma of density pa lies in a uni- 
form longitudinal magnetic field H,. The velocity profile for 
z < 0 is assumed to be U(z) -const, and we transform to a 
frame of reference in which U(z) =O. The plasma is then 
described by the magnetohydrodynamic equations for a per- 
fect fluid (including the displacement current) : 

1 dH 
curl E = - - --- , div E=O, div H=O. 

c dt 

We examine the instability of the separation boundary 
between the media against small-amplitude sinusoidal per- 
turbations propagating at all possible angles to the flow ve- 
locity U(z). The boundary conditions are the continuity of 
pressure and of displacement (f = 5)  across the separation 
boundary. 

We linearize (2.1 ) and (2.3 ), and take the perturbation 
in the form 

v-v(z)exp[i(k,z+k,y-at) 1 
and so on, where k, = k cos 8, k, = k sin 0, and 0 is the 
angle between the direction of propagation of the wave and 
U(z). From (2.3), we have 

The zero subscript in (2.4) labels the unperturbed vari- 
ables and lower-case letters represent deviations from unper- 
turbed values (H = H, + h, E = e, and so on).  

From (2.4), we obtain the equation for the amplitude of 
the change in the magnetic pressure pH = Hoh, / 4 ~ :  

where FA =H0(4npO) -"* is the Alfven velocity and primes 
represent differentiation with respect to z. It is assumed in 
the derivation of (2.5), and this assumption will be main- 
tained throughout, that the velocity of sound is Fs = 0 for 
z < 0 because, in the case in which we are interested, 5, <&, 
c. The relationship between ey and v, and the equation for ey 
can be obtained from (2.4) : 

If we confine our attention to waves that decay as they prop- 
agate into the medium, we obtain the following two solutions 
from (2.7) forz<O: 

Substituting (2.8) and (2.9) in (2.6), weobtain therelation- 
ship between ey and v, : 

The following relation can be deduced from (2.4): 

Using (2.10) and (2.1 I ) ,  we obtain 

The latter relation shows that oscillations in the electric field 
ey, are unrelated to oscillations in the magnetic pressurejj,, 
and therefore do not deform the separation boundary 
between the media. 

Substituting the solution of (2.5) in (2.13) and using " 
1 av 1 de 

p, - = - vjj + 4n [ (Curl h)  XH,] - -[ - 1, the fact that V, = - iof on the undisturbed separation 
dt 4nc dt boundary, we obtain 
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For z > 0, the linearized equations (2.1 ) take the form 

o U ( z )  +iEc.l ( k ,  - 7)= 0, 

c,' 
E [ ~ ~ ~ ( z ) - w ] -  E ~ U ( Z )  

C" I 

where Wo = Po + go is the enthalpy density in the flow and 
r ( z )  = [ I  - U2(z)/c2] --'I2 is the Lorentz factor. 

From (2.16), we obtain the connection between the 
pressure fluctuations and the displacement 6 of the bound- 
ary in the flow, using the fact that v, = i(k, Uo - w)(: 

(2.17) 

where U,- U(O), r o r r ( 0 ) ,  ao=a (0 ) ,  anda(z)  is therel- 
ativistic analog of the transverse wave number for z > 0: 

(2.18) 
The relativistic analog of the Rayleigh equation is also 

found to follow from (2.16): 

where V=w/k,, 

and S > 0 is a small term governing the Landau-Lin rule for 
bypassing the singularity at Im w = 0: 

The singularity appears because of resonance between vorti- 
ces in the flow and the surface  wave^.^' Actually, it is precise- 
ly the vortex perturbations that are transported with the 
flow velocity in the case of an unmagnetized isentropic flow. 
It is also readily seen that the resonance corresponds to syn- 
chronism between surface waves and vortices, if we follow 
the current lines, which is most simply done in the reference 
frame in which the surface wave is at rest. (For a more de- 
tailed discussion of the special case of wind waves, see Ref. 4 
and the review article in Ref. 10.) 

Equating pressure fluctuations on the perturbed sepa- 
ration boundary, we obtain the "dispersion relation" 

where 

The quantity (v:/v, ), =, (in 2.21 ) must be determined from 
(2.19). 

When U(z) = const, equation (2.2 1 ) becomes identi- 
cal with the dispersion relation for the Kelvin-Helmholtz 
instability of a relativistic tangential discontinuity, partially 
stabilized by a magnetic field. The pole responsible for reso- 
nance is then absent from the Rayleigh equation. 

3. WIND-INSTABILITY GROWTH RATE OF SURFACE 
WAVES 

W,, the dispersion relation (2.21) leads to 
the following expressions for the growth rate y = Im w and 
phase velocity up, = Re w/k of surface waves: 

where vX =FA (1  + ii:,/c2)-'I2. 
The quantity Im(v:/v, ) 1, =, in (3.1 ) can be found 

from (2.19). To do this, let us consider the equation conju- 
gate to (2. 1913': 

2"- [ Z Q  ( z )  1 I- z a z ( z ) ] = ~ .  (3.3) 
U  ( z )  - V+iS 

Multiplying (2.19) by Zand (3.3) by v,, subtracting (3.3) 
from (2.19), integrating the resulting difference with re- 
spect to z between 0 and + 03,  and taking the pole into ac- 
count, we obtain 

u"(zc) + Q  ( z c )  sign U' ( , zc)]  1 m q  Vz z=o = - n [ l u . ( z c ) l  

Ifwenow apply the WKB method to (2.19) and (3.3) under 
the usual conditions for its validity, i.e., aI2(z) (a4(z) ,  
la" (2) 1 4a3(z)  (Ref. 1 I),  we find that 

z 

u, ( 2 )  P ~ ( z )  - a - V ( z )  exp {- . l a ( z )  d z } .  (3.5) 
0 

Substituting (3.5) and (3.4) in (3.1), we obtain the follow- 
ing expressions for the wind-wave growth rate: 
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which is valid for large enough k(kz, S 1 ). In the nonrelati- 
vistic limit c- w , the expressions given by (3.6) and (3.2) 
become12: 

- / sin 20 1 
x 11 - c0s2 0 (Uo-C.4) 2 /~ ,2 ]  'h 

We note that, in contrast to the usual shear flows, there is no 
need for a change in the volocity profile in the case of the 
wind instability because of the presence of the free boundary. 
The instability condition (positive growth rate) reduces to 
the inequality U " (z, ) < 0. 

When the compressiblity of the plasma can be neglected 
which is determined by the condition IUo - - v, 1 = IUo- U(z,)J&c,, we find from (3.7) that 
y - [sin 28 1 .  [The factor sin 6 originates from the transverse 
projection of the wave number for z < 0  (2.22), whereas 
cos 8 comes from the dispersion law for surface Alfven 
waves (3.8).] Hence it follows that the most rapidly grow- 
ing are the perturbations propagating at @,,, =?r/4 to the 
flow velocity (Fig. 2a). We note that the flow is ultrasonic 
relative to the medium for z < 0: FA = U(zc ) ) F3, which is 
the condition for the validity of (3.7). 

Since, for relativistic flows, the expression for the 
growth rate (3.6) contains the factor Isin 26 1, waves with 
wave vector k pointing at an angle Omax to U(z) are also the 
most rapidly growing. The angle Om,, depends on the rela- 
tionship between the characteristic parameters of the media. 

The expression given by (3.6) is rather complicated in 
the general case, but it can be substantially simplified in the 
case of the ultrahard equation of state in the flow (c, = c),  
for which it takes the form 

n Wo (Uo-vA')2vA' I sin 281 
y(k,0)=--- 

4 poc2 
ro2- 

5a2 1- (v,'"cZ) c0s2 0 

(this formula is reproduced for purely illustrative pur- 
poses). When kz, ) l, (3.9) shows that y decreases exponen- 
tially with increasing k. For small enough k, the wind-insta- 
bility growth rate increases exponentially with increasing4' k 
(Fig. 2b) (Ref. 5 ) . The maximum value of y is reached for5' 

Hence, in the region k = k,,, , the maximum of y with re- 
spect to @ is attained when 

FIG. 2. Wind-instability growth rate for supersonic flows: a-as a func- 
tion of the angle 6' between the wave vector k and the flow velocity U(z) 
for k = const; b--as a function of the wave number k for 0 = const. 
Curves 1 and 2 refer to the nonrelativistic and relativistic flow conditions, 
respectively. For large k, the asymptotic expressions are: 
y-exp( - 2kz, ( 1 )  and y-expf - 2kz, [I - ( ~ ' ~ / c ~ ) c o s ~  19]"~) ( 2 ) .  

It is clear from this result that the relativistic nature of the 
motion leads to the preferential growth of waves propagat- 
ing at an angle 0 < @,,, < ?r/4 to the flow velocity U(z) (see 
Fig. 2a). 

4. WIND INSTABILITY OF A CYLINDRIC JET 

Waves propagating at an angle to the flow velocity U(r)  
on a plane separation boundary, i.e., - exp [i(k, x- 
+ k,y - a t )  I ,  correspond to helical perturbations of the 

cylindric jet, i.e., -exp[i(kx + mq, - a t ) ] ,  where m = 0, 
1, 2, ... is the azimuthal number. Analysis of these helical 
waves for an arbitrary relationship among the chracteristic 
parameters of the media is mathematically too difficult. 
However, the instability growth rate can readily be obtained 
in the limiting cases of incompressible plasma in the flow 
(c, - oo ) and zero sound velocity in the jet (Fs = 0). 

Consider a jet of radius R in a plasma flow. The velocity 
profile is U = U(r) &c for r > R, and U=O for r < R (Fig. 3). 
The magnetic pressure in the jet can be deduced from (2.4) 
and is found to be 

In the present section, primes represent derivatives with re- 
spect t o r  and V=a/k. The solution of (4.1 ) that is bounded 
at r = 0 is 

pH=$H (R) lrn-'[ (1-V2/~~z)'kR]lrn [(I- I.n/GA2) '"krl, (4.2) 

where I,,, ( x )  is the modified Bessel function. 
On the perturbed surface of the jet ( r  = R + c ) ,  
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FIG. 3. Cylindric jet stabilized by external pressure and magnetic field. 

Hence, using (4.2), we find that 
I, [ (1 - VZlFa2) '" kR ] I , = R + c = - P o ~  (caZ-V2) b. (4.4) 

I,' [ (1- V2/FA2) " 'krII=~ 

The pressure in the flow is 

Since the pressures must be equal at r = R + f ,  we obtain the 
dispersion relation 

Whenpo%po, it follows from (4.6) that 

and we can use the asymptotic expansions for I ,  (x)  and 
I ;  ( x )  for small values of the argument. Equation (4.6) 
then assumes the form 

The Rayleigh equation for v, in the flow is 

Q (r) vrt' + - Utt (r) - U' (r) Y (r) /r 
vrf-u, 

r [ ~( r ) -V- i ,  

where 

Calculations similar to those given in Section 3 enable 
us to use (4.9) to determine the imaginary part of the quanti- 
ty (v;/v, ).=R in (4.8). 

For U ' (r, ) > 0, we find that 

vr' U" (r,) 1 (kr,) 2 - m V K  (kr,) 
Im --- - - -- 

v. I ,=."-a [ U p  (re) rc (krc)2+m2] Rm2(kR) a 

(4.10) 
where rc determines the position of the resonance layer 
U(rc ) = Re V. The growth rate y of the surface wave for 
po%po then follows from (4.8) : 

1 P o -  kRm v,' 
ym (k) = - -v  1m - 1 

2 po A k2RVfm2 u, ,=, 

Using the uniform expansion of the modified Bessel function 
K, (x) for m- CO, which, however, is accurate enough 
down to m - 1 (similarly to the Stirling formula for m!), we 
obtain the following expression for the growth rate from 
(4.10) and (4.11): 

a P O -  mkR [ Utl(rc), i (krC)'-m2 
rm(k)r - ~ z ~ ~  (kR)'+rn2 U'(r.) rc (krC)'+m2 I 

(kR)2+m2]'h ( & ) 2 m (  m+ [ (kr,) Z+m']'" 
X[ (kr.)'+m2 m+[ (kR)2+m2]'" 

for k(r,-R) >I, if m>l. (4.12) 

This yields 

ym(k) -m exp {-2k (r,-R)) for m2e: (kR)" (4.13) 

ym (k) -m-' (Rlr,) 2m for mZB (kR)', (4.14) 

from which it is clear that y is the maximum for 

The wave-vector component k, on the plane separation 
boundary corresponds to m/R in cylindric geometry. Thus, 
knowing emax on the plane, we can estimate mmax : 

m,,mk,R tan Om,,. (4.16) 

The conditions c, - m and Zs = 0, for which the results ob- 
tained in this section are valid, are the same as the conditions 
for which emax -n-/4 (see Section 3). Substituting Omax --IT/ 
4 in (4.16), we obtain 

Comparison of (4.17) and (4.15) shows that the two esti- 
mates for mmax lead to similar results. We shall therefore use 
(4.16) whenever the instability of a cylindric jet cannot be 
analyzed. 

5. ASTROPHYSICAL ESTIMATES 

According to (3. lo ) ,  the wind-instability growth rate 
has a maximum with respect to k in the long-wave region. 
This enables us to explain the presence of a distinct scale of 
perturbations, observed on the surface of many jets, e.g., in 
the quasar 3C273, the Hercules A radiogalaxy, and so on. 

As in the case of the Kelvin-Helmholtz instability (see 
Appendix), the most rapidly growing perturbations in the 
ultrasonic flow are those propagating at an angle to the flow 
velocity on the plane separation boundary (3.1 1 ), or helical 
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waves on the surface of the cylindric jet (3.15). 
Recent observations performed with the VLA radio- 

telescope have revealed a helical structure in one of the two 
asymmetric jets in Hercules A.I3 

The formula m,,, -- k,,, R (4.15) enables us to esti- 
mate m,,, when c, %ZA %Zs and the flow is nonrelativistic. 
For example, if we determine the jet radius R and wave- 
length A,,, = 2r/kmaX from the radio image of Hercules A, 
we find that m,,, -2-3. 

According to (3.10) and (3.1 1 ), the relativistic charac- 
ter of the motion leads to a shift of the maximum of the wind- 
instability growth rate toward shorter wavelengths 

and smaller azimuthal numbers 

which follows from (4.16), (3.10), and (3.1 1). 
We have assumed in our analysis of wind instability that 

the velocity profile was formed only in the lower-density 
medium. It is shown in Ref. 14 for the nonrelativistic case 
that the presence of a profile in the higher-density medium 
gives rise to a different instability picture. In particular, dis- 
persion of the phase velocities of the surface waves becomes 
significant, and the narrow resonance layer is replaced by a 
wide resonance region6' 

Po UOZ 
z C ( k )  z -- k, poKpo. 

po U o '  

At short distances from the core (of the order of a few 
kpc), the jet density is probably greater by a few orders of 
magnitude than the density of the ambient medium but, at 
large distances, the jet becomes less dense than the interga- 
lactic plasma (because of expansion) .' 

The planar model considered in Sections 2 and 3 can 
thus be used for a jet segment close to the core (the velocity 
profile being formed in the ambient medium) or a distant 
and highly rarefied segment (velocity profile being formed 
inside the jet). 

It is important to note that data on the physical condi- 
tions prevailing in jets are very unreliable.' We do not even 
know whether these jets are continuous flows, as implied by 
the name, or how they are maintained, although a strong 
magnetic field is known to be present ( H -  l ~ - ~ - l O - ~  Gs, if 
equally distributed) on a kpc scale.1s15 

Estimates are usually based on a number of alternative 
variants, for example, the jet density is taken to be greater 
than, of the same order as, or lower than, the density of the 
ambient medium, and so on. We shall confine our attention 
to the conditions examined above, which do not cover all 
possibilities, but provide us with a fairly simple analytic re- 
sult. Our aim will be to consider the possibility of a helical 
structure and the differences between wind and Kelvin- 
Helmholtz instabilities that may enable us to resolve pre- 
vious contradictions relating to the scale of perturbations 
observed in jets.' 

The condition ZA SFs can probably be satisfied in kilo- 
parsec jets. Because pcf -&, the assumption of confine- 

ment of a denser jet by external pressure' leads to the in- 
equality c, %&, used above. We note that the ambient 
medium must then be much hotter than the usual galactic 
gas. This has led to a discussion in the literature of whether 
the jet is maintained by pressure or external magnetic field 
(which may be due to currents flowing on the jet ~ur face) ,~ '  
or it is assumed that the jet is not confined, but expands into 
the ambient medium. Different situations may occur for dif- 
ferent outflows and at different distances from the active 
core. l5 

The sufficient condition for the resonance responsible 
for the wind instability to occur is that a surface wave can 
propagate on the jet surface. This is probably assured by the 
presence of a magnetic field, and presupposes some jet con- 
finement mechanism and also the presence of a velocity pro- 
file in the flow, for which hydrodynamics must be applica- 
ble. On the other hand, the scale of the resulting 
perturbations is not very sensitive to the relationship 
between the parameters of the jet and of the ambient medium 
(this is in contast to the wind-instability growth rate). 

We note that the hydrodynamic approximation is valid, 
at any rate, for distances L 5 30 kpc from the core of an 
active galaxy. The main component of the interstellar medi- 
um in this region is probably the coronal plasma with density 
n - 10- 2.5 ~ m - ~  and temperature T- K (Ref. 18). 
These parameters vary little with distance from the galactic 
core for L 5 30 kpc but, thereafter, there is a sharp reduction 
in density.I9 Hence, for L 5 30 kpc, the Coulomb mean free 
path 

lcou, =16nnv,'op-'A-'-1 PC 

( A =  10 is the Coulomb logarithm, v, the thermal velocity of 
ions, and w, the plasma frequency) is much less than the 
characteristic wavelength A -- 2-3 kpc of these perturbations 
and the characteristic transverse size of the outflow. 

In the region of a hot spot, the plasma is characterized 
by a high temperature and low density. The Coulomb mean 
free path is much greater than the typical linear dimensions 
of the outflow, but the Larmor radius of the particles is sig- 
nificantly smaller than the characteristic dimensions, so that 
the plasma can be described by collisionless magnetohydro- 
dynamics. 

We note in conclusion that a highly nonlinear stage of 
wind instability development may occur at large distances 
from the core and may cause the jet to decay into individual 
plasma condensations, actually observed in the case of, for 
example, NGC 625 1. 

APPENDIX 

Instability of a relativistic ultrasonic tangential discontinuity 

The Kelvin-Helmholtz instability of an ultrasonic rela- 
tivistic flow was investigated numerically in Ref. 20.8' On the 
other hand, transformation to the symmetric frame of refer- 
ence can be used to carry out a fairly simple analytic solution 
in the case of a velocity discontinuity in a homogeneous me- 
dium. We shall reproduce it both in order to compare with 
wind stability and because it may be of interest in itself. 
Thus, the monotonic rise in the Kelvin-Helmholtz growth 
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rate is limited only by d i ~ s i ~ a t i o n ' ~  and leads to the growth 
of the shortest-wave perturbations that can be responsible 
for small-scale structures or turbulent spreading of the sepa- 
ration boundary. 

In the symmetric reference frame, the equation for 
V = w / k ,  is 

u v  (u+V)' 
( u + ~ ) ' { I ' ' k i  [ ( I + ? )  -- cS2 -1 + k; } -'Iz 

(u- V )  - 'h 
=- (u- v,. {r2..[( 1 - T)' ----I c." + L.'} 

Squaring both sides of this equation and canceling factors 
that do not contain imaginary roots, we obtain the following 
biquadratic equation for V: 

and, hence, 

The upper signs in (A3) correspond to growing oscillations. 
For u < uCrit = 2'I2c, ( 1 + c ; / c2 )  -'I2, we have stabili- 

zation of waves propagating at angles 

to the flow, but waves traveling at larger angles remain un- 
stable. The preferential growth of waves propagating at 
Om,, > 0 to the flow begins for velocities u > u* (u* < uCrit ). 
When c, <c ,  we find that u* is close to its nonrelativistic 
values 3'I2c,/2 and Om,, ~ a r c c o s  u * / u ~ .  For the ultrarela- 
tivistic equation of state, 

In the nonrelativistic limit, we obtain the familiar result 
uCrit = 2''2cs (see Introduction). The maximum of y for 
u > u* shifts toward larger 0 with increasing u, but remains 
constant in magnitude: y,,, = kcs /2 .  

"In the planar case, the maximum can occur only for fairly short waves as 
a result of competition between the Kelvin-Helmholtz growth rate and 
the viscous damping. In the cylindric case, numerical calculations reveal 
the presence of a poorly-defined maximum at wavelengths greater than 
the radius of the cylinder.' 

''If we take into account the magnetic field in the flow in the presence of 
shear (z > 0)  then, as was shown in the nonrelativistic case, this produces 
a splitting of the resonance layer by an amount equal to the Alfven veloc- 
ity u, (Ref. 9),  which is significant for u, )D,. 

"The term containing the first derivative u; in (2.19) can also be avoided 
by using the exponential replacement. 

4'This result is also confirmed by solutions of the Rayleigh equation for 
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