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Equations are obtained for the mean field in a gluon string coupling a quark to an antiquark. A 
string solution does not exist within the framework of the perturbative approach. The influence 
of nonperturbative effects is taken into account by model, and leads to a string solution in 
which the gluoelectric field, directed along the string, is surrounded by a circular gluomagnetic 
field. The fields are localized in a region whose transverse size is of the order of the 
confinement range. An estimate is given of the tension coefficient and the parameters 
characterizing the field distributions. 

1. INTRODUCTION 

The hypothesis of a gluon string stretched between a 
quark and antiquark which, in principle, prevents the obser- 
vation of an isolated quark, arose soon after the discovery of 
the phenomenon of asymptotic freedom in non-Abelian 
gauge theories1 ( 1973). 

In the lattice variant of gauge theories2 ( 1974), the hy- 
pothesis of a gluon string was confirmed by means of an 
expansion in reciprocal powers of a large bare charge. 
Further studies of lattice theories by recursive methods3 and 
numerical experiments4 showed that the string also ap- 
peared in the limit of a small bare coupling constant. 

1974 was also the year of the first attempt at a pheno- 
menological description of a gluon string in terms of a model 
effective a ~ t i o n . ~  Unfortunately, subsequent events did not 
lead to significant advances in the development of a pheno- 
menological picture in gluodynamics. On the other hand, 
the advantages of the phenomenological approach have fre- 
quently beem demonstrated in other theories. For example, 
in nuclear theory, a reasonable parametrization of the inter- 
action between nucleons in nuclear matter provides an ex- 
planation of the numerous experimental data despite the fact 
that the microscopic theory (quantum chromodynamics) is 
still not in a state to calculate the parameters that have had to 
be introduced. 

We now have a well-known and experimentally con- 
firmed picture of small-scale fluctuations for which the ef- 
fective coupling constant a, is small and given by the well- 
known asymptotic-freedom formula 

2nla,=b ln(llAp), b=11N,/3, -1% (50-200) MeV, 
(1.1) 

wherep is the characteristic scale of the fluctuations and N, 
the number of colors. 

The important point in the phenomenological approach 
is that the deviation from the logarithmic law ( 1.1 ), due to 
nonperturbative effects, sets in for scales p - R, 4 A- ' 
(R, -' = 600 MeV is the confinement range) for which a, is 
still small: N, a, (R, ) =0.60.8. Nonperturbative effects 
lead to a sharp rise in a, (p),  so that the transition from 
perturbation theory to the strong coupling state occurs in a 
narrow range of scales near R,. This conclusion follows 
from the recursive approach, but the same conclusion arises 

if we suppose that, near R,, the nonperturbative contribu- 
tion to a, (p) is provided by instant on^.^ 

The sharp rise in a, (p) or, more precisely, the abrupt 
transition from the perturbative state to the strong coupling 
state can be used to implement the following essentially vari- 
ational computational program: first, the fact that a, is 
small forp < R, enables us to write down the effective action 
(a  functional of the mean field) in local form; second, the 
rapid variation in the effective coupling constant with the 
scale enables us to find the distribution of the mean field in 
space for a fixed scale p < R, , i.e., for a virtual string, and 
then to determine the optimal value of p from the energy 
minimum. 

For distances r > R, from the center of the "condensa- 
tion," our mean field method is not adequate in this problem. 
Nevertheless, we shall use the mean field equations in this 
range of distances, supplementing them by effectively taking 
into account nonperturbative effects whose role appears to 
reduce to the fact that the "medium" does not transmit the 
mean field to distances that are large in comparison with R, . 

Let us first illustrate this calculation at the qualitative 
level. For a virtual string with transverse size p > R,, the 
effective action can be written in local form, and the equa- 
tions for the mean fields that form the string can be deduced 
from it. Near quarks (up to distances of the order ofp),  the 
field is largely the gluoelectric Coulomb field with a logar- 
ithmically increasing charge. For distances R -p from the 
charge, the lines of force become curved, and the gluomag- 
netic field appears. The dependence on the longitudinal co- 
ordinate~ ceases with increasing distance from the ends. We 
shall suppose that we have found the distribution of the 
fields in the string. The energy per unit length, or the string 
tension coefficient, is given by the following order-of-magni- 
tude formula: 

where E and H are the moduli of the gluoelectric and gluo- 
magnetic fields. The fields in ( 1.2) are of the same order. If 
we suppose that the modulus of the flux of the gluoelectric 
field is approximately conserved, Gauss's theorem shows 
that [Ezp2/a, (p) ] - 1. Substituting this estimate in ( 1.2), 
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we find that a ( p )  -a, (p)p-2. The transverse size of the 
string can be found by minimizing a @ ) .  Since, by hypothe- 
sis, a, (p)  increases rapidly near p ER,, the minimum of 
u(p)  is reached forp-R,, and u(Rc )-a, (R, )Rc -2. It is 
clear from these estimates that E-H-a, (R, )R, -2, and, 
since the effective coupling constant is small, the fields may 
be regarded as weak and the dependence of a, on the fields 
can be neglected. 

2. EFFECTIVE ACTION 

Our task in this section is to examine the properties of 
effective action that will enable us subsequently to obtain the 
equations for the mean fields that form the string. We recall 
that whenever perturbation theory can be used, S,, [ A ,  ] can 
be written in the form 

1 
S.., [A,.] = - J d4x ~'x'F,..'(x) E~:L,,(X, X' (Au)Fi." (2'). 

I b n  
(2.1) 

This formula is convenient for our purposes in that it gives 
the usual expansion of S,, [ A ,  1 in powers of the mean field 
A  ; (x) [F;, (x) is expressed in terms of the vector potential 
A  ; (x) in the usual way]. 

The quantity (...) is known, for example, for the 
case of strong, slowly-varying fields when the effective ac- 
tion becomes local7: 

where F = [ (F;, ) 2 ]  'I2. 

The other case of simplified S,, that is of greater inter- 
est to us is the case of weak fields localized in a region with 
characteristic sizep (R, . In a reasonably chosen gauge, the 
"permittivity" ceases to depend on the field, and the effec- 
tive action assumes the simpler form 

where to within logarithmic terms, S,, is localized, since the 
logarithmic smallness of a, is related to the singular behav- 
ior o f ~ ( x ) -  for 1x1-0: 

wherep is the characteristic scale of the field (for example, 
near a quark, it is the distance to the quark, whereas, well 
away from the ends of the string,p is the string radius). The 
correction to the local approximation is proportional to 

is readily seen that this dependence is trivial because the 
constant A  A') can be removed by the gauge transformation 

s (t) =exp [(i/2) ; ,~ ,") t ]  . 
The solution then becomes an explicit function of time: 

F,,'(x, t)  = s + ( t )  F,, (x) s (t) , F,,= ( d 2 )  F,,", (2.5) 

but, in the new gauge, all the vector potentials are small, so 
that we can neglect the dependence of the "permittivity" on 
the fields, which leads to the following expression: 

s eff - - -11 dZxdt hxl dtfE(x-XI, t-tt) 
8n 

1 
= - -J d3x dt d3x' dt'e (x-XI, t-tf) 

8n 

x tr[FPv (x) S+ (t-t') FfiV (x') s (t-t') 1 

T 
= - -j d3x d3x'{ E (x-x'; A:') ) r( Fuvn (r) F,: (xr) 

16n 
a=2,3 

or, with logarithmic precision, 

When external currents are present, the effective action 
acquires the additional term 

sint= j d4xjMa (x) A$ (x). 

For static quarks, the evaluation of the quark interaction 
energy reduces to the problem of the interaction of charges 
of different sign, where 

sin,= J dt (x) A:" (x, t )  , (2.8) 
in'" (x) ='12[6 (x-xl) -6 (x-x2) I (2.9) 

(x, and x, are the coordinates of the quark and antiquark, 
respectively). Formulas (2.9) and (2.8) are valid for gauges 
for which A  A" = A  A2' = 0 at points occupied by the quarks. 

1 d4s d4R E (R) {F,," (x-R/2) F,," (x+R/2) - [Fpva(x) 12). 
3. VARIATIONS OF FIELDS FOR A GIVEN SCALE 

The singularity in the integrand is weaker as compared with 
the local S,, , and the correction due to nonlocal effects does 
not contain a large logarithm, so that, by neglecting it, we 
introduce a relative error of order a, ( p )  - [In( l/pA) ] - I .  

We shall show in Section 4 that the vector potential in 
the gluon string is A  A')-const- l/p if we seek a solution 
with time-independent mean fields A ; (x) .  In this situation, 
the dependence of& on A  A" cannot be neglected. However, it 

A string problem is symmetric under rotations around 
the axis joining the quarks (thez axis), and the fields depend 
only on the distance r from the axis, but near the quarks they 
depend on the coordinate z as well. As the distance from the 
end points increases, the fields cease to depend on z, and only 
the dependence on r remains. 

The principle of the method we shall use is that we begin 
by finding the extremum of the effective action for a given 
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transverse field scale. Then, having calculated the string en- 
ergy from the solution found in this way, we determine the 
transverse scale p from the condition for minimum energy. 
In the language of analysis, this means that, in the derivation 
of the equations from S,,, the variations of the vector poten- 
tial SA E (x)  are subjected to a limitation: the variations 
should not affect the transverse size of the string, or, in other 
words, SA (x )  must be orthogonal to the variation corre- 
sponding to an infinitesimal change in the radius of the 
string: 

d 
*,A; (r, z) =61[ - A ~ ~ ( E ~ ,  z) ]I =6Er 

aAua(r,z) (3.1) 
(% E=I dr ' 

To take this restriction into account, we must add to SS,, the 
condition given by (3.2) with an undetermined Lagrange 
multiplier, so that the equations of motion acquire the addi- 
tional term: 

It will be seen from the solution thatA - 'I2-p plays the part 
of the characteristic scale, or the "radius" of the string. The 
equations for the mean field for a given transverse scale can 
thus be written in the form 

where we use the matrix notation: A, = 4% A E . 

4. THE STRUCTURE OF FIELDS IN A STRING 

We now turn to the description of the structure of fields 
in a gluon string. At large distances from its ends, the fields 
cease to depend on the longitudinal coordinate z. It may be 
shown that (3.4) can then be satisfied by retaining only two 
nonzero components of the vector potential, namely, 

A r = I ,  A:') (r) =g (x) /p, x=rlp. (4.1 

With this choice of the ansatz, the following components of 
the gluoelectric and gluomagnetic fields are nonzero: 

~ , ' " = f  (x) (2) Ip2, E!')=- f' (x) /$, H:) E-~ '  (x) Ip2, 

(4.2) 
where f '(XI -df(x)/dx [and, similarly, for g'(x) 1. 

Thus, "electric" fields directed along the z and r axes 
and a circular "magnetic" field running around the string 
axis exist in the string. A gluoelectric flux flows along the z 
axis. It then follows from (2.6) that this flux is given by 

1 ~ ( ~ ) = 2 n v =  j h r  d2r'e ( r r ' ;  A:")E:" (r) 
a 

X 2n ' 
d'r~:" (r) = -J x ~ x ~ ( x ) ~ ( x )  (4.3) 

a, (Ao( ' ) -  Up) ~ S ( P )  o 

and is directed along the third axis in color space. 
We shall seek the solution with fields E13), E : I ) ,  H F )  

that decrease sufficiently rapidly with increasing r, which 
leads to the following conditions at infinity: 

ff(x)+O, gl(x)+O, f(x)g(x)+O for x+a .  

The self-similarity of the equations given by (3.4) ensures 
that the Lagrange multiplier A appears in all physical vari- 
ables only in the form of the product Ap2, so that it can be 
removed by redefining the scale. We exploit this by taking 
A = 2. The functions f (x)  and g(x)  then satisfy the equa- 
tions 

- (xf')'/x+g2f=2xP, 

(xg') 'Is+ f2g=-2xg'. 

We shall show that these two equations have a solution only 
iff (x )  -. const # 0 for x - co . We note, first, that it is possible 
to construct an auxiliary functional K ( f ,  g )  from which 
(4.4) and (4.5) are obtained by varying f andg without any 
restrictions: 

a 

If f-.O for x-  co, we can stretch f by the factor ( 1 + E )  

without changing the boundary conditions. When this 
stretching is introduced, 

a a 

and the variation S,K for this stretching is given by 

6 .~=2sJ  x dx@[ (f') '+pg2]. 

Since the integrand is nonnegative, the equations SK = 0 
have only a trivial solution, namely, f (x)  = 0. Consequent- 
ly, if a nontrivial solution of (4.4)-(4.5) exists, then 
f (x)  +o#Oforx-  a .  

We now introduce the notation f(x)  = o + p (x).  
Equations (4.4)-(4.5) then assume the following form in 
the new notation: 

and have a clear interpretation. Thus, g (x)  can be perceived 
as the wave function of a charged particle in an external 
"gravitational" field specified by the metric tensor 
g,, (x)  = exp(x2)gF, o plays the part of the energy of the 
bound state, and p ( x )  can be interpreted as the "electrostat- 
ic" potential. It follows from this interpretation that o can 
be determined from (4.7) and p (x)  is found unambiguously 
from (4.6). The normalizingfactorg(0) in (4.6)-(4.7) will 
not be determined. The above set of equations thus has a one- 
parameter family of solutions. The normalizing constant 
g(0)  can be expressed in terms of the flux of the gluoelectric 
field (4.3). 

For small a,, Eqs. (4.6)-(4.7) can be solved by iter- 
ation. In the leading approximation in a , ,  we have 02 = 4, 
g (x)  -a,, p ( x )  - 4 ,  and 
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X 

FIG. 1. 

g ( x )  =v,a8 ( ! p )  e-la, 
m 

The solid curves in the figure show plots of g ( x )  and 
p(x),  obtained by numerical integration of (4.6)-(4.7), 
whereas the broken lines show the approximate solution 
(4.8)-(4.9). It is clear from these curves that the approxi- 
mate solution works satisfactorily for va, (p)  5 0.5. 

We have thus completed part of our program described 
in the Introduction, namely, we have found "trial" functions 
that give us some idea about the behavior of the fields in the 
string. We now estimate the string tension coefficient, i.e., 
the energy per unit length: 

j d2r [ (E:') ( r )  ) Z +  (E:') (r) ) '+ (H:') ( r )  ) ' 1  
' ( P )  = 8na. (p) 

Using (4.3) for the flux, we can rewrite (4.1 1) in the form 

where 

When a, is small, we can use (4.8) to show that c (p )  = 3/8 
and 

,O ( p )  =3v28a8 ( ' p )  /8p2. (4.14) 

5. MODEL WITH EFFECTIVE BOUNDARY CONDITIONS 

To estimate the validity of the behavior of the fields 
deduced in the last section, we repeat our program assuming 
that nonperturbative effects produce a sharp cutoff of the 
mean fields for distances r>R, 5 R, from the string axis. In 
this formulation of the problem, the equations for the mean 
fields in the inner region r < R, are the classical Yang-Mills 
equations. With the chosen ansatz (4.1 ) , they differ from 
(4.4)-(4.5) only by the fact that the right-hand side does 
not contain the additional terms arising when the scale is 
fixed. We already know that A A') -w -- const to within 
terms of order a:, so that the equation for the deviation of 
A;" from a constant need not be written down, and the 
equation for A i2' is 

This equation is valid for r < R,, where 

A?) (r )=cOJO(wr) ,  (5.2) 

J,(z) is the zeroth-order Bessel function, and c, is a con- 
stant. Since we are now assuming that nonperturbative ef- 
fects ensure that A j2'(r) = 0 for r > R,, this means that, in 
the inner region, the boundary condition is 

A:') ( r )  I , = R a = ~ o J o  =O, (5.3) 

from which it follows that oR, = z,, wherez, is the first zero 
of the Bessel function J,(z), i.e., zoE2.4 (we confine our 
attention to solutions without oscillations). As before, the 
constant c, can be expressed in terms of the flux (4.3): 

co=a, (Ro) vlJt (zo)Ro, J t  ( Z O )  ~ 0 . 5  (5.4) 

[J,(z) is the Bessel function of order one], and the string 
tension coefficient can readily be shown to be 

We note that the gluomagnetic field has a discontinuity on 
the surface r = R,: 

Finally, we reproduce one further relation, namely, the ratio 
of the energy density at the edge of the string ( r  = R,) to the 
energy density on the axis: 

i.e., the energy density decreases by roughly a factor of four 
between the string axis and the edge of the string. 

6. DISCUSSION OF RESULTS 

In the two preceding sections, we found the mean-field 
distributions in a virtual gluon string whose transverse size 
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was small in comparison with the confinement range. We 
showed that, in addition to the gluoelectric field E13'(r), 
there was also a circular gluomagnetic field H F ' ( r ) ,  and 
also the field E"'(r).  One hopes that the limiting ansatz 
(4.1 ), which does not depend on the model of the "external 
forces" maintaining the transverse size of the string, will be 
valid for a real string. Of course, the r dependence of the field 
will be different for r Z R, but, near the axis ( r  4 R, ), the 
dependence will remain the same as before, at least qualita- 
tively. 

We note that the perturbative effective action does not 
have a string solution. To prove this, consider the variation 
in effective action with the transverse size of the string, i.e., 
with the field variation SA ( r )  given by (3.1 ). The change 
in S,, can be expressed in terms of the trace of the energy- 
momentum transfer with respect to subscripts correspond- 
ing to transverse directions: 

where a,, = 0, + Elyy (we recall that the z axis lies along 
the string axis). 

In the classical Yang-Mills theory, 0,, = (E ;)'/4ra, 
so that dS,/dp > 0, and there are obviously no solutions. We 
can readily show from (2.3) that, in the case of weak fields; 

In the single-loop approximation, 

( R ,  is the cutoff radius). The fact that the first term is posi- 
tive can readily be proved by transforming to the k-represen- 
tation, and it is also readily verified that the second term is 
equal to b Jd 'rF2(r)/32r2. The second term is thus smaller 
than the first by the factor a, (p) ,  i.e., in this case, (dSe,/ 
dp) > 0. It is thus clear that, to obtain the string solution, we 
must take the nonperturbative effect into account ins,,, and 
this we have modeled in two different ways in Sections 4 and 
5. 

We must now say a few words about estimates of the 
string tension coefficient. In Sections 4 and 5, we made use of 
the energy per unit length u(p) ,  given by (4.10). It is quite 
clear that, when we consider a real string, we shall have to 
add to this expression terms of the same order as to 
Jd ' re:  ( r )  (ea is the nonperturbative expression for the 
energy-momentum tensor). However, for a real string, this 
extra term in SS,,/dp must cancel with Jd ' re:  ( r ) ,  so that 
it is natural to expect that the expression for u(p)  given by 
(4.10) will acquire terms of the same order as those added to 
Jd 'rW;, ( r) ,  i.e., the string tension coefficient can only be 
estimated to within an order of magnitude. 

We must know find the ratios of "observable" quanti- 
ties for the virtual string (p <R, ) by eliminating the trans- 
verse size (p or R,), using its dependence on u. One hopes 

that the ratios obtained in this way for a virtual string will 
remain valid for a real string. Thus, for the gauge-invariant 
quantity [E f ( r )  ] ', the first two terms in the expansion in 
powers of r are found to be 

[EZa( r )  ] 2 = A ( ~ l v ) 2 [ 1 - ( r / R l ) z + .  . .I. 

The coefficients A and R,  can be estimated using (4.13) or 
(5.5) for u and the corresponding formulas for E ," (r) and 
A A", A i2'(r). The two ways of fixing the transverse size of 
the string lead to different values ofA and R ,. If the method 
used in Section 4 is employed, we have 

and when we fix the thickness of the string (Section 5)  we 
find that 

The difference between A and R ,, which is due to the influ- 
ence of the "external forces" introduced to keep the trans- 
verse size fixed, can serve as a measure of the influence of 
nonperturbative effects. The ratios are found to be 

The deviation of these ratios from unity shows that the esti- 
mated A and R,  are not very sensitive to the form of the 
forces stabilizing the transverse size of the string, and they 
are therefore similarly insensitive to the transition to a real 
string. To find E (0) and R,  for a real string, we must know 
a, (u-  1/R, ) and v. As far as the former is concerned, it 
can be estimated using the asymptotic freedom formula: 
a, (R, ) -0.3-0.4. The flux of the gluoelectric field v is un- 
known because it may change as we pass from the Coulomb 
field near the quark to the string asymptotics state. Never- 
theless, we suppose that v z  1, in which case 

It seems to us that the above qualitative analysis gives us 
the correct picture of the structure of a gluon string. Further 
progress will necessitate a determination of the contribution 
of nonperturbative effects to the mean-field equations. 
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