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This article completes a series of papers on 8-functions and the problem of anomalies in 
supersymmetric theories. Exact expressions for the 8-functions are obtained in the framework 
of standard perturbation theory. The key observation is that the Wilson effective action 
S, ( p) does not coincide with the sum r( p)  of the diagrams for the vacuum loops in an 
external field. The difference is due to infrared effects. The coefficient l/g2 multiplying the 
operator W in S, is renormalized only at the one-loop level (the generalization of the 
nonrenormalization theorem for F-terms). This circumstance leads to a one-loop form of the 
anomalous operator equation for the supercurrent (a  generalization of the Adler-Bardeen 
theorem). The exact Gell-Mann-Low function arises after the matrix element is taken. A 
quantity differing from l/g2 by B In Zi , where the factors Zi describe the renormalization of 
the fields, appears in the observable amplitudes. (In this sense the Z-factor of the matter fields 
becomes observable.) The relationship with calculations of the instanton type is discussed. 

1. INTRODUCTION 

It is well known that perturbation-theory series in su- 
persymmetric models' possess extraordinary properties. For 
example, for the F-terms loop corrections are completely 
absent (the so-called nonrenormalization theorems2 1, and 
the Gell-Mann-Low function in N = 2 gauge theories is ex- 
hausted by one loop.3 In the present paper we shall discuss 
the calculation of the effective action in N = 1 gauge super- 
symmetric theories, i.e., in particular, the renormalization of 
the gauge coupling constant. 

In the literature the term "effective action" is used in 
practice for two different quantities. One is obtained by cal- 
culating vacuum loops in external fields. The functional r of 
the external fields that is obtained in this way is often called 
the effective action, although its other name-the generator 
of one-particle-irreducible vertices-is more accurate. We 
shall adhere to the latter terminology. The other construc- 
tion-the Wilson construction4 of the effective action 
S, ( p )--differs solely in that in the vacuum loops only the 
contribution of virtual momentap > p  is taken into account. 
The action S, ( p) plays the role of the initial action with 
respect to low-frequency fields. We have introduced the sub- 
script Win order to emphasize the difference between the 
two concepts. Thus, in the framework of the Wilson proce- 
dure we deal with a normal operator expansion. The effec- 
tive action in the first sense is obtained by taking matrix 
elements of exp [is, ( p) 1. We emphasize that the differ- 
ence between the two definitions is connected with the con- 
tribution of the infrared regionp 5p pertaining to the matrix 
elements. 

In particular, in supersymmetric gauge theories the co- 
efficient that multiplies the W" W, structure and fixes the 
gauge constant g is different for r and S, (starting from the 
two-loop diagrams). We shall show that the renormaliza- 
tion of the coefficient of W in S, has a one-loop character. 

The usual gauge constant is determined from r .  The two- 
loop and higher contributions to this constant correspond, in 
the Wilson language, to the calculation of certain matrix 
elements. 

It is clear that the behavior of the theory in the ultravio- 
let region can be studied conveniently in terms of S,. In 
solving the problem of the anomalies, however, the use ofS, 
becomes not a question of convenience but a necessity, if the 
anomalous equations are written in operator form. A reflec- 
tion of the fact that the coefficient of W in S, is renormal- 
ized at the one-loop level is the one-loop form of the anomaly 
in the supertrace. It is this observation which solves the 
problem of the higher orders. 

The problems touched upon here have a rather long 
history, which we shall discuss briefly; this will make it pos- 
sible to formulate the results in a more concrete form. The 
exact expression for the Gell-Mann-Low function P(a) in 
supersymmetric non-Abelian models with matter has al- 
ready been known for several years: 

a T (G) a -' 
B ( ~ ) = - ~ [ ~ T ( G ) - T ( ) ( - ~ ) ] ( - - . )  2n , 

(1 

where the sum in the right-hand side is taken over all the 
matter multiplets, yi is the anomalous dimension of the ith 
matter superfield, 

y,=-dln Z ( p ) l d l n  p=-C2(Ri)a/n.+.  . . , 

C2(Ri ) is the squared Casimir operator, 

T"T"=C2 (Ri )  I ,  

and the coefficients T(Ri ) determine the normalization of 
the generators: 
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We have introduced T(G) = T(adjoint). We recall that 

In supersymmetric gluodynamics, in particular, the exact& 
function is determined to be 

aZ 3T (G) 
p(a)= -- 

2n I- [T ( G )  a/2n] ' 

The relations ( 1 ) and (2) were obtained in Refs. 5 in 
the framework of instanton calculus. From the very begin- 
ning, however, it was clear that a direct derivation from per- 
turbation theory should also exist. The fact that thefl-func- 
tion can be written in a simple form [e.g., in supersymmetic 
gluodynamics it can be represented in the form of the geo- 
metric progression (2) ] could not be accidental, of course, 
and answers were needed to the following obvious questions: 

How can formulas of the type ( I ) ,  (2) be obtained in 
perturbation theory? 

What properties of the theory are responsible for the 
specific structure of the series in a forfl(a )? Are these prop- 
erties also manifested in other quantities? 

A partial answer, mainly to the first question, was given 
in Refs. 6 and 7, in which the results ( 1) and (2)  were repro- 
duced without the use of instantons. Here we shall change 
the emphasis from the calculational to the conceptual as- 
pect. 

Another line of investigation, which led to the need for 
the present work, is the famous problem of the anomalies in 
supersymmetric theories. About ten years ago Ferrara and 
Zumino drew attention to the fact that the classical super- 
current s,, and the energy-momentum tensor @,, are con- 
nected by a supersymmetry transforrnati~n.~ In Ref. 8 a 
method was given for constructing a supermultiplet J,, that 
incorporatesS,, , @,, , and, in addition, the axial current a, . 

All three objects a,, Spa, and @,, are conserved classi- 
cally, and, as is well known, have anomalies at the quantum 
level. Grisaru pointed out9 that if a,, Spa, and @,, appear in 
the same supermultiplet, this property should also be pos- 
sessed by the corresponding anomalies. In Ref. 9 it was dem- 
onstrated that this is indeed the case at the one-loop level. 

A problem arose in the two-loop graphs, the Adler-Bar- 
deen theorem,'' which establishes the one-loop character of 
spa,, came into conflict with the many-loop expression 

ow=[ p (a) 14aI G,/Gvva ( 3 )  

usually cited in the literature for the trace of the energy- 
momentum tensor. Many papers have been devoted to at- 
tempts to resolve the problem of the anomalies in supersym- 
metric theories. Our far-from-complete list of references 
includes more than ten articles.' One of the first detailed 
investigations was undertaken by Piguet and Sibold." Un- 
fortunately, despite individual achievements, complete un- 
derstanding was not attained. 

We shall explain our principal assertions about the /3- 
function and anomaly using the example of an Abelian the- 
ory-supersymmetric quantum electrodynamics (SQED) . 
The action of the model can be written in the form 

1 
S, = -I d'x dzOWz +'*j d'x d'O(TeVT+Ue-vU), 

4e2 (p) 4 

(4)  
where W is the supergeneralization of the stress tensor, 

and T(xL ,O) and U(x, ,O) are chiral matter superfields with 
charges + 1 and - 1, respectively. The action (4)  is to be 
understood in the Wilson sense, i.e., all the operators in the 
right-hand side are normalized at the point p ,  and l/e2(,u) 
and Z( p) are the corresponding coefficient functions. The 
mass term mTU 1, is omitted in (4),  since we assume that a 
high normalization point p % m has been chosen. The maxi- 
mum value of p is equal to the ultraviolet-cutoff parameter 
Mo. At this point the action (4)  is the initial action of SQED, 
and the coefficients l/e2(Mo) and Z(Mo) are bare param- 
eters. The coefficient functions for arbitrary ,u are deter- 
mined by the diagrams of the perturbation theory construct- 
ed from the initial action, with the specific feature (the 
fundamental point for us) that the region of integration over 
the virtual momenta flowing in all the loops of the Feynman 
graphs is given by the condition p < k < Mo. 

Suppose that we wish to find the amplitudes of physical 
processes with external momentap-p. The central point is 
that they do not coincide directly with expressions appear- 
ing in the action (4).  The appropriate quantity for determin- 
ing them is l?-the generator of one-particle-irreducible ver- 
tices. Although, in its form, r contains the same structures 
as the action (4) ,  their meanings are different: In I' they are 
c-number functions, while in S, they are operators. Because 
of this there is a difference in the coefficients. We shall de- 
note the coefficients in r by the same symbols but in square 
brackets: l/[e2 ( p ) ] and [Z (  p ) 1. The normalization point 
(momentum) p in I? is understood as the momentum of the 
external fields. 

As will be shown below, the relation between a ( p) and 
[ a (  p)  ] has the form'' 

where a = e2/47r. The term with In Zarises upon calculation 
of the photon matrix element of the operator .f d 4~{T 
exp( V) T + exp( - V) U} in (4).  This matrix element is 
fixed by the so-called Konishi The observable 
quantity is [ a (  p )  1. The fact that it depends explicitly on the 
Z-factor is a new and unexpected element. We note that for- 
mula (6) also applies to the bare quantities (with p = M,). 
Therefore, the following two models are physically equiva- 
lent: In the first model, the coefficient of W in S, is equal 
to (47ra,) - ', and the coefficient of TT + VU is equal to Zo; 
In the second model, these coefficients are equal to 
(47r[ao] ) -' and 1, respectively. The quantity a (  p)  is re- 
normalized only at the one-loop level, as already noted 
above; i.e., 
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Combining (6) and (7), we obtain 

Apart from the one-loop logarithm, the dependence on p 
enters only through the Z-factor. Differentiation with re- 
spect to lnp  gives the@-function for the observable constant 
[ a ( p ) l :  

where y (a) is the anomalous dimension of the matter super- 
field: 

Y=-d ln [Z] /d  In p=a/n+. . . . (10) 

We now describe the equations for the anomalies in 
SQED. The supercurrent J,, in this model has the form 

J,&=-e-2W,W&+Z{'/, (D, (eVS) ) e-vB& (eVS) 
-'/,SeVD, [e-vBd(eVS)] -.'I,SB,i(eVD,S) 

+ (S+T, V+-V)), (11) 

and its supertrace is equal to 

The coefficients in the right-hand side are obtained by differ- 
entiating the action S ,  [see (4)  ] with respect to the cutoff 
parameter M,. The coefficient of W in the operator relation 
(12) is exclusively one-loop. The equality ( 12) is the super- 
generalization of the Adler-Bardeen theorem for the axial 
current. 

The one-loop result for the coefficient of W is general 
for all supersymmetric gauge theories. It is worth noting that 
in the right-hand side of ( 12) the second term, while formal- 
ly equal to zero by the equations of motion, cannot be omit- 
ted. In fact, as was discussed above, it was the photon matrix 
element of precisely this operator that led to the difference 
between S ,  and J?. The calculation of the matrix element of - 
T exp( V )  T + a exp( - V) U can be performed by making 
use of the Konishi 

By virtue of ( 13), in the photon matrix element of the anom- 
aly ( 12) the p-function is recovered. 

We turn now to non-Abelian theories. Since effects as- 
sociated with matter are interpreted in essentially the same 
way as in electrodynamics, we shall concentrate on a purely 
gauge model with the action 

Since non-Abelian fields are sources for each other, it 
follows that, even in the absence of matter, rescaling of the 
fields changes the magnitude of the charge in the Wilson 
action just as a change of scale of the matter fields did in 
electrodynamics. Specifically, when we change from fields V 
to fields r] V, i.e., 

an action equivalent to (14) will be obtained, if, simulta- 
neously with ( 15 ), we also replace the charge g2 -+ g i  using 
the formula 

The charges in the Wilson action and in r will coincide 
if we normalize the kinetic term of the field V to unity. With 
this normalization the matrix element of the operator W is 
obtained by simply replacing W, by the external field. The 
normalization to unity implies that r] = g, . This means that 
the observable charge [ g2] is connected with the charge in 
the Wilson action by the relation 

8n2/g2=8n2/ [g2] +T (G) ln [g2] . (17) 

Since the Wilson coupling constant g2 is renormalized only 
at the one-loop level: 

8nVg2=8n2/go2-3T (G) 1n (Molp), (18) 

by differentiating (17) with respect to In p we obtain the 0- 
function (2)  for the charge [ g2]. 

We note that an explicit calculation of the two-loop 
contribution to the effective action in supersymmetric gauge 
theories has been undertaken recently in some very interest- 
ing and stimulating papers.26 The technique of covariant su- 
pergraphs and, for the regularization, supersymmetric di- 
mensional reduction were used. From the explicit 
calculations of Ref. 26 it can be seen that the two-loop part of 
the@-function arises upon expansion of an infrared indeter- 
minacy of the form p2/p2, where p is the momentum of the 
external field. In fact, the integral over one of the loops is 
completely determined by the region of virtual momenta of 
orderp. In our terminology this loop must be interpreted as 
the result of taking the matrix element of the operator W '. 

We shall say a few words about the anomaly for the 
supercurrent in the non-Abelian theory ( 14). The corre- 
sponding equation has the following form: 

where W, is defined in ( 14). The absence of higher orders in 
g2 in ( 19) corresponds exactly to the one-loop law ( 18) for 
the renormalization ofg2 in the Wilson action. As in electro- 
dynamics, the@-function arises when the matrix element of 
the operator W is taken. 

The discussion is organized as follows. In Sec. 2 we con- 
sider the simple (nonsupersymmetric) example of the elec- 
trodynamics of a scalar field. For this example we demon- 
strate the difference between S ,  and r by analyzing the 
renormalization of the charge in the two-loop approxima- 
tion. The third section is devoted to supersymmetric electro- 
dynamics. Features of non-Abelian models are discussed in 
Sec. 4. A comparison with calculations of the instanton type 
is given in Sec. 5. In the brief Conclusion we summarize the 
main results. 
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2. ELECTRODYNAMICS OF A SCALAR FIELD 

In this section we discuss an instructive example-sca- 
lar electrodynamics. This model makes it possible to eluci- 
date in a simplified situation some aspects of the results per- 
taining to supersymmetric models as formulated above. A 
concrete calculation of the two-loopp-function with the em- 
phasis on the points that we shall need is described in detail 
in Ref. 27; here we shall concentrate on the interpretation of 
this calculation in the framework of the operator expansion. 

We write the initial Lagrangian in the form 

where e, is a complex scalar field and g, = d, - iA, . Be- 
low we consider the construction, in the two-loop approxi- 
mation, of both the Wilson effective action and the func- 
tional r that determines the irreducible vertex functions. 
The external-field method will be used. 

We shall clarify how one introduces the normalization 
point p in the functionals S, and T. In both cases p is the 
momentum of the external field (it is assumed that the mass 
of the field e, is negligible in comparison withp ) . As we shall 
see, in one of the loop integrals a well defined part is built up 
from the infrared region of virtual momenta k -p. This part 
should be included in r ( p ) , but excluded from S, ( p 1. As 
regards the ultraviolet cutoff, in our procedure only one- 
logarithm integrals arise, and these can be cut off in a step- 
wise manner from above at k = M,. In principle, one can 
keep in mind that the theory is regularized by the introduc- 
tion of Pauli-Villars fields (partners to the field e,) plus high- 
er derivatives for the vector field A,. 

In one loop the problem of calculating S, ( p) is, of 
course, trivial. The result reduces to the following: 

where the factor 

depends on the gauge of the photon field, the propagator of 
which is 

In this approximation r( p) coincides in form with 
S W ( p  since the photon matrix element of 
(Z - 1 ) g,e ,  *g,e, must be taken into account only in the 
two-loop approximation. 

We turn now to the two-loop analysis. In the two-loop 
approximation the coefficient of F2 in S, is determined by 
the graph of Fig. 1. We separate out the integration over the 
virtual photon and leave this integration to the end of the 
calculation. Before this last integration the calculation of 
S, ( p) is equivalent to the calculation of the photon polar- 
ization operator n,, in the one-loop approximation (Fig. 
2). To be more precise, we need to calculate only one term in 

FIG. 1. Two-loop contribution toS, ( p )  in scalar electrodynamics. The 
thick line is the propagator of the scalar particle in the external field; the 
wavy line is the photon propagator. 

the operator expansion for n,,-namely, the term with 
FaPFaP. The coefficient of this term is finite and well de- 
fined. Then the last integration over the photon momentum 
k gives a logarithmic integral of the type $ d 4kk -4, which 
can be cut off from above at k = M, and from below at k = p 
(for more detail, see Ref. 27). Specifically, in the x-represen- 
tation 

9 (') = j d4z iB, ( x )  n,!:" ( x )  . alp* (24) 

where2' 

n , , = i ( T { J , ( x )  J v ( 0 ) ) ) ,  .?, 
~,=icp~?Zj,cp=i[cp*~,cp- ( a p c p ' )  T I ,  (25) 

and the superscript ( F  ') indicates that in n,, we must re- 
tain only the operator F '; the region of integration over x in 
(24) is given by the inequality M ;  ' < 1x1 <pP1.  In formula 
(24) g,, is the free photon propagator: 

The operator expansion for II,, was constructed in Ref. 
27, in which an explicit expression was found for the propa- 
gator G(x,O) of the scalar particle in the external field: 

(in the Fock-Schwinger gauge for A ,,,,, , i.e., x, A ,,+,, = 0). 
It is important that in the construction of S, ( p) we must 
keep only the singular term in the propagator (27). It is this 
term which corresponds to large ( p - k; see Fig. 2) virtual 
momenta in the loop of Fig. 2. The nonsingular term [in 
momentum space this is proportional to d 2/dp, dp, p )  1 
represents the infrared effect and, in the diagram of Fig. 2, 
corresponds to virtual momenta p of the order of the mo- 
mentum p of the external field. In the expression (27) the 
limit of zero p has been taken. 

In other words, the second region ( p - v )  bears no rela- 

FIG. 2. By cutting the photon line in Fig. 1,  we arrive at the photon 
polarization operator II,,. We are interested in the coefficient of F4FaS 
in the operator expansion for II,, . 
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tion to the coefficient of the Wilson operator expansion and 
will be taken into account in the calculation of the matrix 
element; see below. 

We give here the formula (25) from Ref. 27 (the quan- 
tity that we shall need is denoted in Ref. 27 by II;; ): 

We draw attention to the fact that the result (28) is not 
transverse. A reflection of this fact will be the dependence of 
S ,  ( p )  on the gauge parameter 6. Combining (24), (26), 
and (28), we obtain 

The situation is, at first sight, paradoxical. In fact, the two- 
loop coefficient of FaSFaa in S ,  ( p )  depends on the gauge! 
The corresponding constant, of course, cannot be observ- 
able. How can we reconcile (29) with the well known 
expression for the renormalization of a in scalar electrody- 
namics (an expression which, of course, does not contain a 
gauge parameter)? 

The answer should be clear to the reader from Sec. 1. 
The coefficient of the operator F in S ,  ( p )  in reality does 
not coincide with the observable charge. In determining 1/ 
[a] it must be taken into account that a nonzero contribu- 
tion to the amplitudes (in the given case, in an external pho- 
ton field) is given by the matrix element of the operator 
9, q, *9,q, over the external field. 

Formally, the operator J d 4x2?J,q, *2?J,p is equal to 
zero by the equations of motion. We can convince ourselves, 
however, that in an external gauge field the following anom- 
aly relation holds: 

which follows from formula (27) for the propagator G(x,O). 
The exact propagator G(x,O), of course, satisfies the 

equations of motion - 9J2G(x,0) = S4(x). However, in the 
calculations we divide this propagator into two parts-a 
part singular in x, which contributes to the coefficient of the 
operator expansion, and a part regular in x, which can be 
interpreted as a matrix element. In fact, 

where GRg is the second term in the right-hand side of (27) 
(all the results pertain to the Fock-Schwinger gauge for the 
external field; see Ref. 27). 

If we now return to the actiqn (27), we can determine, 
by going over from S ,  to r, what must be identified with the 
observable constant. Taking the matrix element over the ex- 
ternal photon field for the F2 structure, we obtain 

Invoking (23), we can convince ourselves that in the sum the 
dependence on the gauge drops out, as we should expect, and 

in complete agreement with the known result. 
Here it is appropriate to make a few remarks. In going 

over from S, to r, as is usual in perturbation theory we 
calculated the matrix element only of that part of S ,  which 
can be interpreted as a perturbation with respect to the 
chosen operator basis, i.e., only of the part 
( Z -  1)  Jd4x2?JPq,*2?J,p 

We note also that we have used a certain specific proce- 
dure of ultraviolet and infrared regularization, which, of 
course, is not obligatory. In the literature Feynman dia- 
grams are often calculated using, e.g., dimensional regular- 
ization both for the ultraviolet and for the infrared region. In 
fact, all these calculations, irrespective of the form of the 
infrared regularization, pertain to r and give the correct 
answer (including the infrared region) for the observable 
charge. 

In the example under consideration (scalar electrody- 
namics), the separation into an ultraviolet and an infrared 
contribution (i.e., into OPE coefficients and matrix ele- 
ments) is not unique. In particular, the anomaly relation 
(30) is not connected with the well known conformal anom- 
aly; the coefficient in the right-hand side of (30) depends on 
the procedure adopted. Of course, if we had adopted some 
specific calculational scheme, then in the framework of this 
scheme both the coefficient of F2 and ( 9 , ~  * 9 , p  ) are 
fixed in a fully determinate manner, but "transfer" between 
them can occur if we go over to another scheme. Confirma- 
tion of this is given by SQED (see Sec. 3 ) ,  in which both a 
component (nonsuperfield) treatment and an analysis in 
terms of superfields are possible. The scalar particles appear 
in the matter sector of SQED. The spinor fields that also 
appear in SQED do not, in a component treatment, have an 
anomaly analogous to (30), (qQ$) = 0, i.e., spinor elec- 
trodynamics does not have an infrared part in the charge 
renormalization. In the framework of a superfield analysis 
the relation ( 30) is replaced by the Konishi anomaly ( 13). 

3. SUPERSYMMETRIC QUANTUM ELECTRODYNAMICS 

The Wilson action in SQED has the form 
1 Z 

SMr = d4x d20 W z + --I d4x d9(TevT+Ue-'U) . (33) 
4e 4 

Using the same general approach as in the preceding section, 
we show here that going over from S ,  to r gives formula 
(6)  for the observable charge. In addition, we prove the gen- 
eral theorem that the renormalization of the coefficient of 
the operator W * is exhausted by one loop. A conceptually 
similar statement about the one-loop character of the renor- 
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malizations was made in Refs. 5. Since the parameters e2 and 
Z in (33) are not observable and depend on the method of 
quantization, to ensure the validity of both assertions it is 
important to use the superfield formalism. In other words, it 
is important that one descends from the mass shell in an 
explicitly supersymmetric manner. 

The analysis of the relationship between S, and r is 
carried out in the framework of the same program as in the 
preceding section. We must find the propagator of the mat- 
ter superfield in the external field, and separate it into a sin- 
gular and a nonsingular part. The singular part must be used 
in the calculation of the coefficient l/e2, and the nonsingular 
part then fixes the value of the matrix element of the opera- 
tor 

In this problem the program is easier to carry out because 
there is no second or subsequent loop for l/e2, and conse- 
quently no transfer between different terms in Sw. In other 
words, in the framework of the superfield formalism the sep- 
aration into coefficients of the operator expansion and ma- 
trix elements becomes unique. One manifestation of this sit- 
uation is the fact that the calculation of the matrix element of 
(34) can be formulated as the Konishi anomaly relation 
(13). 

Here there is a direct analogy with the Adler anomaly in 
the axial current": 

As is well known, this anomaly has two aspects. On the one 
hand, it can be exhibited as an infrared effect by considering 
the transition of the axial current to two photons: 

a,, (qr/qe) F P ~ P ~  
where Q is the momentum of the axial current. It is immedi- 
ately clear from this formula that the fermion loop is satu- 
rated by small virtual momenta of order q. Multiplying by 
q,, we obtain (35). This result, which emphasizes the in- 
frared character of the effect, corresponds to the calculation 
of the matrix element of (9, p *B, p) in Sec. 2 by separa- 
tion of the nonsingular part of the propagator in the external 
field. 

On the other hand, since we are concerned with a diver- 
gence, the anomaly relation (35) can be obtained as a result 
of ultraviolet (e.g., Pauli-Villars) regularization of a,. 

In the language of the spectral current in an external 
field, the two-aspect character of the anomalies implies that 
the number of levels arriving at the origin is equal to the 
number of levels intersecting the ultraviolet cutoff. 

The operator D [T exp( V )  T + exp( - V )  U] of in- 
terest to us is the direct supergeneralization of a,a,. The 
matrix element of this operator is fixed uniquely by the Kon- 
ishi anomaly (13). It follows from this that in first order in 
Z - 1 we can obtain from (33) an expression for T: 

1 r =  --- I (Z - I ) ]  5 d4xd20W2 + matter terms. [ 4a2 16n2 
(36) 

As already noted, for l/e2 we have the one-loop law 

If we confine ourselves to first order in Z - 1, the result 
(36) can be represented as the replacement of the ultraviolet 
parameter M, under the logarithm by Mo/Z. This circum- 
stance, of course, is not accidental, and is in one-to-one cor- 
respondence with the Konishi-anomaly derivation based on 
ultraviolet regularization. 

In fact, we shall introduce explicitly the Pauli-Villars 
regulators TR , UR for matter; i.e., we add to the action (33) 
the regulator part 

+ (: - j d'x dzO TRUR+ h.c.) 

When the regulators are taken into account the naive equa- 
tions of motion are satisfied. Therefore, we an use these 
equations in the perturbation proportional to Z - 1. Then 
the perturbation is written in the form 

After the matrix element is taken, the extra term (39) repro- 
duces the term proportional to Z - 1 in (36). Thus, from the 
term O ( Z  - 1 ) we have established that the mass term of the 
regulator in (38) does not contain 2. After this it is fairly 
obvious that the summation of all orders in Z - 1 in the 
matrix element of exp(iAS) over the gauge fields is equiva- 
lent to the replacement Mo + Mo/Z. Consequently, the ob- 
servable charge, appearing in r, is given by 

The relation (40) is the final result for SQED. If we differen- 
tiate it with respect to lnp, we obtain thep-function given in 
formula ( 9 ) . 

As regards Eq. (12) for the anomaly in the supercur- 
rent, it is obtained by differentiation of the action (33) with 
respect to In M,. Here it should be borne in mind that for 1/ 
e2 the one-loop law (37) holds, and the Z-factor depends on 
the ratio Mo/p. 

It remains for us to prove the theorem stated above con- 
cerning the absence of higher loops in l/e2. In fact, we mere- 
ly reformulate slightly the arguments of Refs. 5. Thus, we 
shall assume for definiteness that we are calculating the two- 
loop coefficient of the operator W2  in the effective action. 
For this, in the external-field method we must consider the 
graph of Fig. 3. We note that in the Abelian case the super- 
field V  does not interact with the background field. The giv- 
en diagram can be regularized as in Sec. 2. Namely, by cut- 
ting the line V we obtain a sub-block that is finite both in the 
ultraviolet and in the infrared region. The last integration 
over the virtual momentum of the V  propagator is cut off in 
the ultraviolet region at k = Mo, and in the infrared region at 
k = p. This ultraviolet cutoff can be introduced via higher 
derivatives of the field V.  Having in mind an n-loop diagram, 
we can also formulate a general regularization procedure: 
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FIG. 3.  Two-loop contribution to r( p )  in SQED. The thick line is the 
propagator of the matter superfield in the external gauge field; the wavy 
line is the propagator of the gauge superfield. 

the introduction into the Lagrangian of Pauli-Villars fields 
with mass Mo in combination with higher derivatives of V. 
For us, only the fact of the existence of superfield regulariza- 
tion in four-dimensional space-time is important. 

In the background-field technique the expression for 
the diagram of Fig. 3 has the form 

A S  a J d8zl d8z& (zl, z2) G (zl, z2) G ( ~ 2 ,  Z I ) ,  (41) 

where z =  ( ~ , 8 , 8 ) ,  and g(z, ,z , )  and G(z,,z,) are the 
Green's functions of the vector superfield and the covariant- 
chiral superfield in the external field. An operator represen- 
tation of these propagators can be found in Refs. 28 and 26: 

It is of fundamental importance that in formulas (42) the 
external field V does not appear explicitly, but appears only 
through W, and the covariant derivatives. Thus, the meth- 
od is explicitly gauge-invariant with respect to the external 
field. In particular, under gauge transformations of the ex- 
ternal field the propagator 9 is not changed, while the pro- 
pagator G is changed as follows: 

where K ( z )  is a real superfield of general form. It is obvious 
that the integrand in (41 ) is invariant under the transforma- 
tion (43). In the non-Abelian case K is a matrix in color 
space, and the analog of the expression (41 ) contains a color 
trace. The gauge invariance of the integrand in (41 ) implies 
that it is expressed entirely in terms of the quantity WYt and 
its covariant derivatives (the superscript ext indicates the c- 
number external field). From (41), after the integration 
over z,, we obtain 

where f does not depend explicitly on x, 8, or 8, and is a 
function of WF'. Iff (x,8,8) is expressed locally in terms of 
WZt(x,8) (and its derivatives), it is obvious that a structure 
of the form $ d 4 ~ d  2O W '(x,O) cannot be obtained. On the 
other hand, in the specific two-loop calculations of Ref. 26 
this structure did arise. The reason is that the function f in 
Ref. 26 was expressed nonlocally in terms of W, e.g., 

Here an infrared singularity is present. If the momentum of 
the external field Wis equal top, a l/p2 pole could arise only 
from the region of virtual momenta of orderp. In accordance 

with this, as explained above, this region need not be includ- 
ed in the coefficients of the OPE for S,, but is taken into 
account when the matrix element is taken. This completes 
the proof for the graph of Fig. 3. 

The argument presented above does not apply to a one- 
loop graph with a chiral superfield inside it. In fact, for the 
proof given above the presence of a quantum interaction ver- 
tex accompanied by integration over d ,8d was essential. 
The "superfluous" d '8 can then no longer be eliminated. 
The one-loop supergraph in the external-field technique can- 
not be written in the form (41 ). The proof that the two-loop 
diagram for S, is equal to zero can be generalized without 
difficulty to all the higher-order loops and to non-Abelian 
theories. It is the,generalization of the theorem concerning 
the nonrenormalizability of the F-terms.' 

We shall mention one of the interesting indirect conse- 
quences of the analysis performed. We refer - to the anoma- 
lous dimension of the operator T exp(V)T + 8 
exp( - V) U. One of the renormalization-invariants is the 
operator appearing in the right-hand side of Eqs. ( 12) for 
the supercurrent anomaly. Another renormalization-invar- 
iant combination 

appears in the Konishi equation ( 13). The renormalization 
invariance of (44) can be demonstrated by considering the 
increment of S, upon change of Z,. From the fact that the 
operator (44) and the right-hand side of (12) are indepen- 
dent of the normalization point it follows that this property 
is also possessed by the operator 

4. NON-ABELIAN GAUGE THEORIES 

The principal assertions for this case have been formu- 
lated in the Introduction. Here we shall elucidate the deriva- 
tion of the results for the example of supersymmetric gluo- 
dynamics. The inclusion of matter does not require special 
analysis, since it does not differ from the example of SQED 
considered above. 

The difference from SQED consists in the fact that the 
gauge fields are sources for each other, and therefore the 
matrix element ( W ') of the operator W ' does not reduce to 
a c-number function W :x,. For this matrix element the for- 
mula 

is valid, where P(a) and f l ,  ,,,,(a) are the exact and 
one-loop &functions, respectively. The fact that 
@, Ioop (a) W ') reduces precisely to P(a) W L t  is obvious 
from the renormalization invariance of these quantities. 
Thus, the right-hand side of (46) can be regarded as the 
definition of the Gell-Mann-Low function. Our aim is the 
constructive calculation of P(a ) ;  the (I + 1 )-loop coeffi- 
cient in P ( a )  is fixed by the I-loop coefficient in the matrix 
element (46). 

First of all we recall that the Wilson action in supersym- 
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metric gluodynamics is given exactly by the one-loop expres- 
sion 

This fact was proved in the preceding section. At the one- 
loop level the expression for T (  p)  obviously has the same 
form. The next loops in T (  p)  are obtained by calculating 
the matrix elements of S ,  [to be more precise, the relation- 
ship exp(ir)  = (exp(iS,)) holds]. We shall establish the 
connection between T ( p ) andS, ( p ) at the two-loop level. 
In this approximation, 

I? (p) = 4 d4z d20 Tr wt t  
2go 

where (Tr W 2, is the matrix element of the operator Tr W 2. 
In the passage from (47) to (48) the matrix element is calcu- 
lated entirely from the correction to the bare action. There- 
fore, it is sufficient to find (Tr W ,) to order O(a ) .  

The one-loop part of the result (46) can be extracted 
from Ref. 22 [formulas (A21 ) and (A22) 1. The main com- 
plication in the calculation of the matrix element ( W ,) is 
the necessity of infrared regularization. Specifically, in Ref. 
22 dimensional reduction was used for this purpose. We, 
however, should like to give here another derivation, per- 
taining directly to four-dimensional space. The physical 
transparency of this derivation will help us afterwards in our 
discussion of the relationship with previous analyses. 

Our treatment will refer to the G-component of the su- 
perfield W ,; this component has the form 

where a, = - Aua,Xa is the axial gluino current; 
A z (a = 1,2) is the Weyl spinor. In terms of the Majorana 
spinor A z ( a  = 1, ..., 4) the same current is written as 
a, = A u  y, y,Au/2. 

An important result is that not only the fermionic part 
but also the bosonic part of W '1, can be represented as a 
total derivative: 

Therefore, as will be shown below, the calculation of the 
matrix element of GZ' can be formulated in terms of a certain 
anomaly, just as can be done for d, a,. To be more precise, 
both a, and K, have infrared poles of the type ( q, i q 2 ) ~ G ,  
the coefficient of which is fixed uniquely. This assertion per- 
tains to the following kinematics: The two gluons in the final 
state have momenta k,  and k,, with k : = k : = 0 and 
q = k, + k2$0. The existence of the infrared pole in a, is a 
well known fact29,30 reflecting the existence of the axial 
anomaly. Apparently, the analogous pole in K, has not been 
discussed in the literature. 

In the calculation of the matrix element of K, we shall 
use the external-field formalism: 

where A text and a; are the external field and quantum field. 
In the one-loop approximation we need that part of the cur- 
rent K, which is quadratic in the quantum field a: : 

The matrix element of interest to us is obtained from (52) by 
substituting the Green's function of the quantum field: 

Here all the quantities are matrices in color space: 

(9,)Ob=i (PbaT+PbA;), [9,9,] Ob=-GMyab=-foCbG,,vc. 

To simplify the formulas we have omitted the superscript ext 
for the external fields. The formalism used is explicitly 
gauge-invariant with respect to the external field. As regards 
the gauge of the quantum field, (53) implies the Feynman 
gauge: A 2  = - 1/2(9,a, ),. The dependence of the an- 
swer on the gauge of the quantum field is discussed below. 

We shall expand the propagator (53) in powers of 
9 -2G. The term of zeroth order in G drops out because of 
the contraction with E , , ~ ~ .  In the second-order term 

the intensities G are contracted on one index and cannot give - 
the unique structure q, Gap GnB that determines the longitu- 
dinal part of K,. In the end, there remains only the term 
linear in G: 

Instead of calculating (54) directly, we can compare this 
expression with the matrix element of the spinor axial cur- 
rent a,, the anomaly of which is well known: 

As in the preceding case, upon expansion in a G  there re- 
mains in the longitudinal part of (a, ) only the linear term 

Comparison of (54) and (55) shows clearly that K, con- 
tains exactly the same pole ( q, / q 2 ) ~ G  as does a,, but with 
an extra factor 4. Since 

<a,a,> = (a/4n) T (G) (GWaG,?) '"', (56) 

for (GI?? ) we obtain 

where we have added 1 from the classical part. 
From (56) and (57) for the G-component of W2  [see 

(49)] we have 
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Bearing in mind the supersymmetry, we arrive at the conclu- 
sion that the one-loop part of the relation (46) has been 
reproduced. 

It remains to demonstrate that the quantum field is in- 
dependent of the gauge. In an arbitrary gauge the propagator 
of the field a: has the form 

It is not difficult to verify the following operator relation: 

If we assume, as is required in the external-field method, that 
the external field satisfies the equation of motion 
9, G,, = 0, then the second term in the right-hand side of 
(60) drops out and the propagator g,,, (x,y) can be written 
as follows: 

We now return to the matrix element of K,, [see (53) 1. The 
&-dependent part is equal to 

Formally, by virtue of the gauge invariance with respect to 
the external field, (XI 9 -49, Ix) can be expressed entirely 
in terms of g, G,, which is equal to zero. However, in the 
kinematics under consideration, k = k = 0, the expres- 
sion (XI 9 -4.!Yv Ix) is not defined in the infrared region (it 
contains l/k '). For the regularization one can give an in- 
frared-regularizing mass m to the quantum field, i.e., 
Y 2 - +  9' - m2 with m2<q2= (k ,  + k2)2. The same device 
is also used (see Ref. 29) in the fermionic triangle. After the 
introduction of the mass m as an infrared regulator, expres- 
sion (61) vanishes in actuality, not just in the formal sense. 

We shall make a few simple remarks connected with 
this result. The fixing of the infrared pole in K,, is a unique 
procedure that does not depend on how one descends from 
the mass shell. In other words, the matrix element of W '1, 
is bound to be the same in the component and superfield 
formalisms. Extension to the other components of W im- 
plies the superfield formalism. We have checked that the 
answer (46) is obtained from Ref. 22, which uses the super- 
field formalism and supersymmetric dimensional reduction. 

We note that the bosonic anomaly in W 2 1 G  is twice as 
large as the fermionic anomaly and of the opposite sign. Ef- 
fectively, this changes the sign of ( W '1, ) in comparison 
with the case when the bosonic anomaly is not taken into 
account (as is usually the ~ a s e ' ~ . ' ~ ~ ' ~ ) .  We shall return again 
to the discussion of this circumstance in Sec. 6. 

We have not calculated explicitly the two-loop and 
higher terms in the relation (46). We give here an indirect 
argument that is analogous to the analysis given in SQED 
and will make it possible to make the generalization to all 
loops. 

In SQED the second loop in r arose when the matrix 
element of the operator 

was taken. This matrix element is saturated in the infrared 
region, but by virtue of the universal character of the anoma- 
ly the result for the second loop in 1/ [ g2] can be formulated 
as the replacement of the regulator mass Mo-+Mo/Z in the 
one-loop logarithm. In this form this result is valid in general 
for all loops [see (37)-(40) 1. 

For a non-Abelian theory an explicit procedure for ob- 
taining (46) by means of ultraviolet regularization has not 
been constructed, but there is no doubt that this can be done. 
It then seems natural that a situation analogous to that in 
SQED will obtain. Namely, the effect of the higher loops in 
1/[ g2] reduces to the replacement Mo/p - ( [Z,]/ 
[Z (  p ) ]  )* MO/p in the one-loop logarithm, where A is a 
certain power. (Since the ultraviolet procedure has not been 
specified, we have not ruled out the possibility that A # 1. ) 
In the given case, obviously, [Z (  p)  ] = 1/[ g2( p ) I .  

The two-loop result, which is obtained by substituting 
(46) into (48), can be represented in the form 

If now we do not expand [Zo]/[Z(  p ) ]  in the gauge con- 
stant, the result (62) is exact. From this we immediately 
obtain the &function (2) .  

The fact that the exponent A in the given case has been 
found to equal 1/3 can be explained naturally in terms of 
calculations of the instanton type (see Sec. 5).  

5. COMPARISON WITH CALCULATIONS OF THE 
INSTANTON TYPE 

In the whole investigation we have leaned heavily on the 
fact that the coefficient of d '6 W in S ,  was renormalized 
only in one loop. As already discussed, this fact generalizes 
the well known theorem concerning the nonrenormalizabi- 
lity of the F-terms2 Below we shall give a somewhat non- 
standard proof of the theorem, from which it will be seen in 
which cases the theorem can be violated. At the same time, 
our arguments will show why one-loop renormalization is 
possible for the structure J d '8 W 2. 

The basic idea of the construction to be developed is as 
follows. For any supersymmetric field theory there are sev- 
eral (a  minimum of four) supercharge generators, and it is 
possible to choose an external field that is invariant under 
the action of some of the supercharges. For this special exter- 
nal field certain structures in the action can vanish. The as- 
sertion concerning the nonrenormalizability will pertain to 
those structures which do not vanish upon substitution of 
the background field. 

For example, in the Wess-Zumino model with the ac- 
tion 
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where W is the superpotentia1,the appropriate external field 
is 

where the Ci are constants. The relation (65) implies that @ 
and 5 are interpreted as independent variables, not related 
by complex conjugation (a kind of analytic continuation). 
Thex-independent chiral field (65) is not changed under the 
action of the supercharges o,, i.e., under the transforma- 
tions 

Consequently, in the quantum problem for the deviations 
@ - @,,, we have exact symmetry under the transforma- 
tions that can be generated by e,. In the terminology of 
quantum states, we are concerned with boson-fermion de- 
generacy. There is enough of this degeneracy for the cancel- 
lation of all the quantum corrections to r (@,,, ), i.e., 

The situation is absolutely analogous to the calculation of 
corrections to the energy of the vacuum in empty space, i.e., 
with a,,, = 0. The formula (66) implies that the second 
term in (64) is nonrenormalizable. The first term vanishes in 
the external field (65), and its renormalization is not fixed. 

What changes when we go over to gauge theories [e.g., 
to supersymmetric gluodynamics with the action ( 14) I? 

The general reasoning remains as before. As in the 
Wess-Zumino model, we can take the external field to be 
purely chiral and independent of the coordinates. Moreover, 
it is sufficient that these conditions be fulfilled for the inten- 
sities W, and but not for the prepotential V (r  depends 
only on gauge-invariant quantities). Another, more compli- 
cated variant (see Ref. 5),  which is also suitable for our pur- 
poses, is the instanton solution of Ref. 31. Although in this 
case the field depends on x, nevertheless there is invariance 
of the external field (more precisely, of gauge-invariant 
structures of the type W ') under the supertransformations 
that can be generated by Q, (but not by Qa ) .  From this we 
might arrive at the conclusion that renormalizations are ab- 
sent in the structure S d '0 W '-a conclusion analogous to 
that reached above for the F-terms in the Wess-Zumino 
model. Such a conclusion is correct in the Wess-Zumino 
model, but, as is well known, is incorrect in gauge models. 

A point omitted in the proof is that in certain cases the 
fermion-boson symmetry can be broken, namely, when the 
action of g, on the state gives zero. In a somewhat different 
language, more customary for calculations in external fields, 
the effect consists in the appearance of zero modes. 

As is well known, in an instanton example (we recall 
that here and below we are discussing supersymmetric gluo- 
dynamics) the number of modes of a vector field with eigen- 
value A 2, # O  is equal to 3' 4 - 2 = 2. At the same time, two 
fermionic modes with eigenvalue A, and a further two with 
eigenvalue - A, are present.'2 

This relationship between the bosonic and fermionic 
modes is a consequence of the invariance under ea and 
holds in any field with this invariance. It is not difficult to see 

that it is precisely this balance ( 1:2) which ensures the can- 
cellation of the quantum corrections. (For instantons the 
phenomenon was first discovered in Ref. 33.) In particular, 
the one-loop correction is proportional to 

bor a fern, * 

and vanishes to the extent that for each bosonic level there 
are two fermionic levels. Cancellation in the next loops is 
ensured by the exact symmetry under Q, . 

We now turn to the zero modes. The same symmetry 
under B, leads here to an "incorrect" ratio of the numbers 
of bosonic and fermionic zero modes, namely, 2: 1. In fact, 
the zero modes of the vector field A,, and the spinor field A, 
are essentially the same, and satisfy the equations 

In the second of these equations the dotted index of the field 
Aap is not affected; this fact is also a consequence of the 
invariance under a. From this it is obvious that there are 
twice as many bosonic zero modes as fermionic zero modes. 
The imbalance in the zero modes also leads to the result that 
the quantum effects are not cancelled completely, and 
r( WXt ) #S(  WXt ). TO be more specific, the zero modes 
give the following correction to I?: 

1 Mo2[Zo1 (AI') zm = - zT l n  
hos 

where the sums are taken over the bosonic and fermionic 
zero modes. The factors Z,/Z take into account the fact that 
the higher loops affect the normalization of the zero modes 
(and only this normalization). The corresponding renor- 
malization coincides with that of the external field, since the 
coefficients of the expansion in the zero modes have the 
meaning of collective coordinates of the external field. On 
the other hand, by definition, the renormalization of the ex- 
ternal field coincides with the renormalization of the charge, 
i.e., 

C ~ ~ l l [ z l = C g ~ / ~ ~ ~ 2 1 ,  (69) 

whereg, =g(M,), a n d g = g ( p ) .  
We now rewrite the answer (68) for Ar in terms of the 

number nJ of fermionic zero modes: 

(Ar) ,,,,=-V2n, [ l n ( M 0 / p )  -k1/3 I n ( [ Z , ]  [ Z ]  ). (70) 

Next, the coefficient nf is fixed by the index theorem: 

The second equality (71 ) is guaranteed by the self-duality of 
the external field. Substituting (71) into (70) and compar- 
ing the result with the initial action 

s=-{J d'x d20 ~r W' + J dd'  dd'g Tr R') , (72) 
4goL 

we find the charge-renormalization law [compare with ( 17) 
and ( l 8 ) ]  
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Here it is appropriate to compare this result with the 
analysis in the preceding section. First of all, we note that the 
exponent 1/3 in the expression (M,/p ) (Z,/Z) ' I 3  [compare 
with (62) ] arose in a natural manner. In fact, the coefficient 
ofln(M,,/p) in (68) is equal to - (n, - $nf ), while ln(Z,,/ 
Z )  is multiplied by - S(n, - nf ), wheren, is thenumber of 
bosonic zero modes. 

The latter factor J(n, - nf ) is in one-to-one correspon- 
dence with the calculation, given in the preceding section, of 
the matrix element of Tr W *. The residues at the poles that 
occur in K, and a, are assumed to be n, and nf, respective- 
ly. In fact, we have discovered an index theorem for the zero 
modes of a non-Abelian vector field. The fact that n, = 2nf 
is manifested in perturbation theory in the fact that the bo- 
sonic anomaly gives a contribution to the matrix element of 
Tr W' that is twice as large as (and of the opposite sign to) 
that given by the fermionic anomaly. 

The arguments given above do not use the explicit form 
of the background field. Everything has been reduced to the 
number of zero modes, which are fixed by index theorems. 
Therefore, besides the instanton example, an x-independent 
self-dual external field is also suitable for our purposes. 
However, for such a field the integral $ d 4 x ~ G  that appears 
in the index theorem needs, strictly speaking, to be defined 
more fully. One possible way of doing this is to introduce a 
finite volume34~35-specifically, a torus L 4. The simplest self- 
dual field in this case (the toron) was discovered by 't 
H ~ o f t . ~ ~  The intensity of the toron field does not depend on 
the coordinates, and the topological charge and action are 
half those for the instanton [in the color group SU(2) 1. Our 
general reasoning in this case reduces to the following: There 
are two zero fermionic modes (they are generated when one 
acts on the toron field with the supertransformations Q, ) 
and four bosonic modes (ordinary translations). 

It is instructive to find the matrix element of the opera- 
tor Tr W in the toron field. Essentially, this was done in 
Ref. 36, in which the condensate (ilail, ),,,,, was deter- 
mined. The result for the average value in the toron field 
reduces to 
(Tr Wz>=-(Tr hz>=CL-3 [ g  ( L )  I-' exp (-4nZ/[g2(L) ] ) , 

(74) 
where L is the size of the box. We have given formula (74) in 
order to emphasize that this result is exact-there are no 
corrections in gi  to it. It can be seen from (74) that the 
operator Tr W2 (but not [ p(cr)/a2]Tr W 2, is a renormal- 
ization invariant; it is the matrix element of precisely this 
operator that can be expressed in terms of observable quanti- 
ties and does not depend on M,. 

6. CONCLUSION 

This paper, we hope, completes our lengthy endeavors 
in the study of two related problems in supersymmetric 
gauge theories: ultraviolet renormalizations, and the struc- 
ture of the supermultiplet of anomalies. We have clarified 

how exact relations for thep-functions arise in ordinary per- 
turbation theory. The key finding is that the Wilson action 
Sw ( p)  does not coincide with the sum T( p)  of vacuum 
loops in an external field, because of the presence of infrared 
effects in the diagrams. The widely known theorem concern- 
ing the nonrenormalizability of the F-terms is extended to 
the operator J d 2O w in Sw . The coefficient l/g2 of this 
operator is not renormalized at the two-loop and higher lev- 
e l ~ . ~ '  The first coefficient in thep-function for the observable 
coupling constant expresses the renormalization of l/g2, 
while the second and all the subsequent coefficients reflect 
the infrared effects of taking the matrix element. 

The observable gauge constant 1/ [ g2] appears in r and 
differs from l/g2 by C, C, In Z , ,  where the Z, are the factors 
describing the renormalization of the fields, and the C, are 
numbers that appear when the matrix elements are calculat- 
ed. It can be said that the Z-factors of the matter fields be- 
come observable. 

It can be seen that standard perturbation theory is ex- 
tremely ineffective for calculating the renormalization of the 
gauge constant [ g2]. Working with ordinary supergraphs, 
one has to take into account much that is superfluous 
(ghosts, etc.), i.e., much that later drops out of the answer in 
any case. In this sense, calculations of the instanton type, 
which reduce the problem to an essentially classical problem 
with a finite number of degrees of fredom (a  few zero 
modes), are much more economical. The Z-factors encoun- 
tered on this route obviously pertain to the external fields 
and not to the quantum fields. 

In the instanton approach the geometrical meaning of 
n, - inf is entirely transparent-it is the one-loop coeffi- 
cient in thee-function. Essentially, this implies that the first 
loop is determined by infrared effects. Unfortunately, in or- 
dinary perturbation theory we have not found a way of rea- 
soning that adequately reflects this phenomenon. 

Evidently (at least, we hope that this is so), ordinary 
perturbation theory can be improved in such a way that, in 
calculations of the renormalization of W ', one should not 
have to be concerned at all with quantum fields, ghosts, etc. 

As regards the problem of the supermultiplet of anoma- 
lies, in our approach it is solved as follows. Since the renor- 
malization of l/g2 in S, is exhausted by one loop, in the 
anomaly equation [see ( 19) ] for the supercurrent J,, in its 
operator form the coefficient of W is purely one-loop. It is 
this statement which generalizes the Adler-Bardeen 
theorem to supersymmetric theories. What is unusual is the 
fact that the anomaly in the trace a,, of the energy-momen- 
tum tensor is determined by the first loop.5' The usual 
expression for a,, , which is proportional to the exact 8- 
function, is recovered after the average is taken in an exter- 
nal gauge field. Then the same P-function arises in the ma- 
trix element of dpa, as well. Here we are concerned with 
another unusual aspect-taking the average of the operator 
GG does not reduce at all to replacing the operator by a c- 
number external field. The effect can be formulated as a 
manifestation of an anomaly in the current K, [see (57) 1. 

We now briefly discuss the connection between our re- 
sults and what was already known in the literature. In the 
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papers of Piguet and Sibold" a detailed investigation of the 
quantity r and the matrix elements of the supercurrent was 
undertaken. The analysis was carried out in terms of'Ward 
indentities. It was concluded that a supersymmetric con- 
struction Ja6 and a supermultiplet of anomalies are possible, 
but their results (and the authors fully perceived this) were 
not formulated in terms of operator equations. Although, in 
principle, the program of Piguet and Sibold was fully correct 
[and, in fact, from the relations given in their papers one can 
extract the formula (9)  for SQED], in practice the construc- 
tion was excessively complicated. Our advance is due to the 
fact that we have introduced the following extra elements: 

a )  the language of operator expansion (the difference 
between Sw and r ) ;  

b) the supersymmetric descent from the mass shell, 
which is important for the statement concerning the one- 
loop renormalization of l/g2 in s,. We emphasize that the 
supersymmetric descent from the mass shell is important for 
the analysis of the coefficients in S,; in r the details of the 
supplementary definition are not so important. 

A subsequent series of  investigation^'^-'^ was initiated 
by the work of Jones.'' In this series of investigations the 
efforts were concentrated around the following question: 
How can the Alder-Bardeen theorem for 8, a, and the exis- 
tence of higher orders in the trace a,, be reconciled? The 
program, which was most clearly formulated in Ref. 13, con- 
sisted in the following: Two different axial currents were 
introduced, one of which (a?) appeared in the Adler-Bar- 
deen relation, while the other (a:) was a term of a super- 
multiplet. It was assumed that these currents differ by an 
ultraviolet subtractive constant. 

As we now understand, the very formulation of the 
problem was incorrect and was to a considerable degree as- 
sociated with an incorrect interpretation of the status of 
the anomalies. In fact, the initial premise @,, 
= [ / ? (a ) / k  ] G ;,, G ;,, does not hold in the operator form, 

and, consequently, the principal stumbling block is re- 
moved. The Gell-Mann-Low function appears in the right- 
hand side of the equality for @,, only in the case when the 
right-hand side is taken in the sense of a matrix element. On 
the other hand, the original proof of the theorem of Ref. 10 
ford, a, is in fact an operator statement. In the derivation of 
the theorem in Ref. 10 a certain two-limit technique was 
used (for a recent discussion see Ref. 20), with two regulator 
masses MR , and MR2 (M, , ) M,, ). In the framework of 
this technique, corrections of second and higher orders to 
d, a, are absent. This statement, as such, pertained to ampli- 
tudes with external momenta p in the interval 
MR , &p> MR2,  i.e., in our sense it had an operator charac- 
ter.6' In Ref. 20 we generalized the two-limit technique to the 
supersymmetric case and found that the situation with @,, 
is exactly the same as that with 8,a,, i.e., @,, is exhausted 
by one loop in the two-limit sense. The answer, however, 
could not be regarded as final, since in fact we were interest- 
ed in one-limit regularization (i.e., the passage top  4 M R 2  ) 
and the constructive calculation of the 0-function. In the 
passage to p < M,, the clash with supersymmetry would 
have arisen again, since it appeared that taking the matrix 

elements of GG and G should have given different answers. 
It was tacitly assumed that the matrix element of the opera- 
tor Ggcoincided with a c-number function GG, while for G ' 
there was no such coincidence. 

The postulate (borrowed from Ref. 10) that the opera- 
tor GG coincides with the corresponding matrix element lay 
at the basis of the proof of the "no go" theorem of Ref. 14, 
which excludes the existence of a supermultiplet of anom- 
lies. The theorem, of course, is invalid, since (G?; ) # GZ""' . 
An attempt to circumvent the "no go" theorem of Ref. 14 
was made by Kazakov" and by Jones et a l l 9  These authors 
assumed that a change of GG in a supersymmetric calcula- 
tion in comparison with that in a nonsupersymmetric calcu- 
lation (of the Adler-Bardeen type) will arise because of a 
subtractive constant in GG. 

In Refs. 21 and 22, which made a big impression on us in 
the technical aspect and partly stimulated the present inves- 
tigation, the problem of the supermultiplet of currents was 
solved by a constructive two-loop calculation with the use of 
supersymmetric dimensional reduction. The authors expli- 
citly constructed expressions for aGB and a?. For 
d = 4 - E(E > 0),  besides W * there exists another operator 
(r2) that is gauge-invariant in respect of the external field, 
where l7 is the connection and the double hat, in accordance 
with Refs. 2 1 and 22, denotes the projection onto the "extra" 
E dimensions. The answer obtained in Refs. 21 and 22 for the 
two-loop diagram reduced to the operator ( C /  
E ~ )  J d 4 ~ d  4 0 r r ,  and not to the operator ( C /  
E )  d 'Od 4~ W that arises in the one-loop diagram. Fur- 
thermore, the authors used the fact that in supersymmetric 
dimensional reduction ~ ' T T  = - E W '. 

According to the approach developed here, the solution 
of the problem of anomalies in no way requires the introduc- 
tion of two axial currents, two operators GG, etc. The two 
currents introduced in Ref. 22 differ, in fact, not by an ultra- 
violet constant but by an infrared-singular expression. As a 
manifestation of this, the current difference aZB - a? from 
Ref. 22 cannot be written in the limit E -+ 0. 

In our language the situation can be explained easily: In 
essence, in Ref. 22 what was calculated by means of the pro- 
cedure of supersymmetric dimensional ieduction was the 
matrix element of J d '8 W 2, and this matrix element is built 
up wholly in the infrared region. As regards the question of 
the different schemes for the operator GG, the main point 
lies not in the difference between the operators in the differ- 
ent schemes but in the difference between the operator and 
the matrix element. The latter is fixed uniquely. 

Here it is appropripte to clarify to which scheme of re- 
normalizations the results ( 1 ), (2) ,  and (9) for the 0-func- 
tions belong. Our definition is close to the moment scheme. 
We fix the gauge charge [ g2( p)  ] at a certain external-field 
momentum p-p. Expressing [ g2( p)  ] in terms of go, the 
bare charge, and the cutoff parameter Mo, we obtain an 
expression forg: in terms ofMo. No subtractions are made in 
the process. It is, apparently, the latter fact which explains 
the discrepancy between our three-loop coefficient in the 
Gell-Mann-Low function and that found in Ref. 4 1. 

In conclusion we mention Ref. 7, in which two deriva- 
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tions of formula ( 1 ) in the framework of perturbation theory 
were given. One of the derivations was based on infrared 
regularization in a box of finite volume. Although the rela- 
tion ( 7 )  from Ref. 7 for the connection between l / [ a ]  and 
l/ao is correct, the reasoning that was used in the derivation 
[see formula (6) in Ref. 71 was not strictly correct. 

The authors are grateful to V. I. Zakharov, Ya. I. Ko- 
gan, D. I. Kazakov, A. Yu. Morozov, V. A. Novikov, A. V. 
Smilga, V. V. Sokolov, and V. L. Chernyak for useful discus- 
sions. 

"The Z-factors for the matter fields in S, and r ( Z (  p )  and [Z(  p )  1, 
respectively) evidently coincide. This is certainly so if the Konishi 
anomaly is purely one-loop; see below. There exist different arguments in 
favor of the equality Z( p) = [Z (  p ) ]  for matter, and below we shall 
frequently not distinguish Zand [Z]  for matter fields. Where necessary, 
it is easy to trace which of the Z-factors is appearing in any particular 
expression. 

2'We omit the part of II,, of the form - 2g,, (e, *e, ), i.e., diagrams of the 
"tadpole" type, which are not important for the analysis. 

3'~tricily speaking, a vector field in a fixed (covariant) gauge has four 
modes. However, allowance for the determinant of the ghosts is equiva- 
lent to discarding two modes. 

4'Another example to which the generalized theorem applies is the Fayet- 
Iliopoulos D-term J d 40V in the Abelian theory. The absence of two- 
loop, three-loop, etc., renormalizations for this term was discovered in 
Ref. 37. In order todemonstrate theapplicability ofour proof, we rewrite 
this term in the form J d 4 0 V - ~  dB" D '0, V- J d 0  a W, . It is clear that 
it can be called an F-term in the same sense as J d '0 WZ. 

5'Here there is a certain analogy with the supermultiplet of anomalies in an 
external gravitational field.3840 As was shown in Ref. 40, a correct treat- 
ment of the contribution of the scalar fields requires modification of @,, , 
not a,. 

6'In Ref. 10 arguments were given that further decent into the region 
PdM,!, , i.e., the taking of the matrix element of GG, does not change the 
coeffic~ent. Unlike the first part of the theorem, these arguments did not 
have a general character. 
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