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The electron spectrum of a one-dimensional quasicrystal is considered. It is shown that the 
measure of allowed states is zero and the density of states is strongly singular. The existence of 
an analog of the momentum is demonstrated; it is represented by a fraction n of the states of 
energy less than a given value. The dependence of the energy on n exhibits gaps for n = a + bp 
[ a  and b are integers; p = (5'12 - 1 )/2] and scaling behavior for n = c + dp ( c  and d are 
rational numbers). An exact solution in the tight-binding limit is obtained by the 
renormalization group method. 

1. INTRODUCTION 

The properties of the Schrodinger operator with a qua- 
siperiodic potential are of considerable interest in the phys- 
ics of incommensurate systems. It is known that any quasi- 
periodic function can be derived from a periodic function in 
a space with a large number of dimensions when the latter is 
limited to a certain subspace: 

Here, U is a quasiperiodic function in k-dimensional space 
with k + I periods; Fis  a periodic function in ( k  + I) -dimen- 
sional space; yi (x, ) ( j  = 1 ,..., k, i = 1 ,..., k + I) is the em- 
bedding of a k-dimensional space in a space of k + I dimen- 
sions. 

The case of a smooth function F ( k  = 1, I = 1 ) has been 
studied thoroughly.' However, it has recently become clear 
that in certain situations which are physically important the 
function F is discontinuous. These situations include the 
spectrum of surface states of electrons on a crystal face with 
sufficiently large ("irrational") Miller indices ( k  = 2, 
I = 1 ), the problem of electrons on a dislocation the direc- 
tion of which is incommensurate with the lattice periods 
( k  = 1, I = 2),  and finally the problem of electron properties 
of recently discovered quasicrystalline substances (k  = 3, 
1 = 3 ) .  

In all these cases a discontinuous quasiperiodic distri- 
bution of atoms can be described by the tube model2: a cer- 
tain set T is selected in an orthogonal complement to a k- 

of the integer-valued segments coincides with one of the 
functions U, and U,, and U, and U2 alternate in the same 
order as the vertical and horizontal parts of the broken line 
(Fig. 5 below). 

The results of numerical calculations carried out using 
such a potential have been reported on several occasions.334 
It has been established that for any value of the incommensu- 
rate potential the measure of the spectrum is zero. This 
shows that perturbation theory cannot be applied. 

In fact, if we were to carry out calculations for a weak 
potential using perturbation theory we would have to as- 
sume that each harmonic of the potential opens up (indepen- 
dently of others) a gap in the spectrum of free particles and 
this gap would be proportional to the harmonic. The Fourier 
transform of such a potential can be calculated by a method 
described in Ref. 2. It consists of S peaks with positions 
which are obtained by projection from lattice points on a 
straight line and because of the sharp edge of the tube the 
intensity of the peaks falls slowly (as l/q*) on increase in q*, 
which is the distance from a lattice point to its projection. 
Therefore, the sum of absolute values of the harmonics (i  e., 
the sum of the gaps which are opened up in the spectrum) 
diverges logarithmically for any potential no matter how 
weak. Therefore, our problem cannot be solved by perturba- 
tion theory methods and requires a special approach de- 
scribed below. 

2. RECURSION FOR TRANSFER MATRICES AND THEIR 
TRACES 

dimensional space and all the points are taken on an 
We shall consider a sequence of letters A and B describ- 

integer-valued lattice in a k-dimensional tube of cross sec- 
ing the alternation of segments of a broken line correspond- 

tion T. The positions of atoms are given by the projections of 
ing to /1 = - 1 (A is a vertical segment and B is a horizontal 

these points on a k-dimensional subspace. 
segment). There is an effective algorithm for calculating this 

We shall consider an example of a potential of this type 
sequence and it involves expansion of the number a as a 

which is quite easy to analyze. We shall assume that an irra- 
continued fraction. Let a = l / ( n ,  + l ) / ( n 2  + ... and that 

tional number a and a band R < y - a x  < A  + 1 + a on a 
k th suitable fraction is P,/Q, (P, and Q, are corprime 

two-dimensional lattice are given. The lattice points in such 
a band are joined by a broken line drawn along the edges of numbers). Then, a segment I, of a broken line consisting of 

the lattice. Moreover, there are two smooth functions in a the first P, + Q, letters is obtained from the segments I, - , 
unit segment (two types of atom) such that and I, _ , as follows: 

U, (0)  = U,(O) = U, ( 1 ) = U2( 1 ) .  The function U for each Zk=Zk-i . . . Zk-,Zk-z ( 2 )  
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(I, - , is repeated n, times). The effectiveness of this algo- 
rithm is manifested by the fact that it can be used to calculate 
a segment of length N in -In N steps.5 

We shall now deal with the problem of calculating the 
spectrum. We shall consider a segment I, and the potential 
in this segment. We shall periodically continue the potential 
from a segment over the whole line and we shall be interested 
in the band structure of the resultant crystal with a unit cell 
ofPk + Q, atoms. It is given by thecondition I tr T, ( E )  ( < 2, 
where Tk (E) is a real unimodular 2 X 2 matrix describing the 
variables at the right end of the segment in terms of the vari- 
ables at the left end. 

The problem thus reduces to a calculation of a transfer 
matrix or, more exactly, of its trace. The above property of a 
broken line readily yields the following recurrence relation- 
ship for T, : 

Since it is not the transfer matrices but their traces that are 
important, we shall rewrite the mapping (3) for traces. We 
shall introduce the variables x, = (tr  Tk- ,  T, )/2, y, 
= (tr T, )/2, z, = (tr  T, _ , )/2. These variables transform 
as follows: 

where S n ( t )  = sin(n arcos t)/sin(arccos t )  is Chebyshev 
polynomial. This mapping has an integral: 

Since the Jacobian (4)  is - 1, the mapping (4)  transforms 
the surface J = const into itself by one-to-one correspon- 
dence. 

The problem is therefore reduced to the following. 
There is a curve x,  (E),  y, (E),  z, (E).  It has to be iterated by 
the mapping (4) and we have to find the band structure, set 
E, for which / yk (E) I  < 1. We shall now give the quantities 
under discussion calculated for a specific potential of the 
tight-binding problem: 

V,=A, if the nth letter is- A ,  

Ti,=-h, if the nth letter is- B, 
(6) 

In this case the initial curve lies completely on a certain 
invariant surface. However, this is not generally true and the 
invariant Jmay depend on&. However, we can say that in the 
case of allowed values of the energy we have J> 1. We can 
easily check that if Itr T,T,T, IT; ' 1  < 2, then Itr TI I > 2 
and (tr T,/ > 2. 

Although some of the results obtained below are valid 
for all values of a, we shall consider only the case when 
a = q~ = ( 5 l t 2  - 1 )/2. The mapping and the invariant were 
obtained for the golden section in Ref. 3. The mapping (2)  
becomes 

2. GEOMETRY OF THE SURFACE J=const 

If J = 1 (when the matrices T, and T, commute) this 
surface consists of five parts: the first is a curvilinear tetrahe- 
dron with vertices at the points P(l,1,1), Q(1, - 1, - I ) ,  
R (  - 1,1, - 1) andS( - 1, - 1,1), parametrized by angles 
8, and 8,:x = cos(8, + 8,), y = cos 8,,  z = cos 8,; the sec- 
ond is a funnel with its vertex at the point P: 
x = cosh(8, + B,), y = cosh 8,, z = cosh 8,; the third, 
fourth, and fifth are similar funnels with vertices at Q, R, and 
S. 

For J differing from unity the conical singularities at P, 
Q, R, and S are replaced by four necks. 

We shall now consider the behavior of mapping near the 
neck P. If I J - 1 I < 1, its behavior can be linearized (P is a 
fixed point) and the eigen-numbers can be obtained: - 1, 
p ', p -2 .  We can see that a neck has two points P' and P " 
which are transformed into one another and which are fixed 
relative to the mapping square. In the case of an arbitrary 
value of J ,  P ' and P " are described by 

The eigen-numbers of the square M are 

The positions of the separatrices beginning at the points P' 
and P " are shown in Fig. la. 

The distribution of the separatrices shows that if some 
initial point lies in the region 1 of the neck, it is displaced to 
the funnel and does not return. Its coordinates will then in- 
crease and the corresponding energy is forbidden. 

Therefore, the forbidden energies correspond to points 

FIG. 1.  a) Separatrices in the vicinity of a neck P. b) Part of the forbidden 
region between the initial segments oftwo separatrices (shown black) : the 
lower part applies to a torus e,, e,, and the upper part to a funnel. 
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FIG. 2. Mapping orbits on the J = 0.3024 surface demonstrating nonite- 
grability of the mapping M. The projection on the yz plane is shown. 

inside the forbidden region, i.e., the region between the pairs 
of separatrices drawn to reach the points P ' and P ", Q ' and 
Q " ,S ' andS ", and R 'and R ";these points appear as a result 
of bifurcation of the conical singularities at P, Q, S, and R.  
The forbidden region has a fairly complex structure because 
separatrices appear in the funnels an infinite number of times 
and then return. We can calculate the whole forbidden re- 
gion by continuing the separatrices without limit. The initial 
parts of the separatrices and the corresponding forbidden 
region are shown in Fig. lb. A quantitative determination of 
the spectrum is not possible by this method because the map- 
ping M is not integrable (Fig. 2) .  

If J = 1, the mapping M becomes simple in terms of the 
coordinates 6, and 6,; (el, 6,) -+ (6,  + 6,,6,). This is an 
integer-valued hyperbolic mapping of the torus (eigen- 
numbers-e, and e, -I).  Such mapping mixes strongly the 
points and after a large number of iterations converts any 
curve into a thick winding on a torus. Therefore, almost any 
point on the curve passes an infinite number of times in the 
vicinity of the necks. We therefore conclude that if J >  1, 
almost all the energies are forbidden. The energy spectrum is 
then a Kantor set of measure zero. This is in agreement with 
the numerical calculations reported in Refs. 3 and 4. Since 
the total number of states in a chain is proportional to its 
length (and equal to the number of atoms in the case of tight 
binding), the density of states considered as a function of the 
energy is strongly singular. A natural explanation of this 
behavior is that identical configurations are encountered 
very frequently in a chain. For a certain sequence of N letters 
A and B in a chain, another identical sequence is encountered 
no further than cN letters from any given point. Therefore, 
the energy levels are almost degenerate and the density of 
states is singular. 

4. NUMBER OF STATES AS AN ANALOG OF 
QUASIMOMENTUM 

We shall now show that the number of states with an 
energy less than a given value has a clear geometric meaning 

and is equal to the "number of revolutions" of the 
C,<, [ x ,  (E), y k  (E), zk (E),E < E" ] curve about the surface 
J = const. 

We shall now project the surface on the yz plane. The 
bounding curve of the projection is described by the equation 
( 1 - Y2) ( 1 - z2) = 1 - Jand it is shown in Fig. 3. The ener- 
gy bands for the k-iteration chain are obtained from the con- 
dition ly, (E)  I < 1, and their number is the same as the num- 
ber of times that a curve C varies from values > 1 to values 
< - 1 or vice versa. Any curve C such that after the k th 
iteration its terminal point has become displaced to a neck 
and has not returned can be made to correspond to an ele- 
ment of a group of one-dimensional homologies of the sur- 
face, n ,TI  + n,T,, where n, and n, are numbers defined be- 
low, whereas l?, and r2 are the contours shown in Fig. 3. The 
integer n , is equal to the number of intersections of the curve 
C in the region lyl < 1, where topologically removable inter- 
sections are ignored, and n, is defined similarly but with y 
replaced with z. A study of the action of mapping on a group 
of homologies gives 

Moreover, it is clear that the number of intersections of the 
curve C in the region Iyl < 1 is not less than the first coeffi- 
cient of its expansion in terms of TI  and r , .  Since this is true 
for any part of the curve with its ends at holes and the num- 
ber of times that the curve intersects the region lyl < 1 is 
equal to the total number of the energy bands (number of 
atoms in a chain), we can formulate the following conclu- 
sion. If after a certain number of iterations the energies E ,  

and E, become forbidden (because the corresponding points 
have been displaced to necks), then the number of states 
between E,  and E, (or the number of the energy bands for a 
periodic continued potential) is equal to the first cofficient 
of the expansion of the curve C,,, in terms of r, and r 2 .  

We shall now show that in spite of the nonperturbative 
nature of the problem in the absence of quasimomentum, 
there is a quantity analogous to the quasimomentum. This 
quantity is the number of states. In the case of a weak smooth 
quasiperiodic potential we find that gaps appear in the E (  p )  
spectrum at values ofp equal to integer-valued linear combi- 
nations of the wave vectors of the harmonics of the potential. 
In our case a similar conclusion applies to the function 
~ ( n )  (0  < n  < I ) ,  which is defined as follows: &(no) = E if the 
ratio of the number of states with energies less than E to the 
total number of states in a chain is no. Although in our prob- 

FIG. 3. Projections of the surface J = const on the yz plane. The contours 
r, and r, are shown. 
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lem there is no quasimomentum, the positions of the gaps in 
the spectrum ~ ( n )  are described by the same rule as in the 
usual case: the values of n at which there is a gap are de- 
scribed by the formula 

where a and b are arbitrary integers; a, and b, are certain 
integers fixed for a given chain. 

We can demonstrate the validity of Eq. ( 1 1 ) by consid- 
ering a curve the end of which is located in a neck after the 
k th interaction (i.e., the energy E, has become forbidden). 
We shall assume that C,<, = n , T ,  + n,T, and C ,  
= m ,T, + mJ,. I t  follows from Eq. ( 10) that after further 

iterations we find that 

(F, is the I th Fibonacci number). In the limit I-+ co the frac- 
tion n of states with energies less than E is 

lim [ (Flnl+F,-,~~,)l(F~rn,tF~-,~n,) 1. 
I-m 

It follows from the properties of the Fibonacci numbers and 
those of the golden section that n = (n ,  + n,p)/ 
(m,  + m,p), where m,  and m, are the coefficients of the 
expansion of the curves x ,  (E) ,  y ,  (E) ,  Z, ( E )  in terms of I?, 
and r,. Bearing in mind the tight-binding case, we obtain 
m, = 1 and m, = 0. This proves the assertion described by 
Eq. (11). 

5. SCALING PROPERTIES OF THE SPECTRUM 

We shall now consider points on the J = const surface 
which are fixed for a certain degree of mapping M: M "(x)  
= x. The minimum n for which this is true will be called the 

order of a fixed point. At a point of order n we can linearize 
M " and find the eigen-numbers An and A - " of the resultant 
linear mapping (A > 1 ) . 

There is a simple relationship between fixed points on a 
factorized torus J = 1 and other surfaces ( J >  1 ). Each fixed 
point for J = 1 corresponds to a fixed point for J >  1 with two 
exceptions. 

1 ) The first-order point P corresponds to second-order 
points P ' and P ". 

2) An orbit of the third-order points Q, R,  and S corre- 
spondstoanorbitofsixpointsQ',Q",R ',R " , S ' a n d S n o f  
sixth order, which play a role similar to that of P ' and P " on 
necks Q, R,  and S. We shall list several other fixed points. 

1 ) The second-order points are described by the formu- 
las of Eq. (8)  for t < - 1/4 and we shall call them 0: and 
0 : .  

2 )  Six points ( f c,O,O) (0, + c,O) and (0,0, f c)  form 
an orbit of sixth-order points 0 b (i = 1,2, ..., 6 ) .  

All fixed points of the mapping corresponding to scal- 
ing points of the spectrum. In fact, if in the case of iterations 
of the k th degree of mapping M a certain point x, (E) ,  yo (E) ,  
and z , , ( E )  tends to a fixed point x,, of k th order [eigen- 
numbers of the linearization of Mk  at x, or and 
( - A = - 1, the region in the vicinity of the point of the 
spectrum has the following property: after repeated dilata- 
tion by a factor of p on the n scale and by a factor of A on the 

E scale, the graph ceases to vary. This follows the properties 
of a fixed point and from the fact that each iteration in- 
creases the density of states by a factor of p - '  (asymptoti- 
cally, i.e., after a large number of iterations). We can easily 
show that n = c + d p  ( c  and d are rational numbers) and 
that k is the period of the expansion of the number n as a 
Fibonacci code (see the Appendix). 

Therefore, in addition to the gaps in the dependence of& 
and n, which occur at n = a + bq, ( a  and b are integers), at 
points of the p + qp type ( p and q are rational numbers), 
the dependence exhibits a scaling behavior. It should be not- 
ed that the band edges (wherep and q are integers) are also 
among the scaling points (and the corresponding fixed 
points are P',P ", Q',Q ", R ', and R "). Figure 4 shows the 
average coefficients of the dilation A for orbits of length less 
than 14 considered as a function of In J. Since fixed points 
everywhere fill densely the allowed region, it is likely that for 
any orbit on the surface the dilatation coefficient is greater 
than p - '. For low values of J the smallest dilatation coeffi- 
cient corresponds to the orbit 0 : 

.\= { (8J2+1)  

+ [ ( 8 J L + l ) 2 - 1 ] ' h ) ' 1 ~ .  (12) 

Hence, we can estimate the Hausdorff dimension of the spec- 
trum in the case of low values of J - 1: 

These are the general properties of the spectrum inde- 
pendent of the properties of the atoms and of the force of the 
incommensurate potential. All these properties can be gen- 
eralized to the case of an arbitrary irrational number which 
describes the slope (apart from the scaling points, which 
exist only for the slopes that are quadratic irrationalities: 
a = p  + gr1'2). The scaling coefficients are not universal, 
since in general J depends on E (the curve representing the 
initial data intersects invariant surfaces). This applies also 
to the widths of the forbidden bands, although (as discussed 
below) the forbidden band with a coordinate n = p  + q p  on 
the scale of states decreases in width on increase inp (or q ) .  

FIG. 4. Multipliers A of fixed point orbits of length less than 14. The 
dependence on J is shown. 
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FIG. 5. Geometry of the distribution of atoms and molecules in a band 
- 1 < y - px < p. The upper band of width p ' can be regarded as corre- 

sponding nominally to even levels, and the lower band to odd levels. 

6. RIGOROUS SOLUTION IN THE TIGHT-BINDING CASE 

We shall now consider the case of a strong potential 
J s  1 for which we can calculate vigorously the positions of 
gaps in the spectrum on the energy scale. If J >  1, the situa- 
tion is dominated by fixed points 0; and 0: ( i  = 1,2; 
j = 1,2,.,., 6) ,  for which the dilatation coefficients are the 
largest. 

We shall consider the following model: 

e$=t2, ($"+i-$31)  +t,,-1 ($"- I -$ , , ) ,  

t,=V, if the nth segment of a broken line is vertical, (14) 
t,,=r,V, if the nth segment of a broken line is horizontal, 

%<<I. 

This means that a particle may jump from one site of a 
broken line to a neighboring one (Fig. 5) and that the ampli- 
tudes of the jumps along the vertical are large, whereas along 
the horizontal they are small. We shall use perturbation the- 
ory in terms of x .  In the first approximation we shall assume 
x = 0 (when the horizontal bonds or segments are broken). 
There remain pairs of sites connected by vertical bonds 
(molecules) and single sites (atoms). An atom has a level 
with zero energy and a molecule has two levels, one even and 
one odd with the energies V and - V, respectively. In the 
next orders of perturbation theory each of these levels splits 
into a band and the width of the band decreases on reduction 
in x. We can easily demonstrate that all the atoms are locat- 
ed in a band which is g, ' times narrower than the initial band 
and the sites forming molecules are outside this band (Fig. 
5) .  This makes it possible to calculate the fractions of states 
in the first, second, and third bands. These fractions are p 2, 
9 ', and g, ', respectively. 

We shall now consider atoms. Their positions are ob- 
tained from the positions of all the points in a band by the 
application of the matrix M', where 

In this case a horizontal segment transforms into a broken 
line containing all the molecules and a vertical segment into 
a broken line containing one molecule. The Hamiltonian for 
the atoms is the same as the initial Hamiltonian, except that 
instead of V and x V we now have an amplitude of jumps via 
one and two molecules. The amplitude of a jump via one 
molecule is given by the formula 

whereas the interaction via two molecules looks similar but a 
bit more complex. Calculations demonstrate that 
V ' =  - x 2 V a n d x ' =  - x .  

We shall now consider molecules. The positions of the 
upper ends of the molecules coincide with the positions of 
integer points in a band 0 < y - g,x < - g, - ' (after applica- 
tion of the mapping M - *  to the points in this band). The 
bonds between molecules may be direct or via one atom and 
a direct bond corresponds to a vertical segment in this band, 
whereas a bond via an atom corresponds to a horizontal seg- 
ment. The initial broken line and the broken line in a band 
O<y - px <g, - '  differ by a phason shift, but the corre- 
sponding energy spectra are identical. Therefore, splitting of 
the levels f V occurs in the same way as the splitting de- 
scribed earlier. Only the amplitudes of the jump become re- 
normalized: V ' = K V /2, K' = K. 

Therefore, the level splitting pattern is described by a 
tree shown in Fig. 6. The product of the degrees g, given 
alongside the branches of the tree which begin from the root 
and end at a vertex describes the fraction of the states corre- 
sponding to this vertex. If we count the sequence of zeros and 
ones along the branches of the tree following a path corre- 
sponding to the upper edge of a gap, we obtain a Fibonacci 
code expansion of an analog of the quasimomentum of the 
state at the edge of the gap. The paths along the tree which 
are periodic from a certain point correspond to the scaling 
points in the spectrum (Sec. 4).  As expected, their Fibonacci 
code taken along the branches of the path is periodic begin- 
ning from a certain point. Each such path corresponds to a 
fixed point of the mapping M for a certain value of k. For 
example, paths down, down, down, ... correspond to the 
points 0: ( i  = 1,2, ..., 6);  the paths left, right, left, right- 
,...correspond to the points 0; ( i  = 1,2), and the paths left, 
left, left, ... and right, right, right, ... correspond to the points 
P ' a n d  P". 

7. FORM OF THE WAVE FUNCTION 

We shall now describe the properties of the eigenfunc- 
tions in the tight-binding case. It is clear from Sec. 6 that in 
this case each wave function is concentrated mainly at a fin- 
ite set of sites. For each state this fraction is described in an 
obvious manner by its Fibonacci code. Simple calculations 
give the following result. 

The fraction of states in a chain of length L, concentrat- 

FIG. 6 .  Tree showing the splitting of levels. The energies of the bands 
obtained after two splittings are shown. 
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ed at L  " sites, is proportional to exp[ - (x  - a ) 2 / 2 D ] ,  
where 

i.e., a typical wave function is large at L  0.492 sites (this 
should be compared with the two-dimensional case dis- 
cussed in Ref. 6 ) .  It should be stressed that these sites are 
distributed quasiperiodically in a segment, i.e., the eigen- 
function is not localized or delocalized in the usual sense. 

We shall now consider the case of an arbitrary binding. 
Let us assume that we know the wave function correspond- 
ing to a scaling point in the spectrum, i.e., to an orbit of a 
period n of the mapping M. In this case there is such a matrix 
S  that T k + ,  = S- 'TkS .  There is a simple relationship 
between the wave function at an arbitrary point and its value 
at the first two sites. We can expand the number N of a site of 
interest to us as a series in terms of the Fibonacci numbers: 

Then, the transfer matrix linking the beginning of a chain to 
a site N is 

( E  is a 2 X 2 unit matrix) and we correspondingly have 
(Nlnl  n 

R, can assume also a finite number of values and in general 
the different values of R, do not commute. We can deter- 
mine the properties of such a product of matrices using fa- 
miliar results on the localization in a one-dimensional ran- 
dom potential. Applying them in our case, we find that the 
wave functions are localized in logarithmic space. This 
means that a typical wave function increases exponentially 
on increase in the number of nonzero terms in the Fibonacci- 
number expansion for the site in question. 

8. CONCLUSIONS 

The properties of the electron spectrum of a quasicrys- 
tal differ considerably from the spectrum obtained in a 
smooth quasiperiodic potential. There is no localization-de- 
localization transition typical of this case. The Hausdorff 
dimension of the spectrum is always less than unity and it 
decreases monotonically to zero on increase in the strength 
of the potential. The wave functions are critical, i.e., they are 
concentrated mainly at L a atoms ( L  is the number of atoms 
in a chain). We should mention here the treatment in Ref. 8, 
where it is shown mathematically that localization does not 
occur. 

Naturally, solutions of the one-dimensional problem 
are insufficient for the description of electronic properties of 
real quasicrystals. However, calculations of the spectra of 
two-dimensional quasicrystalline lattices reported in Ref. 6 
show that they have much in common with the one-dimen- 
sional case. For example, they are characterized by anoma- 
lously short distances between neighboring levels that are 
not described by the Dyson statistics (attraction between 
levels or quasidegeneracy). The wave functions are also 
critical. 

Since the measure of the spectrum is zero, the density of 
states is also zero for almost any position of the Fermi level 
(in the one-dimensional case). Therefore, it is particularly 
interesting to note the report7 of an experimental observa- 
tion of a strong reduction in the density of states at the Fermi 
level in a quasicrystalline alloy of the composition 
U,,Pd,,Si,,, compared with crystalline and amorphous al- 
loys of the same composition. 

The authors are grateful to L. P. Gor'kov, Ya. G. SinaY, 
and S. E. Burkov, and particularly to V. L. Pokrovskii for his 
interest and numerous valuable discussions. 

APPENDIX 

Fibonacci code 

The number x  ( 0  < x  < 1 ) can be represented in the form 

where c, = 0  or 1, and we have tic, + , = 0.  The sequence of 
zeros and ones {c , }  is known as the code of the number x. 

The properties of this code are as follows: 1)  for 
numbers of thea + b p  type ( a  and b  are integers), beginning 
from a certain point the code consists of zeros alone; 2)  for 
numbers of thep + q p  type ( p and q are rational) beginning 
from a certain point the code becomes periodic. 
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