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Hydrodynamic effects of a new type, due to singularities of electron-phonon relaxation in two- 
dimensional (layered) metallic compounds, are predicted. It is shown that the experimental 
data on the thermoelectric power and on the electric conductivity of acceptor compounds of 
graphite can be explained within the framework of the hydrodynamic approach. 

In the hydrodynamic mechanism of electric conduc- 
tion, frequent normal collisions impart to the system of the 
metal quasiparticles a common drift whose velocity u(r)  is 
determined by collisions in which quasimomentum is lost in 
the bulk or on the surface of the metal. The order of magni- 
tude of the conductivity is' 

Here IN  and I ,  are respectively the electron mean free paths 
relative to normal collisions and collisions that do not con- 
serve the quasimomentum, d is the sample thickness, I, $1, 
and d B  I,. The temperature dependence of the resistance 
has a minimum, since aa/aT> 0 in the region defined by the 
inequalities 

and in which the dissipation is determined by the friction of 
the quasiparticle liquid against the wall. 

Conditions ( 2 )  are difficult to meet in the case of 3 0  
uncompensated metals, for owing to the large size of the 
Fermi surface (FS) the electron-phonon umklapp processes 
in these metals are relatively easily produced'' right down to 
very low temperatures.' On the other hand, the carrier den- 
sity in many layered metallic compounds is low, and accord- 
ingly the size of the FS is small compared with that of the 
Brillouin zone; charge transport makes these metals uncom- 
pensated.4.5 For example, the FS of the graphite acceptor 
compound C,,FeCl, contains two cylinders with radii 
p ,  = 0.08 A,p ,  = 0.05 A, where A  is the side of the hexagon- 
al boundary of the Brillouin zone.6 U-processes are thus 
practically impossible, even if the thermal momentum of the 
phonon is q, z p , .  Two-dimensional metals may therefore 
be favorable objects for the display of hydrodynamics effect. 
We shall show that one can obtain here qualitatively new 
hydrodynamic effects that have no analog in the 3 0  case. 
What makes 2 0  bodies unique is the substantial difficulty 
encountered by the relaxation of the momentum-odd distri- 
bution-function component, owing to the "blocking" of the 
Bloch diffusion on the FS and to manifestation of superdiffu- 
sion processes.' 

We shall show first that the available experimental data 
on the thermoelectric power and on the electric conductivity 
of acceptor graphite compounds can be explained in the hy- 
drodynamic approach. Assume that at low temperatures 
such that q, 4 A  the following conditions are met: 

where the subscripts e andp refer to electrons and phonons, 
respectively, and I,, is the mean free path with respect to 
collisions of phonons with structure defects; the nature of 
the latter is immaterial to us. Conditions ( 3 )  ensure a joint 
drift of electrons and of a group of phonons with momenta 
q < 2p,, the only phonons that can collide with electrons. 
The entrainment thermoelectric power can be easily calcu- 
lated by determining the heat transported by this group of 
phonons and using the known relation between the thermo- 
electric power and the Peltier coefficient. The contribution 
of one phonon mode to the thermoelectric power is 

where w,  = 2p,s is the maximum energy of the phonons 
interacting with the electrons, and s is the speed of sound. 
This expression agrees quite accurately with experiment8 
(according to Ref. 6, w,  = 420 K for the longitudinal 
acoustic mode). At T >  150 K (corresponding to q, >p,  ) 
the thermoelectric power [Eq. (4)  ] saturates at S = 3  1 pV/ 
K ,  as against the experimental S = 37 pV/K (see Fig. 1 ). 
Saturation at theSze- '  level attests unambiguously to total 
entrainment of the phonons. Note that the thermoelectric 
power (4)  does not depend on the mechanism that retards 
the joint drift of the electrons and phonons. 

The typical temperature dependence of the resistivity 

FIG. 1 .  Temperature dependence of the thermoelectric power of 
C,,FeCl,. The experimental values were taken from Ref. 8, and the curve 
is calculated from Eq. (4).  
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FIG. 2. Temperature dependence of the resistivity of the compound 
C,,AsF, (Ref. 9 ) .  The inset showsp( T )  for the low-temperature region in 
enlarged scale. 

p ( T )  of acceptor compounds of graphite (Fig. 2) can be 
explained in natural fashion by assuming the drift-decelera- 
tion mechanism to be collisions between the phonons and the 
structure defects. Umklapp processes would yield a more 
ragged plot. Favoring the phonon-defect mechanism is also 
the experimentally observed substantial dependence the 
temperature behavior of Ap = p ( T) - p (0)  on the proper- 
ties of the sample of Ap $p (0)  (Ref. 9).  We have 

At q, >p, we have Ip,/Iep a T. 
Next, a "step" is observed on thep ( T) plot in the region 

of the residual resistivity; this also agrees with the predic- 
tions of the hydrodynamic theory.' (The step is due to dis- 
ruption of the joint drift, and its location is determined from 
the condition Iep =I,, where I is the electron-impurity 
length. ) 

We consider now the electric conductivity of a 2 0  metal 
plate, let the conducting layers be perpendicular to the plate 
surface, and let the electric field E be applied along the lay- 
ers. The drift distribution in the two-dimensional metal sets 
in within a time determined by the superdiffusion, by the 
normal electron-electron collisions, and by other quasimo- 
mentum-conserving processes. We have therefore at d$l, 
the usual hydrodynamic situation ( 1 ). We shall show that in 
the two-dimensional case with d 41, effects of hydrodynam- 
ic type are also possible, although the quasiparticles no long- 
er have a drift-governed distribution. We use as an example 
the simplest possible case that admits of a sufficiently com- 
plete solution of the problem. Let the FS be singly connected 
and convex, and let the inequalities I, $1, Bd, q, (p, hold. 
It suffices then to retain the electron-phonon collision inte- 
gral part Cs that is principal in terms of the problem param- 
eters q,/p, and s/u, & 1, which describes the electron diffu- 
sion on the FS with allowance for phonon exchange between 

states having opposite momenta.' The kinetic equation for 
the nonequilibrium increment to the electron distribution 
function x (p,z) takes then the form 

where94 1 is the angle between the electron velocity and the 
plate surface, n = v/u, and D is the coefficient of diffusion 
over the FS. For thex component that is even in p we obtain 
at I, =pi/D41i (7, = IB/uF is the time of Bloch diffusion 
through the entire FS) the following equation: 

The first term in the left-hand part of (7)  describes a certain 
diffusion (viscosity), but the "diffusion coefficient" is an 
operator that acts on functions of p. We present for this pro- 
cess a physical interpretation which we shall find useful and 
allows us to write the solution under conditions more gen- 
eral than those under which Eq. (7 )  is valid. 

A nonequilibrium phonon-emitting electron traveling 
at a small angle 9 to the surface goes off after a time r(8) 
into a region of angles much larger than 9, after which it 
collides rapidly with the surface, on which it relaxes. The 
emitted phonons, however, being absorbed by an electron 
having an opposite momentum (there is no other possibility 
in the 2 0  case), also take the electron out of the angle region 
-13. The result of these processes-the vanishing of this 
electron in the small-angle region and the simultaneous ap- 
pearance of a hcle having an opposite momentum-is simi- 
lar to the Andreev reflection. The hole moves in the opposite 
direction but, having a positive charge, it draws, just as the 
electron, energy from the field. Succeeding collisions trans- 
form the hole again into electron of the same velocity as the 
initial one. The effective mean free path of the electron is 
thus substantially increased by the collisions with the phon- 
ons. It can be derived as the total path covered by a particle 
that executes one-dimensional Brownian motion with step 
length vFr(9)9 (projected along thez axis) and with a step 
time r(9) prior to relaxation on the surface or in the bulk: 

The result (8)  for the function averaged over the plate 
thickness is qualitatively correct if d 41, (in the opposite 
limiting case we have the usual hydrodynamics), and is writ- 
ten in such a way that it corresponds to the asymptotically 
exact solution of Eq. (7)  (for the limiting cases 9 $ and 
9 (d 2/lB li ) in the region of its validity, provided the elec- 
trons are diffusely reflected from the surface: 

The second term in the square brackets in (8)  is of the form 
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usual for the electric conductivity of a thin plate, and corre- 
sponds to collisionless motion of an electron towards the 
surface. The time ~ ( 9 )  of departure from the region ~9 is 
determined by the diffusion over the FS and is therefore pro- 
portional to a 2  right up to angles 9~ (T,/T, ) k ' 2 ~ q T / p F ,  
while at smaller angles the departure takes places within the 
time 7' of one elementary electron-phonon collision. Com- 
plete bulk relaxation takes place over a path length I *; con- 
tributing to (I  * ) - '  are all the processes that intermix the 
isolated electron-phonon (The term - ' takes 
into account momentum-nonconserving collisions other 
than e-i and p-d, for example electron-electron collisions 
with umklapp.) The characteristic angular dimension 9, 
over which the function changes (this angle influences 
substantially the superdiffusion time" T,, and consequently 
I, ) corresponds obviously to the region of the most effective 
"gliding" electrons and is given by relation 
9f1(9,  )I  *(a ,  ) z d  or else by the usual 3 0  relation 
$,I* (9, ) z d  (one must choose the expression that yields 
the larger value of 9, ). These relations and the expressions 
for 1 * (9, ) (for the q/p supperdiffusion mechanism, for ex- 
ample, I,, = u,r,, =I, (9,pF/qT )' (Ref. 10) and 
I, = u F r I )  constitute a system of equations for I * and 9,. 

It can be seen from (8) that hydrodynamic-type effects 
that result from the "Andreev reflection" are possible if 
d(l; ' + 1; I )  4 1, i.e., for thin samples for which the Fuchs 
formula I,, ~d In1 /d is valid in the 3 0  case. Hydrodynamics 
holds in this case for a small group of electrons near 9 = 0, 
while Id increases rapidly with decreasing 9. Thus, the re- 
gion in which hydrodynamic effects exist is much larger in 
the 2 0  than in the 3 0  case [see (2)  I .  From (8)  we obtain the 
following expression for the transport length (IN )d ) :  

We point out, on the basis of ( 1 ) and (9),  the character- 
istic manifestations of the effects considered, and the condi- 
tions for their observation. A specific manifestation of hy- 
drodynamics is that the resistance may not have the 
temperature minimum that occurs in general at d<I,. It is 
easy to verify, however, that many of the processes that de- 
termine the length I * lead to a minim~rn,~ '  viz., scattering of 
electrons by impurities (in the region where do/ 
aT> 0,a cc T or o = T 312), scattering of phonons by de- 
fects (if I,, does not decrease rapidly with increasing tem- 
perature), or q/p superdiffusion ( a  a T~'~). However, for 
example, the superdiffusion mechanism connected with the 
phonon-phonon collisions7 does not lead to a minimum. If 
there is no minimum, a manifestation of the hydrodynamic 
situation may be satisfaction of the inequality I,, )d  (al- 
though it can also attest to high specularity of the surface 
scattering). 

The necessary conditions for the existence of hydrody- 
namic effects, at least at some thicknesses d,  are 

It follows from (3)  and (5 )  that for acceptor compounds of 
graphite, having a ratio p(300)/p(O) ) 1, these conditions 
are met at least at q, kp,. For these substances, the resis- 
tance minimum connected with ordinary hydrodynamics is 
best observed in a temperature region where q, kp, (but at 
temperatures not so high that the phonon-phonon U pro- 
cesses eliminate the phonon drag). Conditions (2)  acquire 
in this case the form (I, = I,, /a is determined by p-d scat- 
tering) 

Observation of the minimum due to the "Andreev re- 
flection" is possible at qT <pF when IN =I,, )I,; Eq. (9)  
leads to the following conditions: 

which are apparently less stringent than ( 10). 
Note that in metals with a singly connected convex FS - - 

there is no q/p superdiff~sion,~ therefore some of the restric- 
tions on the observation of new hydrodynamic effects are 
lifted. There is no need for the first inequality of ( 1 1 ), nor for 
the temperature constraint q, <pF. 

"Nonetheless, a resistance minimum that is probably of hydrodynamic 
origin was recently observed in pota~sium.~ 

2 ,  With respect to the resistance minimum, the following refinement is in 
order. An inverse temperature dependence of the conductivity (a@/ 
a T >  0) is possible in two different situations. In the first, the hydrody- 
namic effects determine the value of the conductivity I,, =d ( l  */I ' )  ' I 2 ,  
I1 ( I*  at I, ,d and I,, z d  '/I, at I, (d),  and the conductivity is sub- 
stantially dependent on the temperature. In the second, the conductiv- 
ity is independent of temperature in the principal approximation 
(I,, -1, or I,, ~d In(l,/d) ), and the weak inverse temperature depen- 
dence is due to relatively infrequent normal collisions. We discuss below 
only the first situation (to which, in essence, the minimum condition 
(2)  also pertains). We note, however, that in the 2 0  case the weak 
inverse temperature dependence is manifested under more relaxed con- 
ditions than in the 3 0  case-this is seen already from the fact that the 
Fuchs logarithm in (9)  does not contain the electron-phonon length 
I (aC 1. 
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