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We study the generation of combination harmonics of two longitudinal sound waves 
propagating in the same direction in conductors in a constant magnetic field, for the case when 
the wavelengths of all waves are much smaller than the electron mean free path while the 
frequencies are less than the collision frequency. We prove that resonance (commensurability 
effect) may occur in this situation and manifest itself in a sharp dependence of the non-linear 
modulus that determines the difference-frequency generation on the ratio of the frequencies of 
the principal waves, provided this ratio is close to a rational number. The effect of the 
commensurability is a resonance on, generally speaking, arbitrary non-extremal Fermi-surface 
sections whose position depends on the frequencies of the principal waves and on the magnetic 
field. The width of the resonance is determined by the collision frequency on the resonant 
sections, averaged over a cyclotron period. The commensurability effect can be observed also 
for non-degenerate carriers. 

It is well known that a sound wave in a conductor in a where e is the electron charge, c the velocity of light, and S 
constant magnetic field H interacts resonantly with elec- the area of the Fermi-surface intersection with the plane 
trons which traverse, over a cyclotron period T, apath which p, = const. We shall here restrict ourselves to considering 
is a multiple of the wavelength in the direction of the sound just the resonance on non-extremal orbits. 
propagation' 1. We thus consider a conductor in a magnetic field in 

which two longitudinal sound waves propagate in the same 
T (p,':') qlZ5, (8;' ) =2nn, ( ) direction. The lattice displacement vector u(r,t) is written in 

wherep, is the component of the quasi-momentum p in the 
direction of the magnetic field H, Ez (p, ) is the velocity on 
the Fermi surface along the magnetic field averaged over a 
cyclotron period, q,, is the component of the sound wave 
vector q, in the direction of H, and n = 0, + 1, 
+_ 2 ,..., +_ n,,, . We assume that there are no open orbits, 

and moreover that w ; B 7% T, where w, is the frequency of 
the wave and T the relaxation time. 

If there is yet another wave with frequency o2 and 
wavevector q2((ql, it interacts resonantly with electrons for 
which the condition 

is satisfied, with m = 0, + 1, 2 ,..., + m,,,. 
Generally speaking, each of the waves interacts reson- 

antly with its own group of electrons, except for Fermi-sur- 
face-section electrons with E, = 0, which always interact re- 
sonantly with both waves. When w,/w2 = n/m (n and m 
being integers which have no comon divisor and (n (~n, , ,  , 
Im(<m,,,) there are additional sections with electrons 
which are at resonance with both waves, namely the sections 
with p, =pi:' =p ip ' ,  where I = + 1, + 2 ,..., &I,,,, 
lmax =nnlax/InI =mrnax/ImI. 

Thus, if the ratio w ,/w2 -. n/m when the frequencies are 
changed one must expect to observe resonance peculiarities 
in the generation of combination harmonics of the sound. It 
will be shown below that these peculiarities (commensurabi- 
lity effect) indeed may occur. The commensurability effect 
is a resonance on non-extremal orbits such that, in general, 

the form 

u (r, t) =ul (r) exp {iqlr-io,t}+u,(r) exp {iqzr-io,t)+ c.c., 

( 3 )  
where u, ( r )  and u2(r) are slowly varying wave amplitudes. 

To describe the interaction of the electrons with longi- 
tudinal sound we shall, as in Ref. 2, where the generation of 
combination harmonics was considered in zero magnetic 
field, use the simplest model of a deformation potential in 
which the electron-lattice interaction energy V = A divu 
and the elasticity equation can be written in the form 

where A is the deformation potential which we shall assume 
to be independent of the quasi-momentum, p, the crystal 
density, A the elasticity modulus, and n the electron density. 

Everything that was said in Ref. 2 about the applicabi- 
lity of this model for considering the generation of combina- 
tion harmonics remains valid also in our case. 

As the density, n depends non-linearly on the lattice 
displacement vector u (r,t), the initial waves ( 3  ) generate 
waves with combination frequencies u' * ' (r,t): 

u("(r, t)=u(*'(r, t)  exp (i(ql=tq2)r-i(olf wa)t )+ C.C. (5) 

To fix the ideas we shall assume that w, > o2 > 0. 
Assuming that the synchronism conditions are satisfied 

(the sound dispersion law is linear to high degree of accura- 
cy) we can obtain by the usual methods equations for the 
slowly varying amplitudes u' * ' (r) :  
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where y'+' and y'-' are the linear damping coefficients for 
sound at, respectively, the sum and the difference frequen- 
cies, and 7 is the coordinate along the vectors q, and q,, 
a'*'=* (zX)-'n"(~(~) (91, oi; * qz, * 02) 

+x'~ ' (* qz, *oz; q1, o1)9tqz, (7) 

1 is the renormalized elasticity modulus, = p ~ ,  where s is 
the true sound speed. 

The non-linear susceptibility x'z'(q,,w,;q2,w2) deter- 
mines the correction an',' to the electron density, 

6n(')= [x(')(qt, 01; qz, oz)  

+x(') (q,, oz; qi,oi) I VlV2 exp {i(ql+qz)r-i(oi+oz)t)+ c.c.9 
(8) 

necessitated by the action of the two waves ( V = V, 
Xexp{iq,r - iw,t) + V2 exp{iq2r - iw2t) + c.c.). 

2. We now turn to an evaluation of the non-linear sus- 
ceptibility X'2'. We write down the Boltzmann kinetic equa- 
tion for the electron distribution functionf: 

af af atl at  af -+v-+---(VV),-- af 
at ar at at, a p Z  (vVV) a - = I ( f ) ,  E (9) 

where t, is the time of motion along the trajectory in the 
constant magnetic field H, E the energy, I(f) the collision 
integral, and V the potential energy 

V=V, exp {iq,r-io,t)+V2 exp {iq,r-io2t)+ c.c. (10) 

So far we shall not assume that the vectors q, and q, in 
( 10) are parallel. The signs ofw, and w2 can be arbitrary. We 
write the derivative dt,/dt in (9) in the form 

We can use for the collision integral in our case the following 
approximation 

where f, is the equilibrium distribution function and 
T = ~ ( p )  the drift relaxation time. 

Solving the kinetic equation by an iteration method we 
easily get an expression forX"'. We can write it in the form 

x ( ~ ) ( Q ~ ,  01; 42, 02) 

= ~ o ( ~ )  (qt, 01; (12, 02) + x ~ ( ~ ' ( ~ I ,  01; qa, a*), (13) 

where 

Forxjz' we have 

a a 
x{gZzap,+ q8v- a& + 9.-- ap at, a 1 

We restrict ourselves here to the case when q,r, -q,r, 
-qr, - 1, where r, is the characteristic Larmor radius and, 
moreover, (q,H) - (qzH) S 1. 

In accordance with what was said above we shall as- 
sume that w, -w24r-'(R, where R is the cyclotron fre- 
quency, R = JeH/m*cl.  

In that situation we get from ( 14) 

Xo(2)  (q,, 0,;  qz, (02) =xo("= (f1/2) d2no/2a&~'3 (16) 

where no is the equilbrium electron density and EF the Fermi 
energy. 

To evaluate XI2' we must recognize that the resonance 
factors R (q,w ), R (q,,w, ) in ( 15) have poles in the variable 
p, close to the real axis (at distances much less than the 
characteristic Fermi momentum pF ) . If q, q,, > 0 the poles 
of both factors R ( q ~ )  and R (q,,w,) lie on the same side of 
the real axis and one checks easily from ( 15) that one can 
neglect the quantity xL2' in comparison withxA2' (because of 
the parameter w , ,  /a). When q, q,, < 0 the poles of the fac- 
tors R(q,w) and R (q,,w, ) lie on different sides of the real 
axis. Each of these factors has one or more fixed poles close 
to the points E, (p, ) = 0 and a sequence of fixed poles the 
positions of which depend on the z-components of the wave- 
vectors. When the ratio q, /q,, tends to a rational number, a 
subset of the poles of the function R (q,w) may approach a 
subset of the poles of the function R ( q , , ~ , ) .  In that case the 
main contribution to ~ 1 ~ '  is caused by pairs of poles of 
R(q,o) and R ( q , ~ , )  which lie close to one another but on 
different sides of the real axis. 

Thus, let kq, znq,, , where k and n are integers which 
do not have a common divisor, such that 

In that case we can get from ( 15) after some transformations 

384 Sov. Phys. JETP 64 (2). August 1986 A. P. Kopasov 384 



where 8( - q,q,, ) is the theta function and So, the Kron- solutions of Eq. (20). We note that if the electrons of the 
ecker symbol, sectionsp, =pit" are at resonance with both waves the elec- 

1. (4, PI) trons of the cross-sectionsp, = - pl,ko are also at resonance 
(the dispersion law ~ ( p )  is by assumption an even function 

T 1 

1 
of the quasi-momentump). The contribution of the sections 

= - erp { i  J q(v(tf,  p z )  ) +inQ(p , )  t )  , ( 19) P, = -pi:*' to ( 18) can be expressed in terms of the contri- 
T o  o bution of the sectionsp, = pi:'. It is described by the second 

V(p, ) is the velocity averaged over a cyclotron period and 
the quasi-momentapifk' are determined from the condition 

I is a positive integer and I,,, a positive integer such that 

Generally speaking, i'5, can be a non-monotonic function of 
p, . Therefore there are some values of the product kl in (20) 
to which several values of the quasi-momentump, may cor- 
respond. It is clear that we must take into account in ( 18) all 

terms in the braces in Eq. ( 18). 
In obtaining Eq. ( 18) we assumed that the difference 

((qz/ql, - (n/k) ) < 1. If, however, the ratio of q, and q,, 
is such that this difference is not small for any values of n and 
k satisfying the inequality (17), the main contribution to 
X y )  comes from electrons with small CZ. This contribution is 
described by the term (or terms) with I = 0 in (18). As in 
this situation one can neglect terms with 1 # 0 in ( 18), it is 
clear that Eq. ( 18) is valid for any ratio of q, and q,, . 

3. We now evaluate the coefficients a' ' ' in Eq. ( 6 )  
which determine the generation of combination sound fre- 
quencies. From (17), (13), and (18) we get 

where m and k are positive integers (k  < )q,, ( E, ) ,,, / 2 4 ,  
m < Iq,, (75, ),,,/2n-l) for which Iw,/w, - m/k ) isamini- 
mum. Here I,,, is given by the obvious condition 

(In (221, (231, as in section 1, q , t fq2,  q, >q2>0 ,  w, 
> w, > 0.) It follows from Eqs. (22) and (23) that the coeffi- 
cient a'+' is determined by the static response of the electron 
system to the inhomogeneous field; this response is indepen- 
dent of the magnetic field and is produced by the electrons 
from the whole of the Fermi surface, while the electrons 
which interact resonantly with the two sound waves contrib- 

, 1 

Ute to the coefficient a as in the case when there is no 
magnetic field., 

Bearing in mind that in our situation Jk (q, - q,g, ) 
-Jk (q,,,p,)-1 fork-1 (andalsofork=O),wegetfrom 
(22) and (23), for any ratio ofw, tow,, 

where u, is the Fermi velocity. 
It is clear from (24) that the ratio la'-'/a'+'I can be 

very large. In order of magnitude it is the same as in zero 
magnetic field.2 The contribution from the resonant parti- 
cles to a'-' dominates if 

As an example we consider the case when in (23) 
I,,, = 1, k = 1, m = 3, and we assume that i5, is a mono- 
tonic function ofp, . The resonance contribution to a'-) will 
then come from electrons withp, zzO(ii, (p, = 0)  = 0) and 
from electrons from the non-extremal sections p, = +PIS'. 
If 1 (w,/w,) - 3) > F/fl the contribution from electrons 
p, z O  may be larger than the contribution from the sections 
p, = f PI:'. When Iw ,/w, - 3 1 5 .r-'/f2 they are, in gen- 
eral, of the same order of magnitude. 

We see thus that in this case there is resonance (com- 
mensurability effect) manifesting itself in a sharp depen- 
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dence of the non-linear modulus a'-', meaning also of the 
amplitude of the sound with the differences frequency, on 
the ratio w , / w 2  at w,/w2=.3,  ( s / vF  ) ( q 2 ~ F ~ ) 2  2 1 .  The ratio 
of a'-' at resonance to a'-' far from resonance is, generally 
speaking, of the order unity, provided that (s/ 
v,  ) ( q , ~ , r ) ~  2 1 .  The width of the resonance is determined 
by the reciprocal relaxation time 7" on the non-extremal 
sections. 

The commensurability effect does not manifest itself in 
the non-linear modulus a'+' and hence in the sound wave 
with the sum frequency. One can check from Eq. ( 18) that if 
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the principal waves propagate in opposite directions the 
wave undergoing resonance caused by the commensurability 
effect will be the one with the sum frequency and not with the 
difference frequency. 
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