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Two-dimensional topological solitons with precession of the magnetization in ferromagnets 
and antiferromagnets are considered. An analytic dependence of the precession frequency on 
the number of bound magnons for small-radius solitons is obtained. It is shown that its 
character differs substantially for solitons with different values of the topological charge v: For 
Y = 1 the dependence is nonanalytic, while for v > 1 it is analytic. It is proved that the 
properties of the two-dimensional solitons are unstable with respect to inclusion in the energy 
of higher powers of the spatial derivatives of the magnetization: Even when the corresponding 
terms are small their inclusion fundamentally changes the properties of the solitons. 
Contradictions in the results of previous numerical and analytical calculations of the 
characteristics of small-radius solitons are explained on the basis of this conclusion. In the 
generalized model the region of permissible values of the soliton frequency is substantially 
widened and static stable solitons can exist. 

In the modern physics of essentially nonlinear phenom- 
ena, based on the theory of solitons, there is increasing inter- 
est in the properties of non-one-dimensional solitons. For 
the analysis of these, constructive analytical methods such 
as the method of the inverse problem of scattering theory' 
are rarely applicable, and the main thrust is toward the study 
of isolated soliton solutions2 on the basis of topological argu- 
ments3 and numerical analysis; analytical results can be ob- 
tained in the limiting cases of solitons of large and small radii 
(see Ref. 2) .  

Two-dimensional topological solitons in a ferromagnet 
are interesting from both the purely theoretical and the ap- 
plied point of view for the description of domains in thin 
magnetic films4 A numerical analysis of such solitons was 
carried out in Refs. 5-7. It was found that the results of the 
numerical analysis differ substantially from the analytical 
asymptotic formulas obtained in Ref. 7 for the dependence of 
the soliton energy E and precession frequency w on the num- 
ber Nof magnons in the soliton. In the previously considered 
problems concerning magnetic solitons without topological 
charge there was no such disagreement. 

In the present paper1' we consider the structure of topo- 
logical solitons of small radius in ferromagnets and antifer- 
romagnets. It is shown that the properties of the solitons of 
the standard model of a in which the energy is 
quadratic in the magnetization gradients, are unstable with 
respect to inclusion of higher powers of the gradients. The 
properties of the solitons in the standard model and the gen- 
eralization model are investigated. 

I. THE FERROMAGNET 

In the phenomenological description of a ferromagnet 
on the basis of the Landau-Lifshitz equations (see Refs. 8 
and 9) one usually starts from the following form of the 
energy as a functional of the normalized magnetization vec- 
torm (m2= 1): 

In the form ( 1 ) the magnet is assumed to be uniaxial, 
P> 0 is the anisotropy constant, M, = 2p$/a3 is the satura- 
tion magnetization, p, is the Bohr magneton, a- ( J /  
p&f,)a2, J is the exchange integral, a is the lattice constant, 
and the factor a in front of the integral has been added to 
make the dimensions correct. 

In a uniaxial magnet not only the energy ( 1 ) but also 
the total z-component I, of the magnetization is an integral 
of the motion. This integral of the motion determines the 
number N of magnons bound in the soliton: 

N=I,/2po= (oM./2po) (I-m,) d2r. ( 2 )  

The unit vector m is conveniently described in angular 
variables: 

m,=cos 0, m,+im,=eig sin 0. (3)  

In these variables a two-dimensional topological soliton cor- 
responds to (Ref. 5; see also Ref. 2) 

where w is the frequency of precession of the magnetization, 
the integer v defines the topological charge of the soliton, 
and r, x are the polar coordinates of the points of the two- 
dimensional magnet. The form of the function B(r) is deter- < 

mined by the requirement that the energy (1)  with 
allowance for (4)  has a minimum at the given value of N. 
This corresponds to the condition S [ W - * N ]  = 0. Writ- 
ing the energy Wand the number N of magnons in angular 
variables, taking into account the concrete form of q, (4),  
and varying W- &N with respect to B(r), we obtain an 
ordinary differential equation for B(r). We write it in the 
form 

'" I dB 
"sin 0 cos 0 =F (0) 

dP r dr r2 

1 0 w = -~M:J {ar(Bm)'+!3(m~+m,')}d2z. (1)  =- sin B ( cos B - -) . 
2 10 0 0  
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Here I, = (a /P)  ' I2 is the characteristic length in the prob- 
lem, lo r  ( J /ho ) ' 12a )a ,  and w, = &,,OMdfi is the fre- 
quency of the linear ferromagnetic resonance. In the right- 
hand side we have separated out the terms that arise from the 
anisotropy energy. 

A small-radius soliton corresponds to localization of 
8( r )  in a region of order R, where R 41,. In this case, Io(dt9 / 
dr) -1,/R, and in the region r410 we can assume that the 
right-hand side of (5)  is small and solve this equation by 
iterations in F(0)  (more precisely, in R 2F(8)). The zeroth 
approximation corresponds to the static scale-invariant soli- 
ton solution O,(r) in an isotropic ferromagnet, found by Be- 
lavin and Polyakov": 

tg (W2) = (Rlr) ''I (6)  

(below we assume that v > 0, and omit the modulus sign). 
We shall consider corrections to the asymptotic solu- 

tion (6). For this we write O(r) = 8, + $ and consider the 
form of the correction $(r).  For the latter, on the basis of 
( 5 ) ,  it is easy to obtain a linear equation with a right-hand 
side: 

,. 
It is easy to convince onself that the operator L has a 

zero e%envalue, to which corresponds the eigenfunction 
sine,: L sine, = 0. A localized solution of this equation ex- 
ists in the case when the right-hand side F(8,) is orthogonal 
to the sine,, i.e., when 

rn 

j r dr. sin B,,F ( 8 0 )  =o. 
0 

This condition for R -0 leads to the limiting frequency 
value w = w,/v obtained earlier7 by another method, name- 
ly on the basis of (6)  and the identity 

which can be obtained by integrating Eq. (5).  However, con- 
sideration of the problem on the basis of (7)  also makes it 
possible to find the behavor of w(N) for small but finite 
values of N. By writing w in the form w = w d v  + Aw(N), 
and using ( 8) ,  we can express Aw in terms of the value of the 
correction $: 

Ao(N) J (1-  cos B0)r dr=wo j sin 0.(cos 0.-I/v)~(r)r dr. 

If the solution $(r)  is known, we can find Aw as a func- 
tion of R and express the soliton frequency in the desired 
form in terms of N by means of the relation 

(N, = 2.rrs(l,,/a) * $1 is the characteristic value of the num- 
ber of magnons), which is obtained by direct calculation 

from formula (2) with allowance for (6) .  This relation is 
valid for v > 1; the case v = 1 is special and will be consid- 
ered below. 

The derivation of the dependence Aw(N) reduces to 
solving Eq. (7)  and calculating the integrals in (9) .  The 
solution that vanishes as r-0 can be found exactly and has 
the form 

.9=- (?/4v1,2) sin 8 0 .  (11) 

It is small in the region of localization of the soliton, i.e., 
for r 5; R. However, the behavior of the solution at large val- 
ues of r shows that for r - 1, the correction Il, becomes com- 
parable to the solution 0, itself, and the use of (6)  is not 
justified. This circumstance can be easily understood by not- 
ing that the power-law asymptotic form (6)  of 8, differs 
from the exponential asymptotic form of the exact solution 
of Eq. (5).  We can refine the solution (6) by writing 

where K, is the Macdonald function. In the actual region 
r5;R<Io (12) goes over into (6) ,  and for r210 gives the 
correct (exponential) asymptotic form (5)  (Ref. 7). In the 
analysis of the soliton it may turn out to be necessary to start 
from this refined solution and calculate the correction $ on 
the basis of this solution. Then in the region r 5 R we again 
obtain for $ the expression ( lo),  while for r 9 R  it is neces- 
sary to take into account the difference between (6)  and 
(12). 

The calculation of Aw(N) has shown that the behavior 
of o ( N )  can be fundamentally different for solitons with 
different values of the topological charge v. Only for v > 2 
can we start from the form (6)  for the solution and ( 11 ) for 
the correction; then, to within terms oforder (R or ( N  / 
N2 2, 

where 

q,=sin~nIv) /2nv2 sin (2nlv) (13) 

and the derivative dw/dN is finite as N /N2 + 0. In the case 
v = 2 the use of formula (6) and (1 1) leads to divergent 
integrals in (9) and it is necessary to refine these formulas on 
the basis of ( 12). In this case it turns out that the correction 
IC, to the refined solution ( 12) is described by formula ( 1 1 ) 
for r < R and decreases as l/? for R < r 4 I,. The calculation 
of the quantity w (N) led to formula ( 13) with q, = 0.027. 
thus, 7, decreases monotonically with increase of v; by vir- 
tue of ( 13), 7, = 0.01 5 and q, = 0.005. This behavior agrees 
well with the result of the numerical calculation of Ref. 7, if 
we confine ourselves to the region of not very small N ( N /  
N2> 

For a soliton with v = 1 the situation is fundamentally 
different: to obtain the asymptotic dependence w(N) it is 
sufficient to use formula (12) directly. In this case we can 
make use of formula (8),  rewriting it in the form 
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Calculating these integrals with the aid of ( 12) and us- 
ing the formula for N, we obtain 

where y = 1.78 is the Euler constant. By virtue of ( 1 5 ) ,  
w -w, as N /N, -0 ,  but the dependence w ( N )  for v = 1 is 
nonanalytic and dw/dN-  co as N /N2 - 0 .  This does not con- 
tradict the result of the numerical calculation of Ref. 5; on 
the graph of the dependence w ( N )  in the latter paper the 
sharp increase of the derivative dw/dN upon decrease of N / 
N, is clearly visible. 

Thus, the analysis performed has demonstrated the fun- 
damentally different behavior of the dependence w ( N )  in 
the model ( 1 ) for different values of the topological charge 
of the soliton: For v = 1 this dependence is nonanalytic, 
while for v >  1 the value of the derivative dw/dN for N /  
N,-0  is finite and decreases with increase of v: (N, /  
w,)  ( d w / d N )  = 1/4v3 for v )  1 .  This result sharply contra- 
dicts the data of numerical calculations, according to which 
the limiting value o = wo/v  for v = 2, 3 , 4  is not reached for 
any value of N in the interval of N / N ,  from lo2 to lo-' 
(Refs. 6 ,  7 ) .  For N / N ,  < instead of reaching a con- 
stant value the quantity w ( N )  decreases sharply to values 
less than 0 .  lw,  with decrease of N.  The case v = 1 was ana- 
lyzed numerically in Ref. 5, in which such a steep drop of 
w ( N )  at small N was not observed. It seems to us that an 
explanation of this anomalous behavior is possible on the 
basis of an analysis of a certain, more general model of a 
ferromagnet. 

2. THE.GENERALIZED MODEL 

We shall consider a generalization of the model ( 1 ) of a 
ferromagnet, consisting in the inclusion of terms containing 
higher powers of the spatial derivatives in the nonuniform- 
exchange energy. We shall take the energy of the ferromag- 
net in the form W = Wo + A W, where Wo is defined by the 
standard formula ( 1 ), and 

Besides these terms there are two further exchange invar- 
iants 

azma azma ( a m a a m a ) ( a m D  a m B )  -- 
axi a x ,  axi ax; a x i  ax ,  a ~ ,  ax, , 

but their inclusion does not lead to new effects since the 
corresponding constants enter additively to ( a ,  + a,) ;  
therefore, for the analysis we shall confine ourselves to ( 16) .  
The invariants of fourth order in the derivatives arise natu- 
rally in the expression for the exchange energy of a discrete 
spin system in the form of an expansion in derivatives of 
m(r)  (see Ref. 8). The signs of a ,  and a,  are determined by 
the relative values of the exchange integrals between nearest- 
neighbor and between next-nearest-neighbor spins, and we 
shall assume that a,  -a2-a. 

If the characteristic length scale of the variation of m, 
determined by the soliton radius R, is much greater than the 
lattice constant a (otherwise, a macroscopic treatment of the 
soliton makes no sense), then 

a,az ( A m )  z-a2aY(Vm)'-a (aZ /R4)  <a /R2  

and the value of ( 16) is small in comparison with the usual 
magnitude of the exchange energy. It turns out, however, 
that the inclusion of ( 16),  even for R )a, substantially alters 
the form of w ( N )  . 

With the inclusion of the ( 16) the soliton solution can 
be sought, as before, in the form ( 4 ) ,  and the structure of the 
soliton is determined by the minimum of the energy 
W = W, + A Wwith allowance for the explicit form of p(x) 
( 4 ) .  This is an extremely cumbersome equation of fourth 
order in 8 ( r ) ,  but it can be analyzed in the case of interest to 
us, viz., the case of a soliton of small radius ( a  <R < I o ) .  In 
this case 

and the contribution ( 16) ,  like the contribution of the anis- 
topy energy, is small. In this case we can again assume that 
the solution is close to 8 , ( r )  [see ( 6 )  or ( 12) 1, and as a 
result the analysis of the problem reduces to the solution of a 
linear equaLion of the type ( 7 )  but with a different right- 
hand side: L$ = F(0 , )  + AF(8,) .  

The form of F is given by ( S ) ,  and the function of A F  
arises from the additional term A W ( 16) in the energy of the 
magnet. The rather cumbersome expression for AFincludes 
the function 0 ,  and its derivatives up to the fourth. 

For brevity, we give the form of this function after sim- 
plification with the use of the relation de0/dr  = - ( v /  
r )  sineo [see ( 6 ) ] :  

AF=- (2v3a2/ar') sin3 0, (a,+2a,+2vaz cos Oo). ( 17) 

The condition of orthogonality of sine, and 
F(0 , )  + AF(8,) leads for v > 1 to the relation 

Hence, using the relation ( 1 0 )  between Nand R, we 
obtain the desired dependence w ( N )  for the generalized 
model for v > 1 : 

If in these formulas we assume that 'R)  (alo)"2 or 
N)aN2/Io,  then w = wo/v .  But upon decreases of R or N the 
values of the function w ( N )  changes sharply in comparison 
with these characteristic values. If a ,  + a,  < 0 ,  then w ( N )  
increases with decrease of N.  In the more interesting case 
when a ,  + a,  > 0,  which we shall discuss below, w ( N )  de- 
creases sharply with decrease of N.  At N = No or R = R,, 
where 
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the value of the frequency vanishes and the soliton is static. 
For N <  No or R < Ro the value of the frequency is nega- 

tive, which can never be the case in the standard model ( 1 ) 
(Ref. 7). 

We note that the above-indicated characteristic value of 
the soliton radius, although small in comparison with I,, is 
nevertheless macroscopic: If we assume that lo - (J/ 
 fit^^) 'I2a %a, then 

Analogously, 

and the soliton can be described in the framework of a semi- 
classical phenomenological approach. This result is entirely 
specific to the two-dimensional case: In the three-dimen- 
sional case the radius of the static soliton in the model ( I) ,  
( 16) is of the order of the lattice constant, and a macroscopic 
description of it is inadequate. For solitons in superfluid 3He 
this conclusion was reached in Refs. 3. 

In the special case Y = 1 it is necessary to use the refined 
solution ( 12), and here the relationship between w and R is 
more complicated: 

Analysis of this formula and of the dependence w (N)  
obtained on the basis of it shows that the qualitative behavior 
ofw (N) is the same of Y = 1 and Y # 1 : In a broad interval of 
values ofN(No<N<N2) the soliton frequency is close to the 
limiting value w0/v for Y + I and wo for Y = 1, and then de- 
creases sharply and passes through zero at N = No (see Fig. 
1 ). The change of value of the small parameter a/lo changes 
only the left boundary of the region in which w =w0/v, i.e., 
changes the position of the point at which the steep drop of 
the frequency begins. We emphasize that the steep drop oc- 
curs for an arbitrarily small value of a/lo, and the corre- 
sponding value R o s a .  The situation is characteristic only 
for the two-dimensional case. In the one- and three-dimen- 
sional cases the presence of the leading derivatives is mani- 
fested only when R -a, when a macroscopic approximation 
is simply inapplicable. It can be said that in the two-dimen- 
sional case the problem of the investigation of topological 
solitons is unstable with respect to the inclusion of the higher 
derivatives. 

It may be postulated that the contradiction between the 
numerical data of Refs. 6 and 7 and the analytical calcula- 
tion ofw (N) for the model ( 1 ) is a consequence of this insta- 
bility. The point is that in solving a differential equation nu- 

FIG. 1. Plot ofw(N) in a ferromagnet for different values of v; the number 
of the curve corresponds to the value of v. The solid curves are for 
( a ,  + a2 )a2 /a l i  = 1.3.10-13; the dashed curves are for a ,  +a2  = 0. 

merically one always replaces it by a difference equation, as a 
result of which uncontrollable higher derivatives appear in 
the problem. The role of the lattice constant, or, more pre- 
cisely, of a/&, is played in this case by the step in the differ- 
ence scheme. In any case, the dependence w (N) obtained by 
the numerical methods differs from the result of the analysis 
of the model ( 1 ) but corresponds well to the dependence 
w (N) in the generalized model with higher derivatives, if in 
the latter we set a//,= Such instability of the two- 
dimensional topological solitons describable by second-or- 
der equations should certainly be taken into account in the 
numerical analysis of these solitons. 

3. STABILITY 

The region of the "steep drop" corresponds to dN/  
dw > 0, whereas the previously formulated condition for the 
stability of solitons for a wide class of modelsi1 has the form 
of the opposite inequality. We note, however, that the proof 
that a soliton is stable when dN/dw < 0 and unstable when 
dN/dw > 0 was carried through only for dynamical solitons 
without topological charge.l2+l3 A one-dimensional topo- 
logical soliton of the domain-boundary type is stable inde- 
pendently of the sign of dN  /dw (Ref. 13 ) . 

The calculations we have performed by the Ritz method 
have shown that static solitons with N=N0 correspond to 
the minimum of the energy, and these solitons are stable. 
Evidently, for two-dimensional topological solitons, as for 
one-dimensional solitons, the condition dN/dw < 0 is not 
necessary for stability. The possibility of the existence of sta- 
ble two-dimensional magnetization-field solitons of ex- 
tremely small radius (almost-singular solitons) is of interest 
in connection with the proposal to use them as information 
carriers in magnetic-memory systemsi4 [the statement in 
Ref. 15 concerning their stability pertained only to the stan- 
dard model ( 1 ); in our theory, however, such solitons exist 
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only in the generalized model ( 16), which has not been dis- 
cussed before]. 

4. THE ANTIFERROMAGNET 

The method developed is also easily applied to the in- 
vestigation of topological solitons of small radius in an anti- 
ferromagnet (AFM). The dynamics of the magnetization of 
an AFM is conveniently described in terms of the unit vector 
1 of the antiferromagnetism.16-I' In angular variables for 1 
(1, + il,, = sin6eip ), a soliton, as in a ferromagnet, corre- 
sponds to a solution of the form (4).  The form of 8(r) is 
determined by the condition 6 [ W - fiwN] = 0, where 

We shall write the energy of a uniaxial AFM, to within 
terms quadratic in the gradients of 1, in the form 

Here the meaning of the constants a and a is the same as for 
the ferromagnet [see ( 1 ) 1,  Mo is the sublattice magnetiza- 
tion , c = p&fo(aS) 'I2/fi is the phase velocity of the AFM 
spin waves, )S = 4/x is the exchange  constant,^ is the sus- 
ceptibility of the AFM, 6-a/a2, and w, is the anistropy 
energy. 

We choose w, in the form 

7na='/$ sin2 0- ' /&b sin' 0, P>O, b>O, (23) 

since for the existence of dynamical solitons it is necessary to 
include in the energy w, not only terms proportional to IS 
but also terms proportional to 1: (for more detail, see Ref. 
12). We shall consider also a generalized model of an AFM, 
corresponding to inclusion of higher powers in the gradients 
of the vector 1. In this model the energy W = Wo + A W, 
where Wo is given by (22) and A W is obtained from the 
corresponding formula ( 16) for the ferromagnet by replac- 
ing m by 1. 

The angle 6 in the AFM soliton is determined by an 
equation of the type (5),  but with a different form of right- 
hand side. As in the ferromagnet, the right-hand side of this 
equation can be represented in the form F(8)  + hF(6) .  The 
function AF is determined by the variation A W and is de- 
scribed by formula ( 17) : the form of F(6)  is easily obtained 
by noting that, by virtue of (4),  (6' I/&)' = w2sin26, and us- 
ing the explicit form (23) of the anistropy energy of the 
AFM: 

p o2 b 
F = (---)sill 0 cos 0 ---sin" ccos 0. 

a c2 u 

We note that F(6)  can be rewritten in the form 

1 
F = -  sin ' 20 (cos 20-Q), 

1.2 

Here o, = p&fo(PS) 'I2/fi is the frequency of AFM mag- 
nons with k = 0, i.e., the lower boundary of the continuous 

spectrum of the magnons, wt=2p&lt/fi, and 
H, = pOIS(P - b /2) ] '12/2 is the field of the spin-flop tran- 
sition. The quantity I, coincides with the thickness of the 90- 
degree interphase boundary that exists at the spin-flop tran- 
sition point in a magnetic field H equal to H,  . We note that 
F(6)  in the AFM differs from the corresponding function 
for the ferromagnet by the replacements w - R, lo-la, and 
6-26. For v = 0, i.e., in the case of a dynamical soliton 
without topological charge, it follows from this circum- 
stance that the equations for 8 and 28 in the cases of the 
ferrornagnet and antiferromagnet, respectively, are, with the 
appropriate replacements,12 identical, and the soliton exists 
for 0 < 0 < 1, i.e., w: < a 2  < 61:. Because of the term (v2/ 
r2)sin8cos6 in the equation for 8 there is no such simple 
correspondence for topological solitons, and it is necessary 
to perform the analysis anew. The investigation of small- 
radius solitons is carried out using the same method as in the 
case of the ferromagnet [see formulas (6)-(8) 1, with 
allowance for the concrete form (24) of F(8) for the AFM. 

We shall give the final formulas for the dependence 
w (N).  In the generalized model without allowance for cor- 
rections in N of the form ( 18) we find that for Y > 1 

where 

For Y = 1 it is necessary to start from the refined equa- 
tions ( 12); we shall not give the corresponding formulas, but 
represent the result of the analysis in graphical form (see 
Fig. 2). 

Formula (25) describes a dependence w (N) that is fun- 
damentally different from that in the ferromagnet [see 
( 18) ] : With decrease ofN the value of the frequency vanish- 
es only at N = 0. A static soliton with w = 0 corresponds to 
N = 0 but finite values of the radius Ro and the energy; R,, 
coincides in order of magnitude with the radius of the static 
soliton in the ferromagnet. The vanishing of N at w = 0 is 
connected with the fact that, by virtue of (2 1 ), N c w. In the 

FIG. 2. Plot of o ( N )  for an antiferromagnet for v = 1. Curve 1 corre- 
sponds to a value o, (o,, and curve 2 to a value o, go,. The solid curves 
are plotted for A = 1 . 3 . 1 0  ", and the dashed curves for a ,  + a,  = 0. 
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presence of an external magnetic field H parallel to the z axis 
the value of N in the static soliton is finite: Ncc H. 

Upon increase of N to values greater than AN., where 
AN. ) 1 for R ) (P / S )  ' I 2 ,  w becomes independent of N and 
the soliton frequency reaches a limiting value: 

For N>RN, the effect a, and a,, i.e., allowance for 
higher powers of the gradients of 1, is not important, and the 
structure of the soliton is determined by variation of the en- 
ergy W, ( 22 ) .  

The results of the analysis of the model with a,, a, = 0 
are more conveniently described in terms of the quality R, 
connected with the soliton frequency by the relation (24). 

As in the case of the ferromagnet, we can find the depen- 
dence R (N) for large (see Ref. 7) and small values of N. In 
the latter case it is sufficient to calculate the correction $(r) 
to the solution 8,(r) (6)  with allowance for the concrete 
form of F(B)  for the AFM. To calculate 0 for a known form 
of $ it is sufficient to make use of the relation 

[see formula (47) of Ref. 121. Finally, we find that for Y = 1 
the value of d W d N  for N-0 is infinite: 

and for v > 1 the function R(N)  is analytic: 

Here N, is the characteristic magnon number that is conven- 
ient for the description of solitons in an antiferromagnet 
with a , ,  a,  = 0: 

The limiting value of R as N-0 has been obtained by Vor- 
onov and Kosevich. I n  The factor 7;1, for v > 2 is determined 
by the formula 

and for Y = 2 is equal to 7. lo-! The quantity 77, decreases 
with increase of Y, but more slowly than in the ferromagnet: 
9. 10W4/v for v$ 1. This is connected with the fact that the 
limiting value of the soliton frequency in the AFM for VB 1 
and a ,, a, = 0 remains finite (a -  1/3), and does not vanish 
as in the ferromagnet (w +w,/v). 

The analysis performed has shown that for small values 
ofN the behavior of the soliton in the AFM displays the same 
nonanalyticity as in the ferromagnet. The behavior of the 
soliton parameters is fundamentally different for a finite but 
small value of a ,  + a, and for a,  + a, = 0. The range of the 
soliton frequencies for a ,  + a z # O  extends from w = 0 to 
w = w,, and is much wider than in the case a,  + a, = 0 (the 
inequality 0 < R < 1 corresponds to w: < w, < w: , and usual- 
ly w, is close to 0 , ) .  

FIG. 3. Form of the function B(r)  for topological solitons of large radii. 
The dashed curvecorresponds to the caseof the ferromagnet, and the solid 
curve to the case of the antiferromagnet. 

5. DISCUSSION 

We shall discuss the properties of a large-radius topo- 
logical soliton in an AFM. As in ferromagnets, these solitons 
correspond to a large value of N (N) N2 and N $  N,  , respec- 
tively). In Ref. 7 it was shown that in a ferromagnet for 
N)N, the soliton corresponds to a rather large region of 
radius R (in which B z a ) ,  separated from the rest of the 
magnet by a domain boundary of thickness I ,  (the region of 
the singularity near the center of the soliton is small). 

A qualitative analysis of the problem has shown that the 
form of the solution for the AFM is essentially different: In a 
large part of the inner region of the soliton the value of 8 is 
close to ~ / 2 ,  and at the center of the soliton there is a vortex 
of finite amplitude. The inner part of the soliton is separated 
from the rest of the AFM by a 90-degree interphase bound- 
ary in which tan 8 = exp[(R - r ) / I ,  ] (see Fig. 3). 

On the basis of this model we have calculated the depen- 
dence of the energy and the number of magnons in the soli- 
ton on R, and, on the basis of the relation dW/dN = &, 
have found the dependence of R (N) : 

The main term in this relation ( R  a N - 'IZ) is the same 
as in the ferromagnet'; the interesting term is the v-depen- 
dent correction. This correction arises from the term 
(Vp)2sin28 in the energy density of the AFM; in the central 

FIG. 4. "Joining" of the asymptotic dependences CL(N) for N i N ,  and 
N >  N, ;  the number of the curve corresponds to the value of v. 
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part of the soliton (0=7r/2) it is close to v2/r2 and gives a 
logarithmic term of the form v2 ln(R / I ,  ) in the soliton ener- 
gy. 

By virtue of the different dependence of R(N) on the 
topological charge v at large and small values of N, R(N) 
increases with increase of v for N$N, and decreases for 
NgN, [see (26) and (27) 1; these curves should intersect at 
finite values of N /Nu (Fig. 4). The fact that curves of R(N) 
with different v intersect has been established independently 
by Voronov and Kosevichlx in a numerical analysis of the 
soliton in the AFM. We note that at the center of a ferromag- 
netic soliton we have 8-.ir and there is no logarithmic term 
of the type found in the antiferromagnetic case. Therefore, 
the dependence of the energy Eand  frequency w on the topo- 
logical charge in a ferromagnet is weaker than in an antifer- 
romagnet: 

It is clear that, because of this, intersection of the w(N) 
curves for a ferromagnet for different values of v was not 
observed in the numerical experiment of Ref. 7; it follows 
from (28) that the intersection can occur at large values of 
N /N,. 

We are grateful to V. G. Bar'yakhtar, I. E. Dzyalo- 
shinskii, and V. G. Makhan'kov for useful discussions about 
the work and to V. P. Voronov and A. M. Kosevich for com- 
municating the results of Ref. 18 before its publication. 
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