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The redistribution of atoms on the surface of a small particle is investigated in systems with 
limited solubility. It is shown that three types of density profile are possible. First is the density 
distribution in the critical nucleus, second the distribution corresponding to formation of an 
equilibrium new-phase region on the particle surface, and third the formation of metastable 
density distributions similar in form to a network of tesseral spherical harmonics. In all three 
types of distribution, size effects are found, due to correlation of the particle radius with the 
characteristic dimension of the separated new phase. A unique type of size "quantization" is 
observed, manifested in the fact that periodic distributions are produced only for definite 
particle sizes. It is established that decay on the surface is forbidden below a certain limiting 
size. 

Both experimental and theoretical attempts to study 
the decay of a solid solution on a flat surface of a crystal are 
known. In particular, a thermodynamic analysis of phase 
transitions on the surface of a massive sample is reported in 
Ref. 1. It is noted in Ref. 2, however, that different crystal- 
line modifications cannot coexist on a flat surface, since the 
specific volumes of the phases are unequal. Yet phase transi- 
tions on surfaces, with formation of islands of a new phase, 
were observed in experiment,' with dimensions exceeding 
the interatomic distance. 

A phase transition on the surface of a small particle 
should exhibit substantial differences from a phase transi- 
tion on a flat surface, since the two-dimensional region in 
question has no boundary. In addition, noticeable size ef- 
fects can be expected if the characteristic lengths are found 
to be of the order of the particle size. Investigation of phase 
transitions on surfaces of minute particles is therefore un- 
doubtedly of interest. 

EULER-LAGRANGE EQUATION OF A DECAYING SHELL 

Two-dimensional concentration distributions in the 
surface layer of a spherical particle were investigated in a 
radially stepwise approximation. It was assumed that the 
interior of the particle is frozen, and atom exchange with the 
shell is forbidden. This statement of the problem makes 
sense, since the surface-diffusion coefficients exceed the bulk 
coefficients susbstantially (by several decades). The most 
difficult to account for is the elastic interaction between a 
two-dimensional tangential irregularity and the particle 
core, since the elastic energy does not reduce to a surface 
energy and a three-dimensional asymmetric problem must 
be solved. It should be noted that in this situation the elastic 
interaction has two causes: first, the Laplace-tension change 
due to the change of the particle surface energy and second, 
the dilatational interaction due to the difference between the 
atomic radii of the components when the atoms are redistri- 
buted in the shell. 

Let us estimate the contribution of the first of these 
causes. A change of the particle surface energy by SF, 
= CSa leads to a change of the elastic energy by SF, 
= VKu,,Su,,, where Z is the surface area of the particle, Vits 

volume, K the isotropic compression modulus, a the specific 
surface energy, and u,, the isotropic-compression strain. 
Typical values of the constants for metals are a - 1 N/m and 
K- 5-10" N/m2. Assuming that a + da/du,, -a,  in order 
of magnitude, we have SFo/SFs -a/KR =. for parti- 
cles of radius R = 10 nm. Consequently, the elastic-energy 
change due to the curvature is small compared to the induc- 
ing surface-energy change. The difference between the atom- 
ic radii of the components leads to a considerably larger ef- 
fect. The latter can be estimated from a general solution of 
the elastic problem for a spherical r e g i ~ n . ~  Confining our- 
selves to a spherically symmetric contribution to the dis- 
placement field, we can readily show5 that when the atomic 
fraction one of the components is changed from c to c + Sc in 
a surface layer of thickness E(<R the change of the particle 
elastic energy is equal to 

SF,= [ eZE/  (1-0) IS (oc): (1) 

where w - (r, - r, )/r,, r, and r, are the atomic radii of 
the components, E is Young's modulus, and o is the Poisson 
coefficient. By comparing this value with the surface-energy 
change corresponding to the same density increment we can 
estimate the ratio of the atomic radii at which the elastic- 
energy contribution is small: 

where a, and a, are the specific surface energies of the pure 
components. 

The condition obtained is quite stringent. In particular, 
w 2 g  10W2 if c-0.5, 0-0.25, E = 10" N/m2, la, -a, I 
-0.5 N/m, and E = 0.5 nm. The condition is actually met, 
however, in unstable solid solutions, whose decay is due ac- 
cording to the Hume-Rothery criterion not to a size factor 
but to an electronic one.6 No account is taken of the elastic 
contribution in our present investigation of the thermody- 
namics of a surface solution. 

The analysis of the restructuring of the shell is based on 
an investigation of a free-energy functional. Since the char- 
acteristic dimensions of the produced new phase are usually 
noticeably larger than the interatomic distance, we confined 
ourselves in the gradient expansion of the free-energy den- 
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sity to the second derivatives with respect to the coordinates, 
i.e., the concentrations c  ( 0 , p )  were assumed from the outset 
to be smooth functions. With the foregoing taken into ac- 
count, the change of the free energy upon formation of the 
new phase was written in the form7 

where c  is the atomic fraction of the second component in the 
two-component particle, PI and P, are the expansion con- 
stants, f ( c )  is the free-energy density averaged over a layer of 
thickness E.  The Green formula 

where A,,, is the Laplace operator and U, and U2 are arbi- 
trary functions, is valid on the surface of the sphere. 

The term proportional to P, in ( 1 )  can therefore be 
omitted. The parameter PI, in turn, should be positive, oth- 
erwise any deviation of the concentration from the mean 
value would decrease the free energy and cause loss of stabil- 
ity regardless of the form of the function f ( c ) .  In order of 
magnitude B, zza2  W, where W is the two-particle interac- 
tion energy, a is the lattice constant, andz is the coordination 
number.' 

Since there is no exchange of atoms between the shell 
and the frozen interior of the particle, the average concentra- 
tion of the component on the surface is conserved: 

By varying the functional ( 3 )  and taking relation ( 4 )  and 
( 5 )  into account, we obtain the Lagrange equation of our 
problem 

with periodic boundary conditions. The quantity J", actual- 
ly assumes the role of the chemical potential. Let us analyze 
Eq. ( 6 )  for the case of a parabolic dependence of the free- 
energy density on the concentration. The Lagrange equation 
is then linearized and can be rewritten in the form 

This is the equation for the eigenvalues of the Laplace opera- 
tor. It has nontrivial bounded solutions Y,, (8,p) only at 
definite values of the coefficients, viz., 

where 1 is an integer. It is clear that iff :.'> 0 there are no 
nonzero solutions at all, and the particle surface remains 
stable to decay. If, however, f : < 0, solutions are possible. 
This can be easily understood by investigating the second 
variation of the functional ( 3 )  

where 7 is an arbitrary deviation from the specified concen- 

FIG. 1. Periodic distribution of 
concentration on the surface of a 
small particle. 

tration profile. Iff: > 0, the quadratic form under the inte- 
gral sign in (9)  is positive-definite, meaning a minimum on 
the free-energy hypersurface. If, however, f :  < 0, the qua- 
dratic form considered is negative at certain values of 7 and 
the solution becomes unstable to decay. A unique size 
"quantization" takes place in the case. Loss of stability not- 
withstanding, decay is possible not on all particles, but only 
on this whose size satisfies condition ( 8 ) .  The concentration 
distribution corresponding to this size is similar in form to a 
tesseral spherical harmonic (Fig. 1 ) . 

Note that a distribution of this type can be produced on 
the surface of a small particle as a result of relaxation stresses 
due to structural t e n ~ i o n , ~  i.e., lowering of the elastic energy 
is apparently an additional stimulus to the formation of such 
concentration profiles. 

AXlSYMMETRlC EXTREMAL DISTRIBUTIONS OF THE 
CONCENTRATION 

Let us investigate in greater detail the axisymmetric dis- 
tribution of the concentration of the components on the sur- 
face of a sphere. We attempt first to classify the types of 
possible concentration profiles. Multiplying both halves of 
Eq. ( 6 )  by V c  and taking the equality V  ( V c )  = 2 ( V c )  V2c,  
into account, we get 

Consequently, the quantity 

is the first integral of the Lagrange equation. The existence 
of the first integral ( 1 1  ) follows directly from the absence of 
an explicit coordinate dependence of the kernel of the func- 
tional ( 3 ) .  For the axisymmetric distribution c ( 0 ) ,  the rela- 
tion obtained can be solved with respect to the derivative and 
permits separation of the variables 

Integrating this equation, we have 

The character of the solution is obviously determined both 
by the form of the function f ( c )  and by the value of the 
parameter E. In real situations the phase diagrams of decay- 
ing solid solutions have, besides a two-phase region, a certain 
region of homogeneity. The free-energy density is usually 
approximated by two parabolaslO: 
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In this case c* = (c,, + c,,)/2. 
It can be easily shown that an equation of type (13) 

with a two-parabola approximation of the free-energy den- 
sity describes three concentration-profile forms8 The small- 
est possible value E = E, > 0 corresponds under phase-equi- 
librium conditions to a two-domain state. The case E > E, 
describes a nonequilibrium or a metastable distribution. 
There are thus three qualitatively different solutions. First, 
an equilibrium region of the new phase on the particle sur- 
face; second, a concentration distribution in the critical nu- 
cleus; third, formation of metastable periodic distributions. 
In contrast to the case of an unbounded region, Eq. (13) 
may have no solutions at all. Moreover, since the particle 
dimensions are close to the characteristic dimension of the 
emerging segregation, size effects manifest themselves in all 
three types of concentration profile. For example, the pe- 
riphery of the central section through the particle must span 
an integer number of the periods A of the metastable concen- 
tration distributions. The quantization of the period imposes 
an additional restriction on the possibility of their realiza- 
tion, and prevents in particular the existence of oscillating 
distributions on particles of size smaller than A. 

The distribution of the components in the critical nu- 
cleus is described by a system of equations that can be easily 
obtained from relations (6)-( 14): 

where t = cose, and the index j assumes two values, j = 1 for 
C(C* and j = 2 for c > c*. 

The differential equations ( 15) are Legendre equations. 
The character of solutions of equations of this type depends 
on the value of the parameterp, and is therefore determined 
by the ratio of the particle size to the correlation length (PI/ 
a ) ' I2 .  Thus, if 2R > (Pl/a)112, the solutions are the conics 
Fp ( t )  and Qp ( t )  of the first and second kind, respectively. If 
2R = (D,/a) ' I 2  the solutions of Eqs. (15) are complete el- 
liptic integrals. If, however, 2R < (P,/a) ' I 2 ,  the concentra- 
tion distribution is described by Legendre functions." Note 
that the maximum area of the critical nucleus is equal to half 
the area of a spherical particle, since further growth of the 
region occupied by the new phase is accompanied by a de- 
crease of the phase-separation boundary. 

Let us study in greater detail the situation in which the 
concentration distribution constitutes two regions separated 
by a boundary zone. In this case, in Eq. (3) ,  the integral of a 
term that contains derivatives with respect to the coordi- 
nates differs from zero only in the transition zone. There- 
fore, to simplify the qualitative analysis of the behavior of 
the equilibrium region of the new phase on the particle 
boundary as a function of its size, we replace the transition 
zone between the phases by a line of energy y per unit length. 

Obviously, at equilibrium the phase-separation boundary is 
a circle, and the component distribution is symmetric about 
an axis perpendicular to the plane of this circle and passing 
through its center. Let us find the minimum of the free ener- 
gy is the class of 8 functions. In this case AF becomes a 
function of two variables, viz., the area of the surface occu- 
pied on the sphere by phase 1, and the concentration of one 
of the components in it. We put c, < c* < c?, and then 

AF= [f (ct) -f (c) ]Xi+ [ f  (cz) -f (c)]X,+yL, 

Z1+Za=Z, C ~ Z ~ + C ~ Z , = ~ Z ,  
(16) 

where 2, and 2, are the areas occupied by the first and sec- 
ond phases, and L is the length of the separation boundary. 
Minimization of AF with respect to the concentration leads 
to the standard condition that the chemical potential be con- 
stant, f ' ( c ,  ) = f '(c,). The concentration corresponding to 
this equation is described by the relations 

Putting f=B,/Z, we have L = (Z/R) [{( 1 - 6) ] 'I2. 
We investigate the behavior of the function ZF({) on 

the segment {E [O, 1 1. Its extremal points satisfy the equation 
A F '  = 0 In view of the condition (17), we have 

According to this equation, the extrema are determined by 
the point where the straight line y = b(f - f * )  intersects 
the curve y = (26 - 1)/4[f(1 - f ) ]  ' I 2  (see Fig. 2). De- 
pending on the position of the point f * on the f axis, two 
qualitatively different situations are encountered. Thus, if 
( *e(O,l), i.e., F~(c,,,c,,), there exists only one intersection 
ofthe lines in question. In the opposite caseg * ~ ( 0 , 1 )  one can 
have one, two, or three intersections. Assume that Eq. ( 18) 
has at a certain dimension R a single solution. Variation of 
the particle radius leads to rotation of the straight line 

FIG. 2. Dependence of the change of the free energy on the area of the new 
phase. The arrow marks the direction in which the particle size increases. 
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around the point 6 *. IfF~(c,,,c,,), the line is tangent to the 
curve at a parameter value b = b, determined by the condi- 
tions AF'(6) = 0 and AF"  (6 )  = 0, and an inflection point 
appears on the AF({) plot. Three intersections are realized 
with further rotation of the line, corresponding to an in- 
crease of the particle size (see Fig. 2).  The extremal state is a 
minimum ofthe function AF(f) ifthe condition AF " (6) > 0 
is met. Graphically it means a large slope of the straight line 
compared with the curve at the extremal point. The situation 
with one intersection corresponds therefore to a maximum 
of AF(6). In the case of a triple intersection the outer points 
correspond to maxima, and the middle one to a minimum of 
the free energy. The maxima are barriers preventing nuclea- 
tion of a new phase, and the minimum describes a stable or 
metastable two-phase state, and occurs only in particles 
whose radius exceeds yb,/(c,, - c,,) 2 a ~ .  The change of the 
character of AF(6) with decreasing particle size is shown in 
Fig. 2. A decrease of the size causes an increase of the barrier 
to nucleation of the new phase, and weakening of the ther- 
modynamic stimulus to the transformation, and even its pre- 
vention. 

Note that the parameters cO,, c02, and a,  which specify 
the form of the f ( c )  curve, are temperature dependent. The 
two-phase region expands when the temperature is lowered. 
This is tantamount to increasing the difference IcO, - cO2 1, 
and hence also of the slope of the l iney(f) .  In contrast to the 
size dependence, however, the temperature variation on the 
free-energy extremum not only changes the slope of the line 
but also displaces the point 5 *. 

The anomalies in the formation of a new phase on a 
particle surface are size-dependent. These anomalies are 
due, on the one hand, to the fact that the particle surface is 
closed, and on the other, to the proximity of its size to the 
characteristic decay length. The first of these factors leads to 
a unique quantization effect, and the second is manifested in 
a reconstruction of the thermodynamic stimulus to the 
phase transition. 
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