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Renormalization-group analysis of the effective-field theory is used to show that weak disorder 
with long-range correlation influences substantially the diffusion coefficient and the mobility 
of a randomly walking particle in a two-dimensional system. It is shown that the effective 
temperature is also renormalized in models with nonpotential random forces, which leads to 
modification of the Einstein relation and of the Kubo formula. The formalism developed in the 
paper is used to calculate the excess-current-noise spectral density and the mesoscopic 
fluctuations of the kinetic coefficients. Possible applications to systems with hopping 
conduction are discussed. 

INTRODUCTION 

Hopping conduction by electrons in semiconductors, or 
exciton migration in molecular crystals, are examples of in- 
coherent propagation of quasiparticles. In an ordered lat- 
tice, this motion is known to reduce to classical diffusion in 
the continual limit. A basic problem is that of the influence 
of weak disorder in the medium on the character of the diffu- 
sive motion. Thus, weak disorder is influential for coherent 
propagation of particles (quantum diffusion) in systems 
with dimensionality d ~ 2  (Refs. 1 and 2), owing to quantum 
interference in multiple scattering. There is, of course, no 
such mechanism for incoherent propagation (classical diffu- 
sion). At the same time, classical diffusion, in contrast to 
quantum, is sensitive to the type of disorder. 

Weak disorder with long-range correlations was found 
to influence substantially the character of classical diffusion. 
Such a situation was observed by Derrida and Luck3 in an 
analysis of a hopping model with asymmetric hopping prob- 
ability ( W,,. # W,,,,, where W,,. is the probability of hopping 
from site r' to site r ) :  

a,@. = ( W ~ ~ , P . - - W . , ~ P ~ ) .  (1)  
.I 

It was shown that a weak random asymmetry leads at d = 2 
to logarithmic divergences (at long times or low frequen- 
cies) in the perturbation-theory series for thd'diffusion and 
mobility coefficients. 

In the continual limit, Eq. (1) goes over into the 
Fokker-Planck (FP) equation 

where P(r ,  t )  is the distribution function of the randomly 
walking particle. Weak disorder in the symmetric hopping 
model ( W,,. = W,., ) reduces to random spatial fluctuations 
of the diffusion coefficient Do in (2),  but these turn out to be 
insignificant for all d. A random asymmetry in the hopping 
probability gives rise to a random stationary velocity field 
v, ( r )  in the FP equation (2)  (a is a vector index) with zero 
mean value and with a correlator 

(va  (r) vg (r') ) =yo6ab6 (r-r') . ( 3 )  

The presence of a random field v influences substantially the 
asymptotic behavior of the kinetic coefficients. 

An. equivalent formulation of the problem (2) ,  (3)  is 
given by the Langevin equation, which describes random 
walks of a particle under the influence of thermal noise q ( t )  
in a random drift field v( r ) : 

i=v  (r) +q (t) , (4 )  

where q(t)  is Gaussian white noise, i j  = 0, 

qa ( t )  17s (t') =20o6ap6 (t-t'). ( 5 )  

The model described by Eqs. (2)  and (3) or by Eqs. (3)-(5) 
was considered in a number of recent 

The exact solution obtained by Sinai4 for the one-di- 
mensional model demonstrates the strongly subdiffusive 
character of the random walks. A renormalization-group 
analysis carried out in Refs. 5-8 within the framework of a 
field-theoretical approach has shown that the weak disorder 
(3) is significant also at d = 2 (upper critical dimensionali- 
ty). It was shown that the asymptotics of the diffusion coeffi- 
cient' and of the mobility5 are of the form 

Classical diffusion in disordered media is of interest, in 
part, because disorder in classical systems is considered as a 
possible universal source of the excess ( I/f ) current noise. 
The model [(3)-(5)] was considered recently just in this 
c ~ n t e x t . ~  

The correlator (3) of the random forces (velocities) 
has the simplest tensor structure. This may seem to be the 
most natural form of disorder in the models (4)  and ( 5 ) . 
This, however, is not so, as indicated even by the patent vio- 
lation of the Einstein relation Do = poT between the macro- 
scopic diffusion coefficient and the mobility (6).  The point 
is that a random field with a correlator (3) is nonpotential, 
and owing to the presence of undamped stationary currents 
there is no complete thermodynamic equilibrium in a system 
with disorder of this type. By the same token, the feasibility 
of direct realization of the disorder (3) in lattice hopping 
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systems ( 1 ) is doubtful. On the other hand, the most natural 
realization of the model (41, ( 5 )  with undamped stationary 
flows-diffusion in an incompressible liquid-is likewise 
not described by correlator (3) .  

It is thus of interest to consider two natural limiting 
situations: models with potential and solenoidal random 
field v(r) .  We proceed now to describe these models. 

$1. DESCRIPTION OF MODEL. BASIC RESULTS 

We consider models in which the disorder is described 
by a stationary random field v( r )  in the Fokker-Planck 
equation ( 2 )  or in the Langevin equation (4),  with the natu- 
ral vector constraints imposed on the field v: 

d,v, (r)  =0, solenoidal field (model 11), (7a) 

amwe ( r )  -d,u, ( r )  =0, potential field (model 111). 
(7b) 

[The random field v in model I11 can obviously be regarded 
as a gradient of a random potential: u, ( r )  = - d,u(r).] 
The model with random field unrelated to the correlator (3) 
will be designated model I. In all the models, the random 
field u(r) is assumed Gaussian with correlators (v) = 0 and 

where the Fourier component Fap of the correlator is of the 
form 

Pa, 9 isotropic disorder (model I ) ,  (8a) 

a,, - k, k,/k 2, 

FaP ( k )  = transverse disorder (model 11), (8b) 

k, k, /k ' 9  1 longitudinal disorder (model 111). (8c) 

A correct definition of the models implies the required 
ultraviolet cutoff in the correlators. 

In models I1 and I11 the correlator in r-space contains a 
long-range part a l/r2 (at d = 2 ) .  Model I, the local form of 
the correlator ( 3 )  notwithstanding, is also essentially "long- 
range." The point is that the essential disorder, as will be 
made clear, is one for which FaP (k )  #O in the long-wave 
limit k-0. In this sense, all three models are analogous. 

Model I1 describes, for example, Brownian motion of a 
particle in an incompressible liquid with random stationary 
flows. Model 11, as will be shown below, appears naturally 
when hopping conduction is described in a 2 0  medium with 
charge impurities that produce a three-dimensional Cou- 
lomb field. This refers to systems in which the free-carrier 
density is much lower than that of the charged impurities. 
The screening radius can then be large enough compared 
with the length of the elementary hop. This is essential, since 
the screening radius, just as the phase relaxation of the phase 
rP in quantum diffusion, serves as the infrared-cutoff pa- 
rameter in the logarithmically divergent expressions. 

Models I1 and I11 were independently introduced by 
Fisher et a1.I0 and by us." In a different physical context 
(seepage of a turbid liquid through a porous filter) these 

models were considered earlier by Aronovitz and Nelson.12 
A renormalization-group analysis has shown that, in 

contrast to model I, weak disorder leads in models I1 and I11 
to a substantial change of the asymptotic form of the mean 
squared di~placement'~-'~: 

ln"' ( t l ~ ) ,  model 11, 
D ( t )  5 - 

t r) , model 111. (tl 
Here 

at d = 2 is a dimensionless parameter of the (weak) disor- 
der. Expressions (9) are valid in the asymptotic region 
go ln(t  / r ) )  1, where T is the ultraviolet-cutoff parameter 
and has, in lattice realizations, the meaning of the elemen- 
tary hop. 

No less interesting is the question of the response of a 
system to an external field in the presence of weak disorder. 
In model 11, the disorder does not influence the effective 
mobility.'* In model 111, as will be shown, the mobility vari- 
ation is similar to that of the diffusion coefficient. Thus, 

1, model 11, ' ( )  model 111, 

where p E  = ( r ( t ) ) / t  and E is the external field. The low- 
frequency asymptotic form of the conductivity is also given 
by Eq. (11) with t-w-I. 

Comparison of Eqs. (9)  and ( 11 ) shows that the Ein- 
stein relation D  = pTis  violated in model 11, just as in model 
I [Eq. ( 6 ) ] .  It turns out that the fluctuation-dissipation 
theorem (FDT) is also violated in these models. We shall 
discuss the causes of the violation and show that the rela- 
tions in questions are valid if modified. Namely, besides the 
renormalization of the kinetic temperatures it is necessary to 
take into account also the temperature renormalization, 
which is determined independently from the macroscopic 
Boltzmann distribution. We shall show that in model I11 the 
temperature is not renormalized because the model is poten- 
tial, so that disorder does not alter the Einstein relation and 
the FDT. 

The foregoing results pertained to physical quantities 
averaged over an ensemble of realizations of a random field. 
They are megningful only if the relative fluctuations of the 
physical quantities from sample to sample are small. Using 
the formalism developed for the calculation of the correla- 
tor, we have shown that the relative fluctuations are indeed 
small in terms of the weak-disorder parameter go [Eq. 
( 10) 1 .  It is important that the fluctuations are considerably 
smaller than the disorder-governed corrections to the kinet- 
ic coefficients, with values -go ln(t /T) %go. Nonetheless, in 
view of the long-range correlations of the random field, these 
fluctuations are anomalously large: they do not decrease 
with increasing size of the system, in contrast to the ordinary 
thermodynamic fluctuations ( cc V - ' I 2 ) .  The ensuing situa- 
tion is thus similar to that recently established in the quan- 
tum-diffusion 

Marinari et and Fisher7 have recently speculated 
whether diffusion in a random field, described by model I 
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[Eqs. (3)-(5) ] can be a universal source of the l/f noise. 
The argument advanced in Ref. 9 was based on the subdiffu- 
sive behavior revealed by the exact solution of the one-di- 
mensional model,4 and also on certain numerical results that 
attested to the possibility of such a behavior also at d = 2. 
The analytic result (6a) obtained for weak disorder did not 
confirm the subdiffusive-behavior hypothesis at d = 2. To 
clarify the situation, we calculate here directly the current 
fluctuations having different diffusive behavior (5)  in mod- 
els 1-111. An excess noise was found for models I and 111, and 
the expression for its spectral density coincides in the linear 
(ohmic) regime with the known empirical Hooge formula 
(see the reviewsi6-'". At sufficiently low frequencies den- 
sity coincides in the linear (ohmic) regime with the known 
empirical Hooge formula (see the r ev i ew~l~ - '~ ) .  At suffi- 
ciently low frequencies, however, a nonlinear regime sets in; 
the l/m dependence in the spectral density of noise is then 
saturated, as is also the frequency dependence of the conduc- 
tivity. 

The plan of the article is the following. In $2, using the 
representation of Green's functions in a path-integral form, 
we average over the realizations of the random field v. A 
renormalization group (RG)  analysis of the ensuing effec- 
tive theory of the field yields in $3 expressions for the renor- 
malized diffusion and mobility coefficients. Part of the con- 
tent of $$2 and 3 was described in a brief communication.'l 
In $4 is described a formalism for the calculation of the cor- 
relators of the quantities of interest to us. In $5 we analyze 
the Einstein relation and the temperature renormalization. 
In $6 we prove the Kubo formula (FDT) in the disorder 
model I11 and show how it is modified in models I and 11. In 
$7 is discussed the feasibility of self-averaging of the kinetic 
coefficients, as well as mesoscopic effects. In $8 is calculated 
the current pair correlator in the presence of an external 
field, and an expression is obtained for the spectral density of 
the excess noise. In $9 we trace the connection between the 
considered models, on the one hand, and the lattice models 
of hopping conduction, on the other. A qualitative interpre- 
tation of the results is proposed in the Conclusion. 

$2. DERIVATION OF THE EFFECTIVE FUNCTIONAL 

All the physical quantities of the system are expressed 
in terms of the Green's functions of the FP equation (2).  We 
consider the motion of a particle in an external field E. This 
calls for replacing the random velocity v(r)  in Eq. (2)  by 

V (r) =poE+v (r) . 

We begin with consideration of the averaged Green's 
function ( G  ) in terms of which the effective diffusion coeffi- 
cient and the mobility are directly expressed. In the absence 
of disorder, the Green's function Go is the usual diffusive 
propagator 

Go, (k) = (-iw+ipokE+D,k2)-1. (12) 

To calculate the Green's function in a disordered medium 
we can develop a perturbation theory in terms of the random 
field v, starting from the FP equation for the Green's func- 
tion: 

Averaging over the realizations of a random field v(r)  leads 
to diagrams similar to those of the usual crossover tech- 
nique.I9 The corresponding technique for the problem of 
classical diffusion in a disordered medium was developed by 
Dreizin and Dykhne.*' In the theory considered, the inter- 
nal lines correspond to diffusion propagators (12) (they 
arise in the known quantum-diffusion problem only after 
separation of the diagrams corresponding to slow motions, 
viz., diffusions and c ~ o ~ e r o n s . ~ ~ . ~ ~ ) .  

In view of the long-range character of the disorder cor- 
relations (8)  all the diagrams diverge as m-0 in the case 
d ( 2 ,  and the diagrams with intersections have no additional 
small factors. Thus, in the considered classical-diffusion 
models, just as in the problem of quantum diffusion, as w - 0 
there is no small perturbation-theory parameter (at d<2).  

A convenient way of studying the low-frequency prop- 
erties in this situation is to represent the Green's function as 
a path integral, followed by a RG analysis of the correspond- 
ing effective theory of the field. 

We represent the Green's function in the form 
i Go(r, rf)= - - " 1 ~ ~ q j ~ ~ ~ ~ i s i n ,  DI 
Z 6E (r)6h (r') - , (14) 

where 

S[E, h ]  =S+&S, 

The normalization factor Z in ( 14) is determined by a path 
integral of exp(iS) over the complex fields @(r)  and q, ( r )  . A 
formal proof (without analysis of the convergence of path 
integrals with non-Hermitian operators) that Eq. ( 14) is a 
Green's function of Eq. ( 13) can be easily obtained by using 
the following shifts of the integration variables: q, + q, + Gh, 
p-*p + h ~ .  That the representation ( 14) is valid in the per- 
turbative sense can be easily verified by expanding it in pow- 
ers of the random field v. (The ensuing Gaussian integrals 
with action S0=S(v = 0)  are, of course, well defined. ) This 
expansion is an exact duplicate of the direct expansion of Eq. 
( 13) in powers of v. 

The averaging over the disorder of v(r)  is by the stan- 
dard replica" method23 and reduces to replacing the action 
(15) by Y = Yo + Yi,,, where 

Here Fap is the correlator of the random fields (8),  and q, 
are N-component fields in the replica space (we must put 
N = 0 in the final results); summation over replica indices is 
implied in expressions of type Tcp. The bare values of the 
renormalized parameters D, p, and y are respectively Do, p,, 
and yo. It is easy to verify that the expansion in powers of yo 
duplicates (at N = 0)  the diagram series of the crossover 
technique for the initial equation ( 13). 
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$3. RENORMALIZATION OF THE KINETIC COEFFICIENTS 

A scale analysis of the effective functional ( 17), ( 18) 
shows that the interaction Y,, is substantial at d(2. The 
renormalization of the functional in the upper critical di- 
mensionality d = 2 is by the usual methodz4 of integrating 
over the "fast" components of the fields i# and cp whose 
Fourier components differ from zero at Ak, < k < k,, where 
ko is the ultraviolet-cutoff parameter and A is a scale factor, 
0 <A < 1. The frequency w is not renormalized here in view 
of the conservation of the total probability: 

The RG equations for the renormalized parameters D, y, 
and p of the functional are derived by expanding over the 
loops. The effective expansion parameter is the dimension- 
less (at d = 2) charge 

Weak disorder corresponds to the small unrenormalized val- 
ue ( 10) of this charge: go < 1. 

At d = 2 we obtain in the two-loop approximation the 
following RG equations (N = 0): 

dln ( 1 - a ) g - 2  ( I - a 2 ) g 2 ,  (21b) 

where 6 = In A - ' is the logarithmic RG variable, and 

0, model I, 
a=( 1 ,  mode111, 

- 1 ,  model 111. 

The calculations in the two-loop approximation were car- 
ried out by the method of dimensional regularizationz5 in the 
form proposed in Ref. 26. Some details of the derivation of 
Eqs. (21 ) are given in the Appendix. 

Equation (20) for the charge is obtained from the ob- 
vious combination of Eqs. (2 la and b)  

dln  g/dg=-  ( l + a ) g + 2  ( I - a Z ) g 2 .  (23) 

Equations (21 ) and (23) were reported by us in a brief com- 
munication." Similar equations in the one-loop approxima- 
tion were derived in Refs. 10 and 12. 

It can be seen from (34) that in models I and I1 the 
small nonrenormalized charge is decreased by the RG trans- 
formation (the "zero-charge" situation), so that the theory 
developed is asymptotically correct. In model I11 we have 
dg/d& = 0 accurate to two loops, so that the question of the 
exact g(6) dependence remains open in this model. 

The RG equations for the effective mobility p in models 
I and I11 are of the form (the one-loop approximation suf- 
fices here) 

In model II the mobility is not renormalized, this being a 
simple consequence of the tensor structure of the correlator 
(8b). 

Solving (2 1 )-(24), we obtain the following expressions 
for the renormalized parameters D and p :  

I DO exp [-2goaE/(l + goE)l, model I, 
D (5) = Do( l  + 2g05f1', model 11, (25) 

Do exp (-goE), model 111, 

Po (1  + goS)-', model I, 
P  (E) = model 11, (26) 

Po exP ( - - g o t ) ,  model 111. 

The physical quantities are calculated in the RG model 
with quadratic action, in which the unrenormalized param- 
eters must be replaced by their renormalized values. The 
logarithmic RG parameter must then be set equal to 
& = l n ( ~ k i / w ) ' / ~  [or ~ = l n ( t / ~ ) ' / ~ ,  where 
r = l/(Dk ) 1. In the limit go ln(t / r )  ) 1 we arrive at the 
asymptotic expressions (9)  and ( 11 ) of the Introduction, as 
well as at (6)  for model I. It follows from the structure of the 
quadratic action ( 17) that in the presence of a constant ex- 
ternal field the infrared-cutoff parameter in 4 = ln( k,/ki, ) 
is 

where r, is the interaction-screening radius. In weak exter- 
nal fields 

the kinetic coefficients do not depend on the external field 
(linear regime). The dependence of the mobility p on 
6-ln w-' -1n t (at distances shorter than r,) means in fact 
that the drift velocity in the linear regime depends on the 
duration of the drift. In the opposite case of sufficiently low 
frequencies (long times), the kinetic coefficients cease to 
depend on In w, but turn out to be functions of the applied 
external field. Of course, even in the static limit the nonlin- 
earity does not manifest itself in such arbitrarily weak fields, 
since the field-independent infrared-cutoff parameter is the 
screening radius or the dimension of the system. 

It can be seen from (25) and (26) that the Einstein 
relation does not hold in models I and 11. It will be shown 
that the Kubo formula (FDT) is likewise incorrect in these 
models. We shall show that these relations are satisfied in a 
modified form. This requires a formalism that permits calcu- 
lation of correlators of various physical quantities, a formal- 
ism described in the next section. 

$4. EQUATIONS OF STOCHASTIC HYDRODYNAMICS 

The FP equation (2), which is equivalent to the Lange- 
vin equation (4),  ( 5 ) ,  determines the one-particle distribu- 
tion function averaged over the "thermal" noise 7 ( f )  (5).  

To calculate the many-time correlators it is convenient 
to use the stochastic-hydrodynamic equations for the fluctu- 
ating (not yet averaged over the thermal noise) particle den- 
sity 

and for the fluctuating current density: 
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Here r, ( t )  is the trajectory of the particle numbered a, 
whose motion is described by the Langevin equation (4).  
Differentiating (29a) with respect to time and using (4)  and 
(51, we get 

where G -' is the Fokker-Planck operator ( 13) and x =  ( r ,  
t). This equation is in fact the continuity equation for the 
density (29a) and for the current (29b). The current density 
j can be expressed here directly in terms of the particle den- 
sity p and the random force 6: 

It can be verified that the random force P(r, t )  due to the 
thermal noise 77(t) (5) has the following correlators: 2 = 0 
and 

- 
Here p(x)  is the particle density averaged over the thermal 
noise and satisfying obviously the FP equation (2) .  This 
density can be easily expressed in terms of the Green's func- 
tion of Eq. (13). Assuming that at the time to- - co the 
particles were uniformly distributed in space with density p, 
(meaning that the disorder and the external field were 
turned on adiabatically), we get 

x = p o  lim 5 G (x, xo) dro. (33 

In the absence of a time-dependent external field, the density - -  
p(x)  = p( r )  is independent of time: 
- 
p (r) =p, lim [ -iw J G. (r, s) &]. 

ru-0 
(34) 

In the transition to (34) we used the relation 

lim (-io+O)-' exp{-iw (t-to)) =2n6 (o) . 
b+-m 

For the current density javeraged over the thermal noise we 
obviously get from (3  1 ) 

Equation (30) determines the fluctuating density p (x)  . 
Taking (33) into account, we obtain for this density 

- 
p (x) =p (x) + j aalG (x ,  x') 5. (XI) ax' 

( dx ' d r ' d t ' ;  a:, =a/ar:,). With (32) and (33) taken now 
into account, all density correlators can be easily expressed 
in terms of the Green's function of Eq. ( 13), i.e., reduced to a 
form convenient for averaging over the realizations. The 
corresponding expressions for the fluctuating current will be 
given below. 

g5. EINSTEIN'S RELATION 

Einstein's relation Do = p,Tis in fact a definition of the 
unrenormalized temperature T [which characterizes the 

power of the thermal noise (5)  1. Since this relation does not 
hold in models I and I1 in the presence of a random field 
~ ( r ) ,  it is natural to ask which quantity serves as the effective 
physical temperature in the systems under consideration. 

In the absence of disorder, the temperature T = D,,/,u,, 
determines the stationary Boltzmann distribution of the 
density of the randomly walking particles in an infinitesimal 
external field with potential U: j5 = p, exp( - U /T).  By 
analogy with this equation, it is natural to introduce a tem- 
perature defined by the macroscopic Boltzmann distribu- 
tion: 

In models I and I1 the temperature T * depends substantially 
on the disorder parameter. It is easy to verify by using the 
ordinary (crossover) perturbation theory that in models I 
and I1 there exist for this quantity logarithmic corrections 
similar to the corrections for the diffusion or mobility. This 
means that the effective temperature is renormalized, i.e., its 
physical value depends on the scale of the system (or on the 
frequency; time, screening, etc., i.e., on any parameter that 
"cuts off' the logarithmic RG variable). Using Eq. (34) for 
p and the functional representation (14)-( 16) for the 
Green's function, we obtain the temperature (37) in the 
form 

1 - 6 (r-r') 
T' 

= 1 - J r o r 0  d I (38) 
0 - 0  

where ((. . .)) denotes functional averaging with weight 
exp(iS) (15) and averaging over the realizations of the dis- 
order. After averaging over the disorder we obtain for ( 38) a 
functional representation with a dual set of replica indices. It 
is convenient to renormalize the pre-exponential factor in 
this representation by adding to the action a vertex propor- 
tional to the corresponding source Ma (to the matrix in the 
replica space) : 

In the upshot we obtain (at N = 0)  in the one-loop approxi- 
mation (which determines completely the asymptotes of the 
considered models I and 11) the following RG equation for 
the temperature: 

It is easy to verify that the temperature T* defined by this 
equation ensures satisfaction of the Einstein relation in the 
modified form 

Note that the definition (37) of the effective temperature 
allows us to represent (40) in the natural form 

o(r, rl)=-D(6p(r) /6U(r1) ) l c . = , ~  
(where o = p, p is the conductivity); this is perfectly analo- 
gous, e.g., to the form in which the Einstein relation is writ- 
ten for the problem of quantum diffusion of interacting elec- 
t r o n ~ . ~ '  
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In model 111, Einstein's relation holds in the usual form 
with an unrenormalized temperature T = Do/po. The non- 
renormalizability of the temperature T * (37) in model I11 is 
due to the potential character of the disorder. Indeed, it is 
precisely because of the potential character that the density 
of randomly walking particles, which is the stationary solu- 
tion of the FP equation (2) ,  takes the form 

[Here -dau(r )  = v a  (r),see (7b).] Sincetheaveragingof 
(41 ) over the realizations of the disorder does not affect the 
Boltzmann exp( - U/T) dependence of the density on the 
external field, the coefficient of proportionality of the mac- 
roscopic diffusion coefficient to the mobility is still the usual 
(unrenormalizable) temperature T. 

$6. FLUCTUATION-DISSIPATION THEOREM (FDT) 

We show in this section that not only the Einstein rela- 
tion but also the Kubo formula (FDT) is violated in models 
with disorder (8a, b). We prove the FDT for the model with 
disorder (8c) and clarify the physical causes of its violation 
in models I and 11. 

In the absence of disorder, the FDT is of the form 

We calculate the spectral density of the correlator in (42) for 
a disordered system using for the fluctuating current density 
an expression that follows directly from (31), (33), and 
(36) : 

ja (XI==+ J 8fyaE ( x ,  X I )  ~ f i  ( X I )  dz', (43) 

where, by definition, 

Here Yap (x, x') is the Green's function of the differential 
equation 

[WI+ (va ( x )  -Doaa) a,] s),, (x, x') =8,,6 ( x - x f )  . (45) 

Using now expression (32) and recognizing that in the ab- 
sence of an external fieldj [Eq. (35) ] is independent of time, 
we obtain the left-hand side of (42) in the form 

j .  ( r ,  a)  j B  ( r l ,  -0) '=2~, ,0~  1 .YWa1 (r, r.) 9-(1 ( r r ,  ro)p(4)dro, 

(46) 
which is valid for any realization of the random field. 

An expression for the conductivity aaB (a) can be easi- 
ly obtained by using Eq. (35) for j(r, t) : 

where it is convenient to express the right-hand side of (47) 
in terms of the Green's function of Eq. (45). 

We now define the quantity 

We apply the operator of Eq. (45) to the right-hand side of 
(48) and set the initial condition A =O in the ordered system 
by virtue of (42). We then obtain for A, with allowance for 
(46) and (47), the expression 

Aa8(3t7 r2; W )  

=-io 1 {Y?: ( r , ,  r f )  4'B.E'(r2, r f ) m -  H.c.)drl 

- 
x 9':; ( r i ,  r f ) P o E P ( r 2 ,  r f )  p ( r f )  dr'. (49) 

Here@ and jare given by ( 15) and (2 1b) in the absence of an 
external field. 

For a potential random field (model 111) the second 
term of (49) vanishes [by virtue of (7b) 1. Substituting the 
solution forp in the model I11 (41 ) in expression (35) for the 
current j, we verify that j = 0, as it should in the potential 
model, i.e., the first term of (49) vanishes. Thus, in model 
I11 we have A = 0 (even prior to averaging over the disorder 
realizations), and this proves the validity of the FDT in 
model 111. 

On the contrary, in disorder models I and 11, the FDT 
in its usual formulation (42) turns out to be incorrect. In 
fact, even in first-order perturbation theory in go (10) the 
quantity (A)  (49) differs from zero. It is easy to verify, how- 
ever, that an FDT in modified form holds for all the consid- 
ered disorder models. It  is necessary to replace in (42) 
(averaged over the disorder), just as in the Einstein relation, 
the unrenormalized temperature T by the effective tempera- 
ture T *  (39). 

$7. MESOSCOPIC FLUCTUATIONS OF KINETIC 
COEFFICIENTS 

So far, we have dealt with calculations of physical quan- 
tities averaged over an ensemble of realizations of a random 
field v(r) .  An important question is whether these averages 
are of significance for an individual sample. To answer this 
question we must calculate the fluctuations of the physical 
quantities from sample to sample. We consider by way of 
example the fluctuations of the conductivity a,,: 

In contrast to (47), it is convenient here to use (35) and 
(34) to express ad in terms of the Green's functions ( 13 ) of 
the Fokker-Planck equation: 

X G ,  (r ' ,  r N )  dr drr dr" I m=O. (5 1 ) 

We omit here the diffusive contribution to the current 
( a Boda . . . 1, since it vanishes under cyclic boundary condi- 
tions. The relative value of the conductivity fluctuations in 
different realizations is determined by the correlator 

whereSaaB = aaB - (aaB). In the lowest nonvanishing or- 
der of perturbation theory we get 
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FIG. 1 .  Diagrams for the "current-current" correlator: the solid lines 
correspond to diffusion propagators in the external field, and the dashed 
lines to the correlator ( 3 ) ;  the vertices contain gradients that act on the 
included propagators. 

d2k kpkdk,k, 
{Fa, (k) FNv(k) +Fav(k)F,,(k) 1. 

The long-range character of the disorder correlations (8)  
(FaB (k )  # 0 as k - 0)  leads to a divergence in 3%": 

~.a,yb=g:~a,yb~-~ j d2k/kL, (53 

where 

3 (56ay666 f &cpfiy6 + fia6hPy), model 1, 
Safiy6 = (54) 

6ap6y6 -I- 6ayfifib + 6aa6fiy9 model 111. 

In model I1 the conductivity, which is not subject to correc- 
tions in any realization of the disorder, has naturally no fluc- 
tuations. (At the same time, fluctuations of, e.g., the diffu- 
sion coefficient are present in all three models and also 
contain a diverging part analogous to ( 53 ) . ) 

The expression (53) for the relative fluctuations of the 
conductivity coincides, after a suitable replacement of the 
disorder parameter, with the result recently obtained in the 
quantum-diffusion p r ~ b l e m ' ~ - ' ~  (in the case of model 111, 
even the tensor structure (54) coincides). The diverging in- 
tegral in (53) is cut off at the reciprocal dimension L -' of 
the system, so that the relative value of the fluctuations is 
independent of the system size. This picture, of course, is 
valid only for "mesoscopic" distances, i.e., distances that are 
large compared with the length of the elementary hop (or of 
the mean free path), but small compared with the screening 
radius in the considered classical systems (or compared with 
the diffusion length ( D T ~  ) ' I 2 ,  where T, is the phase loss 
time, in the quantum-diffusion problem). 

We emphasize that according to (53) the relative fluc- 
tuation Sa/a is small in terms of the weak-disorder param- 
eter go (10). It is this which justifies the consideration of 
physical quantities averaged over the disorder realizations. 

$8. CURRENTS CORRELATOR IN AN EXTERNAL FIELD. 
EXCESS NOISE 

The formalism developed allows us to calculate the cor- 
relators of the currents in an external field. This makes possi- 
ble a direct verification, in the weak-disorder region, of the 
hypothesis advanced in Ref. 9, that random walks in media 
with disorder (8a) can serve (at d = 2) as a universal source 
of the excess l/f noise (see, e.g., the  review^'^^'^). The spec- 
tral density of the currents correlator 

is calculated with the aid of Eq. (46), where the constant 
uniform external field E = ( E x ,  0)  is included in the Green's 
function. We emphasize that an important role in the aver- 
aging (. . .) over the realizations of the random field v( r )  is 
played by the coordinate dependence (34) of p ( r )  due to 
this field. 

In the absence of disorder, 9 (a) (55) is independent 
of the external field and reduces to the usual Nyquist noise: 
9 , (w)  = 2D0 po = 2Ta,. The disorder gives rise to an ex- 
cess noise 6 9 ,  (w) (that depends on the flowing current). 
The essential features of the excess noise are already mani- 
fested in first-order perturbation theory in g, ( 10). Figure 1 
shows diagrams for 6 9 ,  (0). We call attention to the fact 
that a diagram with three lines corresponds to the pair corre- 
lator (55). The "extra" line with zero frequency is due to the - 
presence of p ( r )  (34) in the correlator (56). Diagrams of 
type lb  take into account scattering by the disorder-genera- 
ted density fluctuations. In the diagrams of type la, where 
the zero-frequency line is isolated, its presence reduces to 
multiplying the remaining parts of the diagrams by p,. 

The calculations yield in models I and I11 the following 
expressions for the excess noise 6 9 ,  (a) (at d = 2) : 

6.9, (o) 1.9" (a) =3gflx arctg (11%) +'12agfl 

X: [I-x-' arctg In ( I+x2)] ,  (56) 

where x = ( p&)2/(4D,lw 1 ), and a is a coefficient that de- 
pends on the model (22). 

In weak fields (28), corresponding to the linear regime, 
the ratio of the excess-noise spectral density to the squared 
current is the same for models I and 111: 

69 , (o)  l ( i Y =  (3ngo/'t) N-' 1 o I-'. (57) 

The entire excess noise is due here to static fluctuations of - 
the density p ( r )  . In model 11, where p ( r )  is constant, there 
is no excess noise in the linear-response approximation. 

Equation (57) is an accurate replica of H~og ' s ' ~*"  em- 
pirical formula for l/f noise (N-L is the number of car- 
riers), Hoog's constant being expressed in terms of the mi- 
croscopic parameters of the model and equal to 2?ig,/4. In 
the region of weak external fields (28) and weak disorder 
( lo),  however, the obtained excess noise is small compared 
with Nyquist's equilibrium noise. In "strong" fields (in the 
region of non-ohmic conductivity), the excess noise (56) 
saturates and ceases to depend on either the external field or 
the frequency. Thus, only some tendency towards l/f noise 
is observed for weak disorder in the considered models I and 
111. Further analysis of this problem calls for consideration 
of the strong-disorder region or possibly for modification of 
the models. 

$9. CONNECTION WITH LATTICE HOPPING MODELS 

The models of classical diffusion in disordered media, 
considered above, can be regarded as a continual limit of 
lattice hopping models. The latter are widely used to de- 
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scribe hopping conduction in impurity semiconductors, in- 
version layers, ionic ~ r ~ s t a l s , ~ ~ , ~ ~  and in the study of diffu- 
sion of excitons in molecular  crystal^.^' 

The distribution function P, ( t )  of a particle that 
wanders over lattice sites obeys to the kinetic equation ( 1 ) . 
In a disordered lattice, the probability W,, of hopping from 
site r' to site r takes the form 

where W:r. is the hopping probability in a regular lattice, 
and the random function 8Wr,, describes the weak disorder. 

In the continual limit, Eq. (1)  goes over into the FP 
equation (2).  The correlator of the random velocities v that 
enter in (2) is expressed in terms of the correlator of the 
probabilities S W as follows: 

On going from the lattice equation ( 1 ) to the FP equation 
(2) we have neglected the higher gradients of P,, which are 
insignificant (in the weak-disorder region) for the analysis 
of the long-wave properties of the model. In this sense, there 
is no significance to the possible deviation of the distribution 
of8 W (or of v) from Gaussian. Allowance for this deviation 
would lead to the appearance of higher gradients in the effec- 
tive functional Y ,,, ( 18 ) . It is easy to verify that the spatial 
fluctuations of the diffusion coefficient D( r )  are also ines- 
sential. In this case 

The simplest asymmetric ( 8  W,,. # S  W,., ) hopping 
model, in which the quantities S W,,. fluctuate independent- 
ly if they do not pertain to the same bond, goes over in the 
continual limit into model 

A crystal with magnetic impurities was suggested1' as a 
possible realization of model 11. A natural continual realiza- 
tion of model I1 constitutes random walks of a particle in an 
incompressible liquid with random stationary vortices 
("whirlpools") " or in an incompressible liquid that seeps 
through a porous filter.'' The most natural and interesting 
from the standpoint of application to lattice systems is model 
111. It describes the long-wave limit of a hopping system, in 
which the random asymmetry is due to a chaotic field E ( r )  
of charged impurities. We shall demonstrate this, confining 
ourselves for simplicity to allowance for hops only between 
neighboring sites. We have then 

W,, ,+,= W ,  exp[-eE (r) a/2T 1. (61 

In the approximation linear in the field (8 W a  E )  the ran- 
dom-velocities correlator is proportional, when account is 
taken of (66), to the correlator (EE). The random field of 
charged impurities in a 2 0  system is represented in the form 

E (k) =-2nik(~L)-' ei exp ikr., 

where ei = + e are the charges of impurities with random 
coordinates {r, ), and E is the dielectric constant. (Of course, 
the field of an individual impurity is assumed three-dimen- 

sional: E a r/$. ) Averaging over the impurity positions, we 
obtain 

( E ,  (k) E, (k') >= (2ne)2ckak,' ( ~ k ) - ~ ( 2 n ) ~ S  (k+k'), (62) 

where c is the two-dimensional impurity density. From this, 
using Eqs. (61) and (59), we obtain for the random-veloc- 
ities correlations the expression (8c) (arriving thus at model 
111), where 

( Z  is the coordination number in the lattice). The number in 
the parentheses can be easily seen to coincide in this case 
with the diffusion coefficient Do. Consequently, the weak- 
disorder criterion ( 10) takes in the considered hopping 
model the form 

Expression (62) for the correlator is valid in the mo- 
mentum region k ) r g l  ( r ,  is the screening radius). At 
k 4 r ;  ' the correlator (62) is proportional to k, ks, so that 
in this momentum region the disorder-produced interaction 
becomes unimportant. This means that r; ' becomes the in- 
frared-cutoff parameter of the theory [see (27) ]. Of course, 
we are interested in situations in which the screening radius 
is macroscopically large. This is valid for systems in which 
the carrier density is much lower than the density of the 
charged impurities, as is the case, for example, when a 
charged particle is injected into a disordered d i e l e~ t r i c ,~~  in 
inversion layers (MIS s t r ~ c t u r e s ) , ~ ~  or in weakly doped 
semiconductors with maximum or minimum degree of com- 
pensation K.28 In the latter case the ratio of the screening 
radius to the length of the elementary hop is proportional to 
a large parameter, viz, (1 - K ) ~ ' ~  for strong compensation 
( 1 - K g  1 ) and K - l t 2  for weak compensation (K( 
The static conductivity acquires then, by virtue of (26) and 
(27), an additional (non-analytic) dependence on K and a 
characteristic temperature dependence exp( - T - 2 )  that 
follows from (64). 

We emphasize that we are considering situations in 
which the hopping conduction is along charged impurities 
(donors), so that the question of electron "capture" by an 
individual impurity does not arise. In the case (64) of weak 
disorder (i.e.', when the Coulomb-energy fluctuations due to 
the random arrangement of the impurities are small com- 
pared with the temperature) there is also no carrier capture 
by typical fluctuations of the impurity potential. Thus, the 
kinetic parameters of the system depend little on the specific 
impurity arrangement also at distances r 5 r,, so that it is 
reasonable to consider quantities averaged over an ensem- 
ble. This is confirmed by the rigorous analysis in $7. 

CONCLUSION 

We have shown that weak disorder influences substan- 
tially (and in different ways) the classical diffusion and the 
mobility. Let us interpret these results qualitatively. Figure 
2 shows a typical realization of the random field [ (8 ) ,  (4) ] 
in each of the considered models. The particle drift along the 
force lines of the random field is constantly destroyed by the 
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FIG. 2. Typical realizations of the random field u(r): a-isotropic disor- 
der (field without constraints, model I); b--transverse disorder (solenoi- 
dal field, model 11); c-longitudinal disorder (potential field, model 111). 
The line I? (Fig. 2a) that diverts a particle from a trap is impossible in 
model 111, since the circulation along the dashed contour differs from 
zero. 

strong [if condition (10) is met] random "wind" q ( t )  (41, 
which "blows away" a particle from one force line to an- 
other. However, the preserved tendency towards ballistic 
motion along the cycles leads in the case of a solenoidal field 
(model 11, Fig. 2b) to a superdiffusive propagation: (r2)/ 
t + w as t- w . At the same time, the presence of cycles does 
not influence the directional motion of the particle, so that 
the disorder does not affect the mobility in model 11. 

A potential random field (model 111) is characterized 
by an assembly of sources and sinks (Fig. 2c). In this case 
the randomly walking particles have a predominant tenden- 
cy to avoid the sources and be held back by the sinks that act 
as traps. This leads to a subdiffusive behavior: ( 7 ) / t + 0  as 
t -. oo , and the mobility is also decreased. 

In model I (Fig. 2a) there are sources and sinks, as well 
as cycles. The influence of the traps is weakened in this case 
by the existence of force lines of type r (Fig. 2a) that lead a 
particle away from a trap. The tendencies towards capture 
by "weakened" traps and towards ballistic motion along the 
cycles cancel each other, so that the disorder hardly affects 
the diffusion: (r2)/t+D as t+ 00. The mobility, however, 
which is sensitive only to the presence of traps, decreases. 

It is clear from the same qualitative picture that the 
growth, found above, of the effective temperature (and the 
associated violation of the Einstein relation) in the nonpo- 
tential models I and I1 is due to the presence of undamped 
currents in specific realizations of the disorder. Of course, 
the presence of stationary currents means that there is no 
complete thermodynamic equilibrium in these models. This 
is not surprising for nonpotential models. In natural realiza- 
tions of model I1 as liquids infiltrating (forced through) po- 
rous filters" the presence of external action is obvious. 

We note finally that in the potential model 111, where 
there are no stationary currents, the temperature is not re- 
normalized, nor is, accurate to two loops, the effective 
charge. It is not excluded that these facts are related and that 
there is no charge renormalization also in higher-order 
loops. 

The authors thank V. M. Agranovich, B. L. Al'tshuler, 
S. P. Obukhov, V. L. Pokrovskii, D. E. Khmel'nitskii, and B. 
I. Shklovskii for helpful discussions. 

APPENDIX 

Derivation of the RG equations in the two-loop 
approximation 

Here we consider a somewhat more general case, when 
the random-velocities correlator is given by 

FaB ( k )  = r l  (6ap-kakdk2) +711kakiJk'- (A1 

It can be easily seen that model I corresponds to y, = y,, , 
while models I1 and I11 are obtained from ( A l )  if yll = 0 or 
y, = 0. A similar correlator, containing simultaneously a 
longitudinal and a transverse part, is encountered when the 
models (7)  are considered in a magnetic field." 

The renormalized values of the coefficients y,, and y, 
are obtained by integration over the fast components q,, and 
go of the fields q, and @. To separate the fast and slow vari- 
ables, we introduce into the action the vertex 

which is needed for infrared regularization. To cut off the 
ultraviolet divergences we use the method of dimensional 
regularization in a space d = 2 - E ( E  > 0). 

By calculating (at the required accuracy) the diagrams 
a, b, c, and d of Fig. 3 we have for y, and yll 

where 

FIG. 3.One-loop corrections to y and D (a, e ) ;  two-loop corrections to y 
(b, c, d)  and D (f, g). 
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Similarly, calculating diagrams e, f, and of Fig. 3 we obtain 

To derive the RG equation we must differentiate (A3) and 
(A4) with respect to d l  = d (ln A - ' ), recognizing that d l  / 
d l - E I  (A5) ,  and then express the unrenormalized values yo 
and D from (A3 ) and (A4)  in terms of the renormalized y 
and D, with allowance for only one-loop corrections (pro- 
portional to the first power of I ) .  As a result, the singular 
terms proportional to EI '- 1 / ~  are canceled out in the ex- 
pressions for dy/d{ and dD / d l ,  and only the terms -E~I ' 
that are finite as E + O  remain. In the limit as E-0 we now 
have 

where 
gltcl,=Y,lcL,/ (4nD2). 
Contributions to the mobilityp are made by diagrams e, 

f, and g of Fig. 3, but these contain the Green's functions in 
the external field E: 

G, ( k )  = [Do (k2 - tA2)  +ipkE] - I .  

The derivation of the RG equation forp  is similar to the 
derivation of (A7)  and yields 

In the particular cases g, = g,, , g,,  = 0, and g, = 0, 
which correspond respectively to models I, 11, and 111, Eqs. 
(A7)-(A10) go over into (21) and (24). 

Note added in proof ( I 6  June  1986). It turns out that in 
the potential model I11 there is no renormalization of the 
chargeg in all orders of the loop expansion; the supernorma- 
lizability ofthis model is closely related to the satisfaction of 
the Einstein relation. By the same token, expressions (25)  
and (26) for model I11 are exact (see V. E. Kravtsov, I. V. 
Lerner, and V. I. Yudson, Spectrosc. Inst. Preprint 3,1986). 
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