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A study is made of the influence of an external magnetic field on the orientational structure 
of a ferronematic, representing a suspension of single-domain magnetic particles 
("ferroparticles") in a nematic liquid crystal. It is shown that a homogeneous orientation in a 
planar layer of a ferronematic is absolutely unstable on application of a magnetic field 
perpendicular to the direction of the initial orientation: the FrCedericksz transition has a zero 
threshold. The profiles of the distributions of the orientation and concentration of magnetic 
grains are obtained allowing for the segregation effects and the magnetization curves of a 
ferronematic are derived. It is shown that the initial susceptibility of a ferronematic layer is a 
quadratic function of the concentration of ferroparticles and that for systems encountered in 
experiments it may be several orders of magnitude higher than the magnetic susceptibility of a 
pure nematic. 

1. INTRODUCTION 

Ferronematics, i.e., highly disperse magnetic suspen- 
sions in which the carrier is a nematic liquid crystal, repre- 
sent a new variety of liquid crystal materials of great interest 
from the general physics viewpoint, and also in respect of 
applications. Pinning of nematic molecules to the surfaces of 
magnetic grains in such systems makes it possible to create 
an extremely strong orientational coupling between ferro- 
particles and the liquid crystal matrix. Therefore, even at 
very low concentrations of the solid phase ( -0.01 % by vol- 
ume) the initial magnetic susceptibility of a liquid crystal 
suspension is between four and six orders of magnitude high- 
er than the susceptibility of a pure nematic liquid crystal and 
a ferronematic is easily oriented by a relatively weak (H 5 10 
Oe) external field.' 

The problem of the orientational interaction of ferro- 
particles and a nematic matrix deserves a more detailed anal- 
ysis. It is shown in Ref. 2, which gives the fundamentals of a 
theory of ferronematics, that suspensions of this type can 
exhibit two types of orientational behavior. In the first case 
when the concentration of particles is low (for an estimate 
see below) each particle oriented by an external field distorts 
the distribution of the director around it, irrespective of the 
other particles. Creation of such a distortion requires an en- 
ergy -Ka, where K is the orientational elastic modulus and 
a is a typical size of a particle. In the interior of a sample of 
linear size R with a particle concentration c an increase in the 
elastic energy is of the order of AE, -cKaR 3. The texture of 
a sample represents a system of small ( -a )  isolated do- 
mains that disturb slightly the initial state of the liquid crys- 
tal matrix. However, the response of a suspension to a 
change in the orientation of the particles may be different: 
the distortion may be "smeared out" over the volume of the 
sample; local orientations of the director and the particle 
axes are then similar and they vary continuously from point 

to point with a characteristic spatial scale R. In this state a 
change in the elastic energy is practically independent of the 
particle concentration (there are no distortions over dis- 
tances -a) and it is governed by the product of the density 
of the Frank energy -K /R and the volume of the sample, 
which gives AE, -KR. Comparing the increments AE, and 
AE,, we obtain the following expression for the critical con- 
centration: 

above which we have AE, < AE,, so that rotations of the 
particles result in reorientation of the matrix. We thus find 
that it is in the range c > c, that the condition of a strong 
orientational coupling (collective behavior) is obeyed by the 
magnetic and liquid-crystal components of a ferronematic. 

A familiar example of a ferronematic is a suspension of 
needle-shaped grains of the ferrite y-Fe,03 in the thermotro- 
pic nematic MBBA (Refs. 1 and 3 ) .  Above the temperature 
of the transition to the liquid-crystal phase, such suspensions 
are macroscopically isotropic and similar to ordinary mag- 
netic liquids. Cooling induces a phase transition in the ma- 
trix and creates a long-range orientational order so that a 
ferronematic is formed. An estimate obtained using Eq. ( 1 ) 
shows that at the concentrations c- 10"- 
10" cmP3 the collective behavior of a ferronematic is re- 
tained for samples with dimensions right down to 
R, - (ac) -I2=:  15 p ;  here, a - 0 . 5 , ~  is the length of a needle- 
shaped particle. 

If cooling takes place in the absence of a magnetic field, 
a suspension is converted into a compensated ferronematic 
in which the macroscopic magnetization M vanishes. In 
such a sample the directions of the axes of all the particles are 
parallel to the director n and the magnetic moments p are 
equally likely to assume the values p n  and - pn; we recall 
that the condition of strong coupling forbids the noncollin- 
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earity of p and n. A ferronematic is created2 by the applica- 
tion to a system of this kind of a single magnetic field pulse of 
amplitude H > Hc , where Hc is the coercive force of the 
magnetic particles (grains). Under the action of this pulse 
all the particles assume the same direction of the magnetic 
moments and a finite constant magnetization is established. 
An alternative method of magnetic ordering of a ferronema- 
tic is the application of a static field during the passage 
through the bleaching point. 

In the early seventies, Brochard and de Gennes2 formu- 
lated a continuum approach (see also the review in Ref. 4) to 
the description of a ferronematic based on generalization of 
the Frank potential of orientational elastic deformations in a 
liquid crystal. We shall use this theory to consider the FrCe- 
dericksz effect (see Ref. 5 for the case of pure nematic liquid 
crystals) in a ferronematic layer exhibiting collective behav- 
ior. 

2. EQUILIBRIUM EQUATIONS FOR A PLANAR 
FERRONEMATIC LAYER 

We shall consider an infinite planar ferronematic layer 
of thickness D with a planar texture and a strong coupling of 
the liquid-crystal molecules to the surfaces of the particles 
and to the layer boundaries. We shall select the origin of the 
coordinate system at the center of the layer, as shown in Fig. 
1. We shall assume that the liquid phase of a ferronematic 
consists of needle-shaped single-domain magnetically hard 
ferrite grains magnetized along the principal axis. The mag- 
netic moment of one such particle i sp  = M, v, where v is the 
volume and M, is the saturation magnetization of a ferrite. 
In the initial state the orientation of a sample is homogen- 
eous, the particles are distributed uniformly over the volume 
of the layer, and the magnetic moments are parallel to the 
director n  and oriented in the same way, so that the magneti- 
zation of a ferronematic is M = M, fn, where f  = cv is the 
volume concentration of the solid phase. The x axis in Fig. 1 
will be regarded as the axis of the initial orientation. The 
magnetic field H = (0, H,O) applied in the plane of the layer 
rotates the particles, as well as the director of the liquid- 
crystal molecules, creating an orientational deformation in 
the form of a torsional mode: 

n= [COS cp (2) , sin cp (2) , 0 ]  ; (2) 

the choice of the angle q, is explained in Fig. 1. 
The volume density of the free energy of a ferronematic 

in an external field H can be written in the form 

F = i / , { K , ,  (div n ) 2 + K 2 2 ( n  curl n)' + K,,[n curl n ] ' )  

FIG. 1 .  Geometry of a ferronematic layer. 

where Kit are the orientational elastic moduli. The first three 
terms in Eq. ( 3) represent the usual Frank potential, and the 
remaining terms represent the energy of the interaction of 
the magnetic moments of the particles with the external field 
and the contribution associated with the mixing entropy. 
Following the treatment of Brochard and de Gennes2 we 
ignored in Eq. ( 3 )  the diamagnetic effects because in the 
investigated range of fields (Hz  10 Oe) they are extremely 
weak and we also disregarded the magnetic-dipole interac- 
tion of the particles because of their low concentration. The 
free energy F = Fd V of a ferronematic with the orienta- 
tional distribution given by Eq. (2)  assumes the following 
form after the substitution of Eq. (3):  

1 k T 
6- d~ [- 2 K ~ , ( ~ ' ) ' - M . ~ H  sin cp + ~ j l n f ] ,  (4 )  

v 

where the prime denotes differentiation with respect to z. 
We can see from Eq. (4)  that the functional 7 depends 

on two functions: the angle of rotation of the director p ( z )  
and the particle concentration f(z). The equilibrium equa- 
tions can be derived from Eq. (3) by independent variation 
of e, and$ the first condition (SF/Se, = 0)  gives 

In the derivation of the second condition (SF/Sf = 0)  we 
have to allow for the relationship fdV = Nv, corresponding 
to conservation of the total number N of the magnetic parti- 
cles. Introducing the average density of the solid phase 
?= vN/V, where Vis the volume of the sample, we find that 
the equilibrium function f (z) is given by 

D l 2  

here,p = M, uH / k ,  Tis the Langevin parameter ofthe parti- 
cles representing the ratio of their magnetic and thermal en- 
ergies. 

Equations (5)  and (6)  establish the relationship 
between the distribution of the particles and the orientation 
in a ferronematic. Since a strong coupling of the directions of 
the principal axes (and, consequently, of the magnetic mo- 
ments of the particles) with the local director is assumed for 
a ferronematic, it is obvious that the particles accumulate in 
those parts of a sample where the directions of n  and H are 
close (sin p< 1) migrating here from the regions with an 
unfavorable orientation. In our case the sources of the unfa- 
vorable orientation are the boundaries of the layer where an 
infinitely strong coupling of the liquid-crystal molecules to 
the wall of the layer is assumed: nllx at z = + D /2. A redis- 
tribution of the concentration of the magnetic impurity in an 
inhomogeneously oriented sample is predicted in Ref. 2 and 
is known as the segregation effect. An experimental observa- 
tion of this effect in lyotropic ferronematics was reported in 
Ref. 6. It follows from Eq. (6)  that segregation of magnetic 
particles becomes important if p 2 1. In the case of real fer- 
ronematics with the parameters taken from Refs. 1 and 3 this 
corresponds to the range of fields H2 0.1 Oe, i.e., the homo- 
geneity of the concentration must be allowed for even in the 
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range far from magnetic saturation of a ferronematic. 
Substitution of Eq. (6)  into Eq. (5)  yields the integro- 

differential equation 

t2cp"+Q exp (p sin 9)  cos q=O, g= (K2,/M.JH)", (7) 

where 6 is the magnetic coherence length representing the 
range of the orienting action of a wall in a ferronematic mag- 
netized by a field H and characterized by a homogeneous 
distribution of the particles. In a planar layer the required 
solution p(z)  should satisfy the boundary conditions 

The first of these conditions corresponds to pinning of the 
nematic molecules by the boundaries of the layer, whereas 
the second represents symmetry of the orientational distri- 
bution in the ferronematic. Equation (7)  has the first inte- 
gral which, with the aid of the second condition in Eq. (8),  
can be represented in the form 

1/~~g2(p'Z+Q[exp (p sin v )  -exp (P sin ~ m )  1 =O. (9 )  

Here, the constant p, represents the largest angle of devi- 
ation of the director from the initial orientation axis: 
p, = p(0) .  Solving Eq. (9)  for dz, we obtain 

dz=~hQ-'A [exp (p sin cp,) -exp (p sin (p)]-'"dq; . ( 10) 

Here, the symbols f refer to the upper and lower half- 
spaces z><O, respectively (Fig. 1 ). A characteristic scale 
A = {p'/3 is independent of the field, 

and it is of the same order of magnitude as the thickness of a 
transition layer separating in an inhomogeneously oriented 
ferronematic the regions with the favorable and unfavorable 
mutual orientations of n and H. In the presence of segrega- 
tion the parameter A of a ferronematic plays the same role as 
the coherence length 6 in the case when f = const. 

Integration of Eq. ( 10) in the range z > 0 subject to Eq. 
(7) gives 

where 
v 

I ( q )  = ) [exp (p sin cp,) - exp (p sin t)  I-'" dt. 

At z = 0 the angle of deviation of the director is maximal 
( g ,  = p,,, ) and it follows from Eq. ( 12) that 

Eliminating with the aid of Eq. ( 13 ) the integral coefficient 
Q in Eq. ( 12), we obtain an equation 

which defines in an implicit form the function p(z)  repre- 
senting the orientational profile of a ferronematic for a given 
value of p, . Using Eq. ( 10) to transform the integral in Eq. 
(6), we find that 

where 
v 

I ( q )  = Jexp(p sin t )  [exp(p sin 9.) - exp(p sin t )  I-"' dt. 
0 

Substitution of Eq. ( 15) into Eq. ( 13) gives the equation 

which closes the system ( 14)-(16). The procedure used to 
solve the problem is as follows: first, we assume values of the 
field intensity, film thickness, and characteristics of a ferro- 
nematic and find p, from Eq. ( 16). Then, using this result, 
we find p (z )  from Eq. ( 14) and finally use Eqs. ( 15) and 
(5)  to plot the concentration distribution function f (z). 

3. ORIENTATIONAL PROFILE AND DISTRIBUTION OF THE 
PARTICLE CONCENTRATION IN A FERRONEMATIC 

Simple considerations allow us to identify directly the 
difference between the manifestations of the FrCedericksz 
effect in a pure nematic and in a ferronematic. In the former 
case the effect in a planar [Eq. (8)  ] or a homeotropic texture 
has a threshold: 

where H, is a certain critical field (for details see Refs. 5 and 
7), whereas in the case of a ferronematic the orientational 
homogeneity is disturbed even by an infinitestimally weak 
field (absolute instability). Such destabilization is clearly 
due to lowering of the symmetry of the free energy of Eq. 
(3), which now contains the dipole term M , f i H .  Defining 
in accordance with the usual rules the total torque 
r = - [n,SF/Sn] acting per unit volume of a ferronema- 
tic, we can readily show that I' = 0 (equilibrium) is esta- 
bilshed only after distortion of the initial orientation. 

Solving Eq. (16) for the case of weak fields satisfying 
the conditionpp, 4 1, we find that instead of the threshold 
behavior described by Eq. ( 17), in the case of a ferronematic 
the rotation of the director is continuous: 

i.e., the response of the orientation to an external magnetic 
field is linear and this response depends quadratically on the 
layer thickness. Therefore, the orientational (dp, /dH), 
and naturally the corresponding magnetic (dM /dH) initial 
susceptibilities of a ferronematic increase on increase in the 
layer thickness, since in the case of a thick layer the influence 
of the boundary conditions is less. In the same approxima- 
tion (pp, 4 1 ) the distribution of the orientation in a ferron- 
ematic is described by the parabolic profile 

with p,, given by Eq. ( 18); the distribution of the concentra- 
tion in the first order in respect ofppm is 

As the field is increased, the rise of p, slows down 
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FIG. 2. Dependences of the angle of maximum rotation of the director on 
the dimensionless intensity of the magnetic fieldp = M,uH / k ,  T, plotted 
for layer thicknesses D  /A = fi (curve l ) ,  2 6  (curve 21, and 10 (curve 
3). 

compared with the linear law ( 18) and for p + w the func- 
tion pm (p)  tends to a finite limit n-/2. The asympototic ex- 
pansion corresponding < 1 gives 

The expressions in Eq. (20) indicate a definite difference 
between the laws of approach to saturation of the orientation 
in thin ( 2 0  /n-A< 1 ) and thin ( 2 0  /n-R > 1 ) ferronematiclay- 
ers. It will be clear from a later discussion that this difference 
is a consequence of the fact that in a thin sample the forma- 
tion of a natural boundary concentration layer of width - n-A /4 is not possible. Figure 2 gives the results of a numeri- 
cal calculation and it illustrates the behavior of the function 
pm (p)  for arbitrary values of the argument. We can see that 
the thicker the layer, the easier it is to induce a change in the 
orientation in a central part of the layer by the application of 
a magnetic field. 

Moreover, the concentration profiles of a ferronematic 
are different for different thicknesses of a layer. The quantity 
Q [see Eq. ( 6 ) ]  representing the relative concentration of 
particles near a wall [Q = f( + D / 2 ) / '  is described by the 
following expressions in the limitp-1'2 < 1: 

FIG. 3. Distribution of the composition in ferronematic layers of different 
thickness: a) D / A  = fi for p = 2.2 (curve I ) ,  10 (curve 2), and 50 
(curve 3); b) D / A  = 10 for p = 0.24 (curve I ) ,  1.1 (curve 2), and 5.3 
(curve 3 ) .  

If ( 2 0  /An-) > 1, this result is identical with the asymptotic 
expression for a layer of infinite width (half-space) derived 
in Ref. 2. Figure 3 shows the total concentration distribu- 
tions f(z) deduced numerically from Eqs. (6),  ( 15),  and 
( 16). In the case of thick samples (Fig. 3b) subjected to a 
strong field the results demonstrate clearly the formation of 
a planar f = const profile separated from the walls by nar- 
row transition zones of width S z71/2 /4. I fD /S $1, this case 
differs little from that of a layer of infinite thickness. 

In the case of thin samples the transition zone occupies 
almost the whole of the layer volume (Fig. 3a). We can esti- 
mate the thickness of this zone by modifying the method 
used in Ref. 2 to determine S in the limit D /A + oo . We shall 
write down the equation of state for an ideal gas of magnetic 
particles in a ferronematic in the form 

wherep is the osmotic pressure and No =p /2u is the num- 
ber of particles in a ferronematic per unit area of its bound- 
ary. In a strong field when the principal axes of the particles 
tend to become aligned along the direction of H, these parti- 
cles leave the wall region so that an "empty" zone of thick- 
ness S forms near the boundary. The following work is done 
on the isothermal compression of the "gas": 

and a finite elastic distortion energy AE=. (K,,/S~)S = K2,/ 
S appears. Minimization of the sum AA + AE with respect 
to S gives 

where R is defined by Eq. ( 1 1 ). Solving Eq. (22), we find 
that ifp $ 1, then the equilibrium thickness of the transition 
zone is 

In the limit D /A + w Eq. (23) gives the result obtained in 
Ref. 2 for half-space: S =.21i2A. In the case of thin layers (D  / 
2'I2R < 1) the compression of the concentration profile is 
prevented by the entropy elasticity of a gas of particles, 
which ensures a finite (although small) width of the distri- 
bution f(z).  

It therefore follows from Fig. 3 and Eq. (23) that a 
compression of a ferronematic layer occurs in strong fields: 
the thickness of the layer decreases (and the concentration 
of the particles in the central region becomes higher) and 
this layer becomes separated from the solid boundaries by 
transition zones where the nematic is practically impurity- 
free. The effective transverse size of a ferronematic layer is 
D - z3l2R in the case ofthick samples and D 3/8A in the case 
of thin samples. In other words, the segregation effect results 
in a field-induced stratification of a ferronematic. 

The orientational profiles of ferronematic samples of 
different thickness are plotted in Fig. 4. Curve 1 in both parts 
of this figure is described well by Eq. ( 19). Allowing for the 
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FIG. 4. Profiles of the orientation in ferronematic layers of different thick- 
ness:a) D / A  = f iforp = 1.5 (curve l ) ,  3.5 (curve2), 8.3 (curve3),and 
50 (curve4); b )  D / A  = 10forp = 0.016 (curve I ) ,  0.087 (curve2), 0.24 
(curve 3), and 5.3 (curve 4 ) .  

condition of a strong coupling of the director to the orienta- 
tions of the particle axes, we can readily understand the na- 
ture of the texture which appears in a strong field. In this 
case the distribution of the concentration in a sample can be 
regarded approximately as step-like: 

The boundary of the magnetic part of the layer where all the 
particles are oriented along the field now acts as a new wall 
where the director (nlly) is pinned at right-angles to the di- 
rector on the solid wall (nllx). The layer confined by these 
boundaries is filled with a pure nematic; the orientational 
state of this nematic is governed by the boundary conditions 
and represents a torsional structure with a helical pitch of 
46. The distribution of the director p (z )  is linear along the z 
axis: see curves denoted by 4 in Figs. 4a and 4b. 

4. MAGNETIZATION OF A FERRONEMATIC 

In the case ofa strong coupling between magnetic parti- 
cles and the liquid crystal matrix (collective behavior) the 
magnetization of an element of volume of a ferronematic is 
parallel to the local director, i.e., M = MSfn. In the orienta- 
tion described by Eq. (2 ) ,  the vector M has the components 

where M = M, f(z) is the local saturation magnetization of 
the ferronematic. Therefore, the distribution of the magneti- 
zation is governed by the combination of the profiles descib- 
ing the orientation and composition. In the absence of a field 
the vector M is directed along the initial orientation axis: 
M, = M,, My = 0, and in this case throughout a sample we 
have the constant magnetization M, = ~ , f :  In weak fields 
(p<4A/D), we findthat Eqs. (18) and (19) give 

The formulas in Eq. (25) show that such a ferronematic 

exhibits a linear response of the magnetization in the direc- 
tion of an external field. It follows from Eq. (25) that the 
initial susceptibility x = dMy /dH depends on the coordi- 
nates and vanishes at the boundaries of the layer, where the 
director is rigidly locked. Averaging over the transverse 
cross section gives 

Using the parameters of a ferronematic taken from Refs. 1 
and 3, we estimate that the susceptibility is y z 4 .  lop2 if 
M 0 z 4 X  lop2 G and D- cm. This susceptibility is five 
orders of magnitude greater than the value reported in Ref. 5 
for pure MBBA ( X  = 1,23- lo-') at 19 "C. This comparison 
demonstrates the enormous enhancement of the magnetic 
properties of a nematic by the addition ofjust a small amount 
(0.01 % by volume) of the magnetic phase. 

A genreal idea of the distribution of M(z) in strong 
fields can be obtained from Figs. 3 and 4, which demonstrate 
that as the field in a ferronematic layer is increased, a mag- 
netic core is formed where the directions of M and H are 
close to one another. However, it is more interesting to con- 
sider the magnetization components averaged over the cross 
section of a layer and this can be done using Eqs. ( 6 ) ,  ( 15 ), 
and (24), which give 

m 2 
-=- [exp (p sin rp.4 - 1 I"', 
Mo pJ(~m) 

Tm 

-=- Mu I j exp(p sin t )  
Mo J ( c p m ) ,  

X [exp (p sin cp,) - exp (p sin t )  I-'" sin t  dt .  

(27) 
Asymptotic dependences obtained by averaging the formu- 
las in Eq. (25) in the case whenpp, 4 1 and those obtained 
using Eqs. (20) and (21 ) whenp- 'IZ & 1 yield the following 
expressions in weak fields 

ZJMo=I-'/BopZ (Dlh)', My/Mo='/z~p (Dlh) ', 

whereas in strong fields the expression depends on the thick- 
ness: 

a )  thin layers ( 2 0  /nil & 1) 

b)  thick layers ( 2 0  /d ) 1 ) 

The magnetization curves of Eq. (27), plotted using the 
results of numerical calculations of the functions p(z)  and 
f (z), are shown in Fig. 5 for the directions parallel and per- 
pendicular to the external field. We can see that the rate of 
magnetization of a ferronematic along the applied field (y 
axis) increase on increase in the thickness of the layer: satu- 
ration occurs at lower values ofp. This can easily be under- 
stood bearing in mind that the particles concentrated in the 
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FIG. 5. Variation of the magnetization in a ferronematic layer of thickness 
D /A = 2 6  (_continuous curves) 2nd  D / A  = 10 (dashed curves). 1) 
Components M, ; 2) Components My. 

central region are rotated more readily in an external field 
the weaker the influence of the orienting influence of the 
walls. 

Although only fragmentary data are at present avail- 
able on the magnetic properties of ferronematics, one would 
hope that a comparison with the experimental results would 
be possible later so that it is useful to report the results of a 
calculation of the composition profiles and of the magnetiza- 
tion curves of a ferronematic, the parameters of which corre- 
spond to those of suspensions of needle-like single-domain 
y-Fe,O, particles in MBBA, reported in Refs. 1 and 3. For 
these systems we have K,, = 3 . 4 ~  dyn, u z 5 X  10-16 
cm3, andy- lop5, so that the characteristic length of Eq. 
( 11 ) is estimated to be 

at room temperature. Assuming a layer thickness D = 200p 
typical of experiments, we reached the conclusion that the 
inequality D /2'I2A 5 1 is obeyed and it then follows from Eq. 
(23) that in a sufficiently stong external field a layer struc- 

FIG. 6. Distribution of the composition in a ferronematic layer of thick- 
ness D = 200p in fields H = 0.16 Oe (curve 1 ), 1.3 Oe (curve 2), and 5.3 
Oe (curve 3). 

FIG. 7. Variation of the magnetization in a feponematic layer of thickness 
D = 200 p: 1 bara l le l  to the applied field (M,/M,); 2) along the initial 
orientation (M, /M,). 

ture should form and it should consist of a thin central layer 
of a ferronematic with nematical liquid crystals on both 
sides, i.e., the sample should become strongly stratified. Fig- 
ure 6 shows the results of a numerical calculation confirming 
the above qualitative considerations. The dependences 
M ( H )  shown in Fig. 7 demonstrate that the magnetic (and, 
consequently, the orientational) saturation of a ferronema- 
tic layer occurs in fields of - 1 Oe, i.e., two or three orders of 
magnitude less than those required in the case of a pure ne- 
matic. 

The analysis given in Secs. 2-4 corresponds to just one 
of the three classical in which the Frtedericksz 
effect is observed. However, all the significant features of 
this effect in a ferronematic are in fact manifested equally in 
the other two configurations. The textures in question differ 
from that investigated above only in respect of the orienta- 
tional deformation (transverse and longitudinal bending 
modes instead of a torsional mode), which is easily allowed 
for by redefinition of the orientational elastic constant. 
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