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We prove numerically the instability of a one-dimensional drift soliton to transverse 
perturbations. We show that the vector nonlinearity does not eliminate the instability. 

The instability of a one-dimensional soliton potential 
drift wave to transverse perturbations was proven in Ref. 1. 
A one-dimensional soliton decays into two-dimensional soli- 
tons which are stable to infinitely small perturbations2 and 
which survive collisions with one a n ~ t h e r . ~ . ~  However, the 
instability of the one-dimensional soliton was shown in Ref. 
1 with allowance for only one of the drift wave nonlineari- 
ties-the scalar one. Recentlys it was asserted that when one 
takes the other nonlinearity-the vector one-into account, 
the one-dimensional soliton turns out to be stable and the 
largest margin of stability is realized in the case of perturba- 
tions which are strictly perpendicular to the magnetic field 
(k ,, = 0). We solve here the problem of the stability of a one- 
dimensional soliton numerically in order to verify that state- 
ment and to study in more detail the effect of the vector 
nonlinearity on the evolution of such a soliton. 

We normalize the variables to the characteristic dimen- 
sions of a two-dimensional soliton moving with a velocity 
u = u* + Su, Su > O  in a plasma with an inhomogeneous 
density and electron temperature. Here u* = (r,/L, )c, is 
the drift velocity, L, and L. the characteristic inhomogene- 
ity lengths, and r, = c, /a,, the effective Larmor radius. 
The soliton wave number ko and the amplitude @, of the 
potential are given by the relations 

(k , rB)  2=6u/u=a, e@,/T,=-2 (LJL,)  (u lu*)  a, 

so that the equation for the drift wave potential1 in dimen- 
sionless variables T = kdut ,  6 = kf i ,  \y = @/ao, 
T,I = k,(y - ut) takes the form 

where J is the Jacobian and b a parameter which equals 

and determines the relative contribution of the vector non- 
linearity. 

Experimental values of the parameters of a tokamak 
plasma, given in Ref. 5 are 

of a one-dimensional soliton for transverse perturbations 
with a wavelength larger than the size of the soliton by a 
factor four, i.e., we solved Eq. ( 1) with the initial condition 

Y =1.5 ch-= ( q / 2 )  +0.2 sin (ng/8). (4)  

In all cases considered we observed a decay of a one- 
dimensional soliton into a set of a finite number (along each 
wavelength of the perturbation) of axially symmetric two- 
dimensional drift solitons. The scenario of the decay was the 
following: those parts of the one-dimensional soliton with an 
amplitude which exceeded the average value when the per- 
turbation was taken into account moved faster (as the veloc- 
ity is proportional to the amplitude) and the soliton was 
distorted. Afterwards when the transverse perturbation be- 
came sufficiently strong two-dimensional self-compression 
mechanism was triggered and two-dimensional solitons 
were formed. 

In the case of a purely scalar nonlinearity (b = 0, Fig. 
1 ) along each wavelength of the perturbation one fast and 

rB-0.1 cm, L,-10 cm, e@,lT,G0.03, ( 3 )  

whence follows a - lo-* and b 5 1. We can then neglect in 
( 1 ) the term aAT. We set the parameter consecutively equal 
to b = 0 (purely scalar nonlinearity), b = 1,2, and 4 (with a 
margin towards a strong vector nonlinearity). We studied 
for those values of the parameters numerically the evolution 

FIG. 1.  Decay of a one- 
dimensional drift soliton 
into two-dimensional 
ones. The axis is directed 
downwards. The 0.5, 1 ,  
1.5, and 3.5 level lines of 
the dimensionless poten- 
tial Y are shown. We 
have blackened the re- 
gions Y > 3.5. The linear 
dimensions of the figure 
are the same as the wave- 
length of the perturba- 
tion ( A  = 16). The di- 
mensionless time T = 3 
( a ) ,  7 (b) ,  and 10 ( c ) .  
The parameter b = 0 
(purely scalar nonlinear- 
ity). 
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FIG. 2. The same as in 
Fig. 1 but taking the vec- 
tor nonlinearity into ac- 
count (b = 2). 

FIG. 3. The same as in 
Fig. 1 but with a stronger 
vector nonlinearity 
(b = 4). 

two slow two-dimensional solitons were formed the latter 
arranged symmetrically relative to the trajectory of the fast 
soliton (owing to the symmetry of the problem under reflec- 
tion{- -(whenb = 0 ) .  

When the vector nonlinearity is taken into account 
(b #O, Figs. 2 and 3) the symmetry of Eq. ( 1) relative to the 
above mentioned transformation is violated and, of course, 
the scenario of the decay also becomes asymmetrical. The 
slow soliton situated to the right of the trajectory of the fast 
one becomes larger and the left-hand one is very weakly real- 
ized in the case of a stronger nonlinearity and is not formed 
at all when b = 4. 

The rate at which the two-dimensional solitons are 
formed when the vector nonlinearity is taken into account 
turns out to be faster than in the purely scalar case (see Figs. 
1-3). The vector nonlinearity in the range of values of the 
parameter b which we considered (Ogbg4) did thus not 
check or slow down the decay of the one-dimensional soliton 
and turned out to affect mainly the symmetry of the process, 
the number and relative arrangement of the stable, axially 
symmetric two-dimensional drift solitons which are formed 
as the result of the decay. 

We note that the range of values of the parameter b 
considered here is rather wide and it certainly covers the 
typical range in which this parameter changes in tokamak 
plasmas (b 5 1 ). The conclusion reached in Ref. 5 that the 

the stability of drift solitons in such a plasma is therefore 
erroneous. The misunderstanding seems to us to be due to 
two reasons. First, when substituting the plasma parameters 
in inequality (3.13) of Ref. 5 the authors of that paper made 
a mistake and their subsequent conclusion that for the given 
plasma parameters the vector nonlinearity has a strong ef- 
fect is incorrect. Second, the dispersion equation for the per- 
turbations derived in Ref. 5 in the case of a moderate vector 
nonlinearity (in our notation for b, = bk, /k,- 1 ) is ex- 
tended to the case of a strong vector nonlinearity, b, % 1, 
which requires special justification. 
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