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A mapping describing the dynamics of charged particles in the field of a wave packet in a 
transverse magnetic field is obtained and analyzed. It is shown that for rational ratios of the 
frequencies of the waves to the Larmor frequency the phase plane of the system is covered by a 
stochastic web, inside which the dynamics of the particles is chaotic. The structure of the 
stochastic web is fractal. For waves of small amplitude the thickness of the web is 
exponentially small. The existence of a stochastic web for an arbitrarily small amplitude of the 
wave packet leads to universal diffusion of the particles, analogous to Arnol'd diffusion in the 
multidimensional case. It is accompanied by stochastic heating of the particles, leading to a 
new mechanism of damping of the waves propagating across the magnetic field. The symmetry 
properties of the stochastic web are discussed, and typical bifurcations of the phase trajectories 
of the particle are considered. 

1. INTRODUCTION 

The problem and the results that will be described in 
this article have at least two aspects that it makes sense to 
discuss in detail immediately in the Introduction. The first of 
these is an applied aspect and is connected with the existence 
of universal diffusion of particles in a magnetic field and the 
field of a wave packet. The second is a formal aspect, consist- 
ing in the fact that the diffusion is stochastic and analogous 
to Arnol'd diffusion, although the system in which it occurs 
has one and one half degrees of freedom. 

The resonance interaction of particles with a wave in a 
plasma placed in an external magnetic field has numerous 
applications. There is particular interest in this problem in 
the case when the wave propagates in a direction perpendic- 
ular to the magnetic field. In particular, the case of a strong 
magnetic field was considered in Refs. 1 and 2, and the case 
of a weak magnetic field was considered in Refs. 3 and 4. A 
review of many results in this field of investigation is con- 
tained in Ref. 5. One of the results, which turns out to be 
important for us in the following, is connected with the fact 
that the dynamics of a particle can become stochastic. This 
leads to stochastic heating of the particle and to the appear- 
ance of a nonlinear mechanism of damping of the waves. 

Another side of this problem turns out to be no less 
important. It is known that chaos in Hamiltonian dynamical 
systems can arise even in the case of one and one half degrees 
of freedom, i.e., in the case when a system with one degree of 
freedom is under the action of a time-dependent external 
force. In this area, several systems with equations of motion 
that can be called standard, since they are typical, have been 
studied (see, e.g., Ref. 6) .  The interaction of a particle with a 
plane wave in a transverse magnetic field leads to one of 
these standard equations, which has still not been sufficient- 
ly studied: 

where x  is the direction of propagation of the wave, E,, is the 
amplitude of the wave, w ,  = eB,/mc is the cyclotron fre- 

quency, and B, is the magnetic field, oriented along z. Equa- 
tion ( l .  l  ) is supplemented by the law of conservation of the 
generalized momentum along y: 

Because of this conservation law, the problem of the 
motion of the particle is reduced to the single equation ( 1.1 ), 
and the phase plane ( x , x )  is equivalent, to within constants, 
to the (p, g, ) plane. One of the important features of Eq. 
( 1.1 ) is its degeneracy in the absence of the perturbation, 
when it becomes linear. Because of this the Kolmogorov- 
Arnol'd-Moser theory is not directly applicable to it. 

In fact, to consider only one harmonic in the right-hand 
side of ( 1 . 1  ) is an approximation, since usually in a plasma 
not one wave but a wave packet is excited. In this case, in 
place of Eq. ( 1.1 ) we have 

with the relation ( 1 . 2 )  holding as before. We shall assume 
that the wave packet in (1.3) is sufficiently broad and uni- 
form. An investigation of this case forms the content of this 
paper. 

We shall show that for rational ratios between the fre- 
quencies w ,  and w ,  the phase plane ( x , i )  of the system 
( 1.3)  is covered by a mesh of finite thickness inside which 
the dynamics of the particle is stochastic and outside which, 
i.e., in its cells, the dynamics is regular. This mesh, called a 
stochastic web below, exists for arbitrarily small fields E, . It 
has a definite symmetry, determined by the ratios of w ,  to 
w,. For small values of E, the thickness of the web is expon- 
entially small. However, the fact that it covers the entire 
phase plane implies that particles can diffuse arbitrarily far 
into the region of high energies. This phenomenon is analo- 
gous to Arnol'd diffusion. The difference is connected with 
the origin of the separatrix mesh on which the stochastic web 
is formed. 

Arnol'd diffusion7 occurs when there are more than two 
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degrees of freedom. The separatrix mesh is formed as a con- 
sequence of the intersection of resonance tori, which, for 
purely topological reasons, do not divide the phase space in 
this case. In Eq. ( 1.3) the infinite separatrix mesh is due to 
the form of the perturbation and exists even when there is 
only one harmonic in the right-hand side, as in ( 1 . 1  ) . 

A stochastic web, except in certain special cases that 
admit covering of the plane by regular figures, has weakly 
pronounced local chaos, analogous to the structures of li- 
quids or amorphous solids. 

In the paper we describe these structures, consider dif- 
ferent bifurcations of the trajectories upon increase of the 
amplitudes E, of the waves, and give estimates of the diffu- 
sion of the particles and of the rate of their stochastic heat- 
ing. 

One of the important physical consequences of the for- 
mation of a stochastic web is the following. For arbitrarily 
small fields E, some of the particles experience stochastic 
heating along the channels of the stochastic web. In the self- 
consistent problem the increase in the energy of the particles 
occurs on account of loss of this energy by the waves. Thus, 
we arrive at the existence of a universal mechanism of damp- 
ing of waves in a magnetic field-a mechanism due to pump- 
ing of energy from waves to particles accelerating in the 
channels of the stochastic web. 

2. DERIVATION OF THE MAPPING WITH "TWISTING" 

The starting equations of motion of the particle have the 
form 

e 
r + o H z x  = - - TEo sin 0 6 ( t - n T ) ,  

m 
n=-m 

where, without loss of generality, the constant in ( 1.2) has 
been set equal to zero, i.e., 

In place of the differential equation (2.5) we shall write a 
finite-difference equation. Between two successive actions of 
the 6-functions the trajectory of the particle satisfies the 
equationf + w i x  = 0. Its solution at passage through the& 
function at the time t ,  = nT should satisfy the boundary 
conditions 

e 
x (t,+O) = X  ( t , -0)  , i ( t n + O )  = i ( t n - 0 )  - - m TEo sin 8 ( t , , )  . 

With the help of these, from (2.5) and (2.6) we obtain 

' J x , ( n + i ) = V y , ( n )  sin ~ H T  

e ko + [ v , , , ,  + - EoT sin ( o . n ~  + - v . , ( . ) ) ]  cos ~ H T ,  
rn OH 

e ko - [ v , , . ,  + - EoT sin (o0ni" + - u , ( . , ) ]  sin 
m OH 

(2.7) 
where we have denoted 

vX, , , ,=vx ( t=nT-0) ,  v,, , , )=v , ( t=nT-0) ,  

.. e e .  
I = - E ( x , t ) t - - -  [ r B , ] ,  (2.1 ) i.e., the index n corresponds to the time immediately preced- 

m mc ing the action of the 6-function at t = nT. 

where B, points alongz and E alongx. From this, after elimi- The mapping (2.7) preserves a measure, and, accordizg 

nation of they component, Eqs. (1.2) and ( 1.3) follow. For (2.6), as +O goes Over the standard T: 
the wave packet we shall adopt the approximation of unifor- 
mity and sufficiently large width: 

where n is an integer running from - co to + CO. In these 
conditions (for more detail, see Ref. 8)  

+ m 

E ( x ,  f)=-Eo sin ( k o x - o 0 t - n A ~ t )  
,,=-a) 

=-EoT sin 0 6 ( t - n T ) .  

where the characteristic time interval 

the connection of which with the kinetic description of the 
dynamics of a particle has been sufficiently well studied (see, 
e.g., Refs. 6 and 8) .  In particular, Eqs. (2.8) correspond to 
the equation of motion ( 1.3 ) with w,, = 0 ,  and the condition 
for stochasticity arises in this case when 

. .  . 

(2.2 
where we have introduced the frequency of vibrations of par- 
ticles captured by the central wave: 

is determined by the frequency interval between the harmon- The condition (2.9) shows that stochastic dynamics in 

ics of the packet and we have introduced the phase of the the phase space (x,v, ) begins at field amplitudes E, greater 

central mode of the packet: than a certain critical value. 
The presence of the term w,nT in the argument of the 

8=kox-oot .  (2.4) sine in Eqs. (2.7) has a simple physical meaning. It is suffi- 

The equation of motion (2.1 ) or ( 1.3) can be reduced to 
cient to make the replacement 

the following: i jU=wonT+kovar/oH, 
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to see clearly that acceleration of the particles arises. The 
change of velocity of the particles is proportional to 

A ~ ' - ~ ) H ~ o t / k o = ~ r r U o t ,  

where Uo = wo/ko is the phase velocity of the central har- 
monic of the wave packet. This acceleration is due to the fact 
that the moving wave "shoves" the particle regularly. It is 
described in detail in Ref. 9, and will not be considered here. 
Therefore, below we set w0 = 0. 

We introduce the more convenient dimensionless vari- 
ables 

k o v , / ~ H = ~ ,  k o v y / ~ H = v .  (2 .11)  
A 

Then the mapping ( 2 . 7 )  with wo = 0 takes the form Ma:  

u,+I= (un+KH sin v,)cos a+v,  sin a, 
(2 .12)  

vn+,=- (un+KH sin v,) sin a+v,  cos a, 

where we have denoted 

A 

The mapping (2 .12)  will be called in Ma mapping, or 
mapping with twisting, where a is the angle of twist." 

By resonance twisting we shall mean cases in which a is 
rational, i.e., 

wherep and q are integers andp < q .  The casep = 1 will be 
denoted as a, = 27r/q. The simplest example of a mapping 
with t~ i s t ing  is realized for q = 4 (a ,  = n / 2 )  and has the 
form M,: 

u,+,=v,, v , + ~ = - ( u , , + K ~  sin v , ) .  (2 .15)  

The physical meaning of resonance twisting can be un- 
derstood from Fig. 1 .  On the phase plane (u , v )  the straight 
lines correspond to the front of waves moving with velocity 
Uk = wk/ko .  At the points of intersection of the wave front 
with the circular trajectory of the particle in the magnetic 
field there occurs an intense interaction of the particle with 
the wave. Passing through one wave, the particle falls into 
resonance with the next wave, and so on. The frequency shift 
from wave to wave is the same (Aw = 2 n / T ) .  Therefore, 
rational values of a correspond to phased collisions of the 

FIG. 1 .  Regions of interaction of the particle with the waves of the packet. 

FIG. 2. Phase plane for a = a, ,KH = 0.9. 

particle with the waves. This leads to special properties of 
the phase portrait of the particle. 

3. THE PHASE PLANE FOR RESONANCE TWISTINGS 

In order to understand how the phase plane is con- 
structed in the case of resonance twistings, we turn first to 
the results of the numerical analysis, which are given in Figs. 
2  and 3  for small values of K, and a = a, and a = a,. On the 
phase plane there is a regular separatrix mesh. Inside the 
central island are closed phase trajectories. All the other 
cells of the mesh are filled by closed curves, four cells at a 
time in Fig. 2, and three cells at a time in Fig. 3. The filling of 
the cells has the corresponding rotational symmetry. Thus, 
the entire phase plane is tiled by a regular "parquet" due to 
the symmetry of the twisting through a, = 2 ~ / 4  and 
a, = 27r/3. 

The separatrix mesh has a finite width and, in reality, 

FIG. 3. Phase plane for a = a, ,KH = 0.4. 
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FIG. 4. Part of the phase plane for a = a,,K, = 2. 

consists in thin stochastic layers, inside which the particle 
executes random walks. We shall call this mesh a stochastic 
web, and shall discuss it in more detail below. 

With increase of KH successive bifurcations occur, and 
we shall also discuss these a little later. Simultaneously, the 
stochastic web expands, forming wide channels of random 
walks of the particle (see Fig. 4 ) .  Inside the region of sto- 
chastic dynamics are islands corresponding to resonances of 
higher order in the interaction of the particle with the wave. 

As an example of the calculation of the trajectories for 
resonance twisting and small values of KH we shall consider 
the case a = a, = n-/2. The mapping ( 2 . 1 2 )  reduces to 
( 2 . 1 5 ) .  We shall eliminaie the twisting from it. For this we 
construct the mapping M : ,  i.e., we integrate ( 2 . 1 5 )  four 
times and take into acczunt only the leading terms in K ,  < 1 .  
As a result we obtain M :  : 

ii=zr+ZR,, sin F ,  ~T=u-ZK~~ sin ::. ( 3 . 1 )  

The mapping ( 3 . 1  ) conserves the measure. It is possible to 
write a Hamiltonian system for which the points of the tra- 
jectory are connected by the relations (3 .1  ). 

We note first that the $me interval between two succes- 
sive steps of the mapping M :  is equal to 4 T .  We set 

The equation of motion for the Hamiltonian H, has the form 

and let ( u p )  and ( i i , F )  be the values of the variables at the 
ends ofthe interval. Then, integrating ( 3 . 3 ) ,  we arrive exact- 
ly at the mapping ( 3 . 1 ) .  The dynamical system ( 3 . 3 )  with 
the HamiEonian ( 3 . 2 )  will be said to be equivalent to the 
mapping M :  . 

The different resonances in the system ( 3 . 3 )  are easily 
obtained if we represent ( 3 . 2 )  in the form of the expansion 

+m 

I l .= -Q;  (eos r + cos a )  -R, cor ti cos ( n A w t l l ) ,  ( 3 . 4 )  
n = - m ,  n f 0  

where 

is the frequency of the nonlinear resonance. The period 2n-/ 
n, is the time required for complete passage around a small 
closed orbit in any cell of the parquet in Fig. 2  except the 
central cell. The perturbation terms contained in the sum in 
( 3 . 4 )  have the same amplitude, but are rapidly oscillating, 
since R, < Aw for small values of K H .  Therefore, the aver- 
aged Hamiltonian has the simple form 

We shall consider trajectories of the averaged motion 
that describe the motion inside one cell of the parquet with 
symmetry a,. The Hamiltonian ( 3 . 6 )  leads to the equations 
of motion 

zi=Q, sin v, zj=-Qr sin u 

u+Q? (C sin u-'1, sin 2 u )  =0, ( 3 . 7 )  

We consider the time interval where the dimensionless integral is equal to 
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The values 

correspond to stable positions of equilibrium (elliptic 
points). The values 

correspond to the unstable (hyperbolic) points through 
which the separatrices pass. 

The trajectory of the averaged motion is easily found 
from Eq. (3.7), and for lC I < 2  has the form 

cos . = 2 '2 + (1 - 4 [ ( I  + -;)gt, x 1, 

where cd = cn/dn is the ratio of elliptic functions with mo- 
dulus 

4. THE STOCHASTIC WEB 

The results of the preceding section are approximate, 
since they describe only the averaged motion. In reality, the 
perturbation in the Hamiltonian (3.4) of the equivalent dy- 
namical system destroys the separatrix and gives rise to a 
stochastic layer in its place. We shall consider the formation 
of thialayer. For this we turn first to the approximate map- 
ping M :, to which corresponds the equivalent Hamiltonian 
(3.6). The equations of the separatrices should be obtained 
from the condition C = 0, i.e., according to (3.8), 

cos u+cos v=O. (4.1) 

The solutions of Eq. (4.1 ) have the form of straight lines: 

These are two families of straight lines on the plane, forming 
a square mesh. It is obvious that allowance for the following, 
discarded terms, proportional to K,sinu or K,sinv, leads to 
the appearance of a periodic modulation of the mesh ob- 
tained (see Fig. 2 ) . 

A qualitative explanation of the appearance of an infi- 
nite separatrix mesh consists in the following. We indicate 
on the phase plane, e.g., two nonoverlapping separatrices, 
due to motion near each of two plane waves of the wave 
packet (Fig. 5). Then the rotation of the particle in the mag- 
netic field joins these separatrices, which was impossible be- 
fore. An important feature of these two separatrices is the 
fact that they move relative to each other. If one of them 
corresponds to the plane wave 

E,  sin ( I c , x - n A o t ) ,  

where n is some integer, then in the other, neighboring wave 
we have n, = n f 1. Consequently, the relative velocity of 
the displacement of the separatrices in Fig. 5 is equal to 

FIG. 5. The formation of an infinite separatrix mesh is due to the rotation 
of the particle in the magnetic field (dashed lines). 

Avp, = Aw/k,. If the Larmor rotation shifts the particle, 
e.g., from a hyperbolic point on one separatrix exactly to a 
hyperbolic point on the other separatrix, a distinctive reso- 
nance arises. It consists in the fact that the entire phase plane 
is covered by a separatrix mesh. The resonance condition, 
obviously, has the form 

which coincides with (2.14) and elucidates the meaning of 
resonance twisting (p and q are integers, and p < q )  .'' 

The separatrix mesh that was formed is destroyed, and 
in its neighborhood a thin stochastic layer is formed. We 
shall estimate the thickness of this layer for the above-con- 
sidered case of the a, resonance. For this, in Eq. (3.4) we 
shall keep two terms of the perturbation (those with 
n = + 1). We have 

HA=-Ql (cos v+cos u )  - 2 Q ,  cos u cos(Aot/4). 

According to a known estimate," for the destruction of a 
separatrix by nonresonance terms we have 

where we have used the expression (3.5) for a,. 
Thus, the entire phase plane is covered by an almost 

square mesh of finite thickness, inside which the particle 
executes a random walk. A system of stochastic paths of the 
form described will be called a stochastic web. 

Appendix I. For any resonance twisting, i.e., for a ra- 
tional a , ,  , the phase plane is covered by a stochastic web for 
arbitrarily small perturbations K,. The thickness of the web 
decreases exponentially with decrease of K,. 

The appearance of a stochastic web and its conse- 
quences for the dynamics of particles are practically entirely 
analogous to Arnol'd diffusion, which arises in the multidi- 
mensional case (with more than two degrees of freedom) 
and leads to unbounded diffusional drift of the particle in the 
phase space. The difference is that now the stoch'astic web 
was formed for Eq. (2.5), which describes the dynamics of a 
system with one and one half degrees of freedom. Another 
important difference between the stochastic web in the pres- 
ent case and that which arises in Arnol'd diffusion is con- 
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nected with the symmetry properties of the phase plane. We 
shall discuss this in the next section. 

With increase of KH the thickness of the stochastic web 
increases, and for KH > 1 the width of the channels of sto- 
chastic dynamics becomes comparable to the size of the 
cells. An example of such a structure can be seen in Fig. 4. 

A stochastic web was observed numerically for differ- 
ent values of q, including q  = 191. With increase of q the 
structure of the mesh becomes strongly deformed. Its cells 
decrease in size, and the size of the central island increases. 
The latter can be understood from the following consider- 
ations. For a given q  the first necklace of cells of the stochas- 
tic web should correspond to a regular polygon with q  sides. 
The length of a side of the polygon is fixed and equal to 
Sv = Aw/k,. Therefore, the radius R, ofthe polygon is of the 
order R, -qAv = qAo/k, .  

The formation of parquets from closed orbits on the 
phase plane was also observed in Ref. 2  in an analysis of the 
motion of a particle in a magnetic field and in the field of only 
one wave (see Eq. ( 1.1 ) ) . This parquet was of the square 
type, which is a specific feature of resonances in this case. In 
our problem, with the wave packet ( 2 . 2 ) ,  the symmetry 
turns out to be richer, and we now turn to a consideration of 
it. 

5. SYMMETRY OF THE PHASE PLANE AND STOCHASTIC 
DESTRUCTION OF THE SHORT-RANGE 

h 

We shall consider the initial mapping Ma defined by 
formula (2 .12)  and specifying the trajectory of the particle. 
We represent this mapping in the form 

where 

cos a sin u 
a=(:),  R ~ = (  -sin a cos u ), ~ a = ( ~ $ ' ) ;  

here a  is the state vector of thz particle, Ra is the matrix of 
rotation through angle a, and Sis  a nonlinear operator. For a 
rotational twist angle a , ,  we have 

h 

The fixed points of the mapping M 4, are determined from 
the condition 

For small values of KH it is possible in Eq. (5 .4 )  to confine 
ourselves to the terms of first order in K,. This leads to the 
following simplification of Eq. (5.1 ) : 

where we have used the rationality condition ( 5 . 3 ) .  By vir- 
tue of (5 .4 )  for the fixed points, it follows from (5 .5 )  that 

The main question concerning Eq. ( 5 . 6 )  is: What separ- 

atrix-mesh structure does it determine? Using the relation 
( 5 . 3 ) ,  we note that if a,  is a solution of Eq. ( 5 . 6 ) ,  then the 
points 

i.e., points obtained from a,  by rotations through angles ma, 
(m = 1, ...,q - I ) ,  are also solutions. Therefore, to within 
terms O(K 5, ), the separatrix mesh should possess rotational 
symmetry with angle of rotation a,. This symmetry is ap- 
proximate and should be broken by the discarded terms. 

Here, however, the following question arises. It is 
known that the plane can be covered by a regular parquet 
consisting of figures of the same type: either triangles, 
squares, or hexagons. This corresponds to the values 

Since the introduction of values p < q does not change the 
symmetry, the first and last cases produce the same separa- 
trix mesh. Thus, the cases a, = 2 ~ / 4  and a, = 2 ~ / 6  ac- 
count for all "simple" symmetries. The symmetry for all 
other values of a, can be ensured only by facing the plane 
with figures of different shapes. This is clearly seen from 
Figs. 6  and 7, in which a system of islands and a separatrix 
mesh are depicted for a = a, = 2 1 ~ / 5 .  As can be seen from 
the figures, the shapes of the islands have a weakly pro- 
nounced structural spread. We shall discuss this in more 
detail. 

For this we rewrite Eq. ( 1.3),  substituting into it the 
form of the wave packet ( 2 . 2 )  with w, = 0 and replacing the 
time by T = w,t: 

+ m  

From this it can be seen that the equation is invariant under a 
shift in the time variable by the amount 

Since on the phase plane the particle executes one rotation in 

FIG. 6 .  Phase plane for a = a,,K,, = 0.5. 
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FIG. 7. Separatrix mesh for a = a, ,K ,  = 0.7. 

the time 277/wH, this means that for rational values of a, < 1 
the rotational-symmetry property for the particle trajectory 
and for the separatrix mesh should be global. This means, in 
particular, that the rotational symmetry of the separatrix 
mesh for rational values of a, can be made arbitrarily accu- 
rate by decrease of K,.  A new question now arises: How can 
one cover the phase plane by a mesh with almost exact rota- 
tional symmetry for arbitrary values of a: All the cases stud- 
ied numerically have possessed this symmetry. The answer 
can be formulated as follows. 

Appendix 2. The global rotationgl symmetry of the sys- 
tem specified by the mapping Ma for rational aP,, 
(ap,, = 2.rrp/q,p < q)  determines the long-range order on the 
phase plane. However, the island shapes corresponding to 
one and the same invariant (e.g., the area of the islands) but 
to different positions on the phase plane have a small random 
scatter, and so weakly chaotic short-range order exists in the 
system. It is precisely because of this scatter that it is possible 
to cover a plane witi rotational symmetry by arbitrary q- 
gons. The mapping M, (with integer q) can be regarded as 
the generator of such a covering. 

Increase of the parameter K ,  leads to loss of the short- 
range order. On the phase plane there appears an "amor- 
phous" structure of small islands that are so deformed that it 
becomes meaningless to speak of q-sided polygons. The is- 
lands are separated by large regions of stochasticity, through 
which diffusion of the particles occurs. However, the sym- 
metry of the twisting is preserved and is manifested in the 

6. BIFURCATIONS 
h 

The mapping Ma always has the fixed point u = v = 0. 
We shall consider the tangent matrix to the mapping at the 
point (0,O) : 

8,' = [ cos a K H  cos a + sin a 
-sin a cos a - K ,  sin a I .  (6.1) 

Its eigenvalues A satisfy the equation 

h 

The point (0,O) becomes unstable for ISpML I > 2 or for 

KH>2 ctg ( ~ 1 2 ) .  (6.2) 

In particular, for a, = 2 ~ / 4  the instability condition has the 
simple form K, > 2. 

The instability consists in the fact that the elliptic point 
(0,O) is transformed into a hyperbolic point. At the same 
time, two new elliptic points are created. This is the usual 
island-doubling bifurcation (Fig. 8).  Inside the island one 
can see the new stochastic layer that is formed on the separa- 
trix passing through the saddle pointJ0,O). 

We shall consider the mapping M: : 
- - - - 
u=-U-KH sin v, v=-v+KH sin(u+Ka sin v). (6.3) 

Its fixed points correspond to a cycle with period 2T and 

character of the particle diffusion. 
The transition to the destruction of the short-range or- 

der occurs through a sequence of bifurcations, some of 
which are mentioned below. FIG. 8. Island-doubling bifurcation. 
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satisfy the equations 

uo= (KE/2)  sin (Kmuo/2),  vo= (KH/2)  sin (Knvo/2).  (6.4) 

Investigation of these points for stability leads to the follow- 
ing condition: ITr( M :  ) ' I  < 2, which corresponds to the in- 
equality 

O< (Kx'll) cos (%sin v. )cos vo<i. (6.5) 

Here KH and v, are connected by the relation (6.4). It fol- 
lows from (6.5) that the cycle of period 2T loses stability at 
the value of KH satisfying the equation 
(KH/2)sin(K,/2) = ?r/2, i.e., at KH = 4.88665 ... . This bi- 
furcation corresponds to the creation of a cycle of period 4T. 
We note also that under the condition 

K.' cos (?sin v. ) cos v. = 1 
4 

and intermediate bifurcation occurs in the system at 
K, ~ 4 . 5 4 .  At the same time the two elliptic points with peri- 
od 2T lose their stability. However, this bifurcation leads not 
to the appearance of a cycle with period 4Tbut to the appear- 
ance of four elliptic points with the fo~mer period 2T. 

We shall construct the mapping M :  : 

l i=~z+K~ sin v+KH sin[v-KH sin (u+KH sin v )  1, 

F=v-KK sin ii-K, sin (u+KH sin v) . (6.6) 

For KH < 1 this mapping goes over into (3.1 ) . The coordi- 
nates of the fixed points of period 4T are given by the solu- 
tions of the following equations: 

where n and m are integers. It follows from (6.7) that the 
phase plane is covered in checkerboard fashion by alternat- 
ing elliptic and hyperbolic points, and, as shown in Sec. 3, for 
KH g 1 all the hyperbolic points (m + n = 21 + 1, 
I = 0, + 1, ... ) belong to the separatrix mesh forming the 
square parquet on the phase plane. A stability investigation 
of the elliptic points with period 4T  shows that for 
m + n = 21(1#O) they lose theirstability simultaneously at 

KH = 2 and cycles with period 8T  appear. In each of the 
elements of the parquet the bifurcations occur analogously 
to the bifurcations in the central element. The loss of stabil- 
ity of the cycle with period 4Tand the formation of the cycle 
with period 8T in the central element occur at KH 
= 4.92934 ... . 

The numerical analysis shows that with increase of KH 
successive period-doubling bifurcations occur. At 
KH = K g '  the elliptic points with period 2"T lose their sta- 
bility and a cycle with period 2" + ' T  appears. The sequence 
of bifurcation values K g '  converges rapidly to the limit 
KLm,"': 

We shall determine the ratio 

It follows from the numerical analysis that for sufficiently 
large values of n the sequence of K 2,"' converges as a geomet- 
ric progression. This means, in particular, that 

lim 6, = 6 = const. 
7,- U 

It was found that S = 8.72. It should be noted that in a num- 
ber of papers" devoted to the numerical study of doubling 
bifurcations in mappings that preserve the phase volume a 
constant S = 8.72109720 ... has been found. Our numerical 
results are evidence that this constant is universal for Hamil- 
tonian systems. 

To conclude this section we note that doubling bifurca- 
tions by no means exhaust the variety of the bifurcation pat- 
tern in the mappings (2.12) and (2.15). In particular, in the 
interval of variation of the parameter K, between two values 
corresponding to the sequence of doubling bifurcations, in 
the vicinity of elliptic points necklaces of islands corre- 
sponding to higher-order resonances continuously appear 
and split off. Figure 9a illustrates the phase portrait of the 
mapping (2.15) in the region of an elliptic point for 
KH = 3.15; the splitting off of a necklace of four islands is 
shown. Figure 9b corresponds to the appearance of a neck- 
lace of three islands at KH = 4.7815. 

7. DIFFUSION OF PARTICLES 

The diffusion of particles on the phase plane (u ,  ,u, ) can 
be represented conventionally in the form of two different 
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limiting cases. The first of these correspond to small values 
of K,. Then this diffusion is analogous to Arnol'd diffusion. 
Only those particles which are inside the stochastic web dif- 
fuse. Their number is small and proportional to the phase 
occupied by the stochastic web. The other particles execute 
regular oscillations inside the islands. 

According to the estimate (4.4), the fraction of diffus- 
ing particles is of the order of 

where 51, is the frequency of the small oscillations for the 
twist angle a, = 277p/q(p <q ) ,  and p, is the density of the 
particles. If in the system there are any weak collisions of any 
kind, this will mean that there is a constant source filling the 
channels of the stochastic web with particles. Thus, a con- 
stant diffusive flux of particles that gather energy is realized. - 
Let 8,- T be the characteristic energy of the particles of a 
plasma with temperature T, and let v be the characteristic 
frequency of the Coulomb or collective collisions. Then the 
time within which the particles in unit volume gather energy 
$? is of the order of 

T ~ - v - ~ ( & / ~ ~ T ) ~  exp ( n A o l Q , )  . (7.2) 

If we take @ to be the energy density of the wave packet, the 
estimate (7.2) essentially determines the time of damping of 
the wave packet. As can be seen, this time is rather long for 
small values of K,, i.e., for small field amplitudes and large 
values of the parameter w, T. 

The situation, however, changes with increase of K,. 
The stochastic web is transformed into broad regions of sto- 
chastic dynamics, in which most of the particles take part. 
The diffusion in this case can be described in the usual way 
by means of an equation of the Fokker-Planck-Kolmogorov 
(FPK) type. 

For this we return to the mapping (2.7). We denote 

I = v , ~ + v , ~ = ~ / ~ ,  cp= arctan (v , lv , ) ,  (7.3) 

where 8 is the energy of the particle. Then the mapping 
(2.7) is equivalent to the following: 

1=1+2 ( e l m )  EoTI1" sin cp cos (korH cos r p )  

+ (eE,Tlm)' cos2(korH cos c p ) ,  

(7.4) 
tanq=(I'" sin o,T cos cp 

+[I1" sin cp+ (eEoTlm) cos (korH cos cp)] cos o H T )  

X (1'" cos o H T  cos cp- [ I sh  sin c p f  (eE,Tlm)  

Xcos(k,rH cos cp)] sin mHT)-'.  

The FPK-equation approximation begins to work for values 
of the action I large enough for the condition 

to be fulfilled. This means, according to (7.3) and (7.4), 
that we should have sufficiently large particle energies. The 
phase p in this case can be assumed to be stochastic and 
almost uniformly distributed in the interval (0,277). The 
condition for this is, obviously, the inequality 

which follows immediately from Eq. (7.4) as the condition 
for local instability of the phases: 

Using the first equation (7.4) we calculate 
Zn 

1 1 
A = , ( ( ( T - I ) > ) = -  

eE,T 
2 2nT [ dV (_)  cos2(k0r, cos r p )  

1 2eEoT 
= - dcp( 7 ) I sin2 cp cos2 (kor ,  cos c p )  

2nT 

where r ,  = I "'/a,, and JO and J, are Bessel functions. The 
coefficients A and B are related by 

Therefore, the diffusion equation takes the divergence form 

d~ - 1 a dl: 

dt 2 d l  D ( I ) d l '  

where the diffusion coefficient D, according to (7.6), is 
equal to 

1 
D ( I )  = B=wHKH21 [ I  + - 1, (21r.r.) ] . 

korH 
(7.8) 

Since I and the energy 8 are linearly related (see (7.3) ), the 
expressions (7.7) and (7.8) can be rewritten finally as 

(7.9 
Nowhere have we imposed restrictions on the quantity 

kOrH. Therefore, Eq. (7.9) contains an oscillating diffusion 
coefficient for k g H  > 1, depending on the magnitude of the 
magnetic field. In particular, for k,r, 1 we have 

We multiply by F? and, by integrating over 8, find the in- 
crease of the average energy with time: 

In the case when the Larmor radius becomes compara- 
ble to the wavelength of the central mode the diffusion law 
changes. This occurs, however, in the region in which the 
particle energy is not too large, i.e., k,r, 2 1. With increase 
of the particle energy we have k0r ,  1 and the role of the 
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log t 

FIG. 10. Increase of the average energy as a function of time. 

correction due to the Bessel function in (7 .9)  becomes negli- 
gibly small. The average energy then increases with time in 
accordance with the law 

(8) =e2EOZTt/2m. (7.11) 

This law is also represented on the graph obtained by the 
numerical analysis (Fig. 10). 

8. CONCLUSION 

From the results given we shall select those which seem 
to us to be fundamentally new and important for applica- 
tions. In the construction of the so-called quasilinear de- 
scription of different phenomena in a plasma an important 
role is played by the condition for the possibility of such a 
description. This condition reduces to the determination of a 
criterion for the stochastization of certain phase variables- 
a criterion that makes it possible to perform the correspond- 
ing averaging operation. One serious difficulty in the path to 
obtaining such a criterion involves the fact that the separa- 
trices of the different waves in the packet are displaced rela- 
tive to each other because of the dispersion of the waves.' 
This circumstance is manifested especially strongly in an 
external magnetic field, which leads to twisting of the trajec- 
tories of the particles that are interacting resonantly with 
individual waves of the packet. As a result of this twisting the 
entire phase space is covered by a stochastic web for arbitrar- 
ily small perturbations, i.e., for arbitrary wave amplitudes. 

The existence of the stochastic web leads to universal 
diffusion of particles, analogous to Arnol'd diffusion in the 
multidimensional case. This diffusion leads to stochastic 
heating of particles. Although the particles are few because 
the stochastic web is thin, the unbounded increase of their 

energy leads to the existence of a universal damping of the 
wave packet in a transverse magnetic field. 

The structure of the stochastic web in the general case 
has a fractal character, and the sizes of its cells have a weak 
stochastic spread. This very important circumstance shows 
how a quasicrystalline structure can be created on the plane. 
In the given case this structure is formed as the trajectory of 
a particle moving along the channels of the stochastic web. It 
contains rotational symmetry determined by the rational ra- 
tior of the Larmor frequency to the frequency shift between 
neighboring waves in the wave packet. In addition, the sto- 
chastic destruction of the short-range order in the structure 
of the web shows how it is possible to cover the plane by 
weakly deformed polygons while preserving the symmetry 
of the long-range order (rotational symmetry). 

To this it may be worth adding that the stochastic web 
with twisting angle a, = 2 ~ / 3  corresponds to a classical 
fractal with elements of the Koch-curve type. In the problem 
considered this fractal is generated by the trajectory of a 
particle, and this is the first example in which a fractal of the 
Koch-curve type has been generated by the motion of a par- 
ticle in a real field. 

In conclusion the authors express their sincere grati- 
tude to V. I. Arnol'd for an interesting discussion and com- 
ments. 

"The limit a - 0  has, in itself, no physical meaning. It can be realized 
either at T = 0, which is unnatural, or at w, = 0, but in this case it is 
necessary also to redefine the variables in accordance with (2.11 ) .  

2' Ifp > q, the integer part must be subtracted from the ratiop/q. 
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