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We consider, in the hydrodynamic model of a collisionless cold plasma, two-dimensional force- 
free configurations of an electron flow against the uniform background of fixed ions. We show 
that the charge-density distribution of the electrons can have the shape of a two-dimensional 
soliton. 

When there are strong self-consistent fields present in a 
rarefied cold plasma, quasistationary localized formations 
may exist, such as electron bunches or rings, in which bal- 
ance between the forces is guaranteed simultaneously in the 
longitudinal and transverse directions. A large amount of 
energy can be accumulated in such configurations and this 
determines their effective use for solving a number of prob- 
lems in plasma physics. I-' 

We show in the present paper that, for an axially sym- 
metric system with a plane geometry, the two-dimensional 
stationary hydrodynamic equations for a collisionless cold 
plasma with immobile ions (Ni = const) can be reduced, 
under specially chosen conditions for the formation of an 
electron flow, to the sinh-Gordon or sine-Gordon equations 
of a linear massive field. 

1. When describing a stationary electron flow in self- 

n=l+Vzy-VZf,  (1.7) 

- I V [  Vp]  ]+[VIVQ)l]=p(l+Vzy-V2f) /y .  (1.8) 

When there is no directed motion in the system with a con- 
stant-velocity in a crossed-field geometry (i.e., plE, B; @lip, 
i.e., only one component of p and Q, is non-vanishing) and in 
the direction of the motion the system is uniform. Two of the 
three Eqs. ( 1.8) are then satisfied identically and the prob- 
lem reduces to finding solutions which satisfy Eq. ( 1.6) for 
the remaining equation. 

In a plane geometry (coordinates x ,  y, z)  when d /  
dy = 0 ( z , ~  have the meaning of the longitudinal and trans- 
verse coordinates) the momentum component py and the 
field components Ex,  E, , B, , B, are non-vanishing. The 
equations forp, and for the functions f, Q,, have in this case 
the form 

consistent crossed fields we shall start from the relativistic af - -- d o ,  df p, - -= 
collisionless hydrodynamic equations of a cold plasma: dx ( l+pUz)"  dx ' dz (i+p,')'" P' '3, a z  (1.9) 

where the hydrodynamic momentum is p = yv/c; the Lor- 
entz factor is y = ( 1 + p2) "'; - 

E=eE1/mcap, B=eB'/mcag; We put p, = sinh u, @, = @ (u) ,  u = u (x, z). Equations 

E', B' are the electric and magnetic field strengths; n  = N, / (1.9) are then compatible for any @(u)  and determine f, 
2 while ( 1.10) reduces to the form Ni; the characteristic size of the system is -dm,,; w, 

= 4re2Ni /m; e ,  m are the electron charge and mass, and c is ofl+oZz=sh U ,  (1.11) 

the light velocity. Using the vector identity where the field function 
Y 

( P V ) P = Y V Y -  [ P I  V P I I ,  d@ a u o  (2 ,  Z) =u- - ch-I U' du1, ox = - 
do , o , = -  du dx 42 

we write Eq. ( 1.1 ) in the form 
and so on. By specifying the functions @(u)  or u ( u )  we 

E=Vy-Vf ,  B = - [ V p ] + [ V Q ) ] ,  determine the type of the interactions in the system. These - - 

where f ( r ) ,  Q, (r)  are auxiliary functions which are linked to functions can, in turn, be determined either from the bound- 

p by the relations ary conditions or, if the system has no boundaries, from the 
conditions for the formation of a flow. For the charge den- 

V f = [ p [  V @ I l / y .  ( sity and the electric and magnetic field components we have 

When f, @ = 0 we have y + g, = const, p + A = const, in this case 

where (p ,A)  is the Qpotential. Solutions of ( 1.2) to ( 1.4) n=ch u  (ch u+u,o,+u,o,) , (1.12) 

for f, @ = 0, Ni = 0 were considered in Refs. 3 and 4. Sub- E,=o,sh u, E,=a, sh u, B,=o, ch U, B,=-U, ch u. 
stituting (1.5) into (1.2) to (1.4) we get (1.13) 
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When N, = 0 Eq. ( 1.11 ) changes into the Laplace equation 
and describes a vacuum E-layer. 

We consider some integrable models of a ( u )  with 
Ni f. 0 in which Eq. ( 1.1 1 ) can have localized solutions. 

2. When the relations y + q, = const, p + A = 0 are sat- 
isfied, it turns out that @ = 0, a = u and ( 1.11 ) changes into 
the sinh-Gordon equation. The "repulsive" non-linear field 
model which is then realizable has no bounded solutions. We 
put a = - u/R; here positive and negative signs ofR corre- 
spond to "attraction" and "repulsion," and IA I is a size fac- 
tor. We then have from ( 1.1 1 ) 

We shall look for the solution of (2.1) in the form5 

Substituting (2.2) into (2.1) we get 

Here and henceforth the prime indicates differentiation with 
respect to the appropriate independent variable, and k ', p2, 
and v2 are arbitrary parameters. Using (2.1) to (2.3) we 
have in this case from ( 1.12) and ( 1.13) for the charge den- 
sity and the components of the electromagnetic field andp,, 
and y 

16 X'X (l+X'/Zz) E =-- 16 X2Z' (1+XZ/Z2) E =- 
' h Z ~ ( I - X ~ / Z ~ ) ~  ' h ' z 3 ( 1 - x 2 / z z ) ~  

4 XZ' (1+6X2/Zz+X'/Z') 
R -- * - h ZZ(l-XZ/Z')" 

X (1 +X"Z2) 1 + 6X/Z2+X'/Z' 
pu = Z ( I - X ~ / ~ Z ) ~  * 7 =- (~-XZ/~Z)Z 

In the general case k 2,p2, v2#0 the solutions (2.3) can 
be expressed in terms of elliptic functions. However, by 
choosing these parameters specially one can obtain values of 
X and Z expressed in terms of elementary functions. For a 
"repulsive" field with k = 0,p,v2#0 we have from (2.3) 

X=v (A-p2)-"' sh[x(h-pZ) '"1, Z= (VIP) ch(pz), pz<h; 

X=v (pZ-h) -'"sin[x (p2-h) %I, Z= (v/p) ch (pz) , pZ>h; 
(2.5) 

for an "attractive" field 

where the functions in (2.5) and (2.6) are chosen such that 

One cannot realize solutions with negative R in an infinite 

system, as the denominators in (2.4) vanish for il < 0 on the 
surfaces X (x)  = Z (z) . From (2.4) we have for the charge 
density 

i.e., in "repulsive" fields an excess negative charge is concen- 
trated in the near-axial region of the system, and for "attrac- 
tive" fields n (0,z) < 1 and the equilibrium has the shape of 
an electron ring. 

We consider in greater detail the solution with il > 0. 
Expressions (2.4) and (2.6) describe an equilibrium config- 
uration with a charge density distribution which has the 
shape of a soliton in the longitudinal direction and is period- 
ic in x, and the integrated charge in each z-section and with 
- a ( R  +p2)-L'2<x(a(R + , u ~ ) - " ~  is: 

n(~+p~)-'ls 

Q =  ( ( n - i ) d x = ~ .  
-n(k+::)-'l¶ 

When x = f a ( R  + p2) - we have 

B,=-4ylh ch (pz), n=1-16p2/h ch2(pz) 

and the solution satisfies the "matching" conditions with an 
infinite unperturbed plasma in an external shaped magnetic 
field B, (z). Asz- f CXJ the momentum and the electric and 
magnetic field components tend to zero and y -+ 1. In each of 
the ranges - a ( R  + , u ~ ) - ' / ~ < x < o  and 0<x 
( a ( R  + p 2 ) - ' I 2  the momentum has a single sign and B, 
changes from a maximum value 

to a minimum one 

changing its sign at x = f a ( R  + p2) -'12/2. The closing of 
the magnetic field lines occurs then in the points z = f W .  

The charge density is a minimum in the points z = 0; x = 0, 
f a(R +p2)-1/2.  The condition that the density be non- 

negative in those points determines the limiting value of the 
ratio : p2/R < 1/16. 

For a given ion density Ni the solution considered is 
characterized by two parameters: il andp. We express these 
parameters in terms of the maximum values of the magnetic 
field B, (x = 0, z = 0)  = B, and the Lorentz factor 
y [x = ~ ( i l  + p2) -'12/2, z = 01 = yo. Considering the case 
p2/R< 1/16 ( whenp2/R> 1/16 the boundary of the configu- 
ration is distorted and the "matching" condition is violated) 
we have from (2.4) 

p/h=Bo/4, pz/h= (yo-1 )/8. 
The characteristic longitudinal and transverse dimensions 
then equal 

and the maximum value of yo< 1.5. 
Asp2/R 1, we get from (2.4) and (2.6) up to the first 

non-vanishing terms inp2/il for the functions of the system 
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p,=[2 (yo--1) I"' sin (x/xo)/ch (z/zo), 

E,=-B,[ (yo--1) 121% sin (2x/xo) /ch2(z/zO), 

B,=B,[ (yo-1)/812" sin (x/xo) sh (Z/ZO) /ch2(z/zo), 

B,=Bo cos (x/x,) lch (z/zo), 

we have used here the relations Ex + v,B, = 0, E, - v,B, 
= 0. 

Evaluating the ratio Bx /B, from (2.4) we determine 
the equation for the magnetic field lines: 

sin (x/x,) =Co ch (z/zo) ; 

the constant C, characterizes the number of the line. We 
evaluate the current in the system: 

fL(x, z)  is the integration domain. Integrating over 
- co < z <  CO,  O<x<m, we get 

The average current density 

is now independent of the magnitude of B,. 
In conclusion we note that some of the properties de- 

scribed above are typical of the whole class of N-soliton 
bounded solutions of Eq. (2.1 ). The equilibrium configura- 
tions corresponding to such solutions have a solenoidal ge- 
ometryp,(-x)= -p,(x) ,p,(-z)=p,(z)  withsharp 
boundaries in the transverse direction and magnetic field 
lines which close up in infinitely removed points. 

It is interesting to compare the results given here with 
the solutions of the linear field model realizable when 
a = - sinh u / A .  In that case we have from ( 1.11 ) 

a,+o,,=-ha. (2.8) 

Bounded solutions of Eq. (2.8) are possible only when2 > 0: 

a=- (A&) sin (p) cos [ (A-p2) '"z] , (2.9) 

A ,  andp are arbitrary constant. The configuration described 
by (2.9) has the form of a doubly periodic standing space- 
charge wave. The characteristic dimensions and the con- 
stant A,  are determined by the values of the magnetic field 
B, (X = 0, z = 0)  = Bzo, Bx (x = rxo/2, z = rzO/2) = B,, 
and the Lorentz factor y(x = rx0/2, z = 0)  = yo: 

pv'= (yo2-1) sin (x/xo) cos (z/zo), 

y2-I+ (yo2-1) sin2(x/xo) cos2 (z/z0), (2.10) 

n=l+[ (y2-1)/2BO2] [Bz,2 cos (2z/z0) -Bz2 cos (2x/xO) 

-Bo2 COB (2x/x0) cos (2z/zo) 1, 
E==--BZopv cos (~1x0) cos (zlzo), E.z=B=opu sin (xlx,) sin (z/zo), 

Bz=Broy sin (xlxo) sin (zlz,) , B,=B,,y cos (xlx,) cos (zlz,) . 
If we consider this solution in the region Ixl(rxo and 
JzI <rzd2 ,  the corresponding configuration will have steep 
boundaries in the longitudinal and transverse directions. 
When x = + rx, 

p,=EI=E,=Bx=O, B,=-BZo cos (z/zo), 

n=l- (B,,2/2B02) (yo2-1) [ ~ + C O S  (2z/zo) 1; 

when z = _+ rz0/2 

p,=Ex=E,=B,=O, Bx=Bxo sin (x/xo), 

n=l- (B,,2/2B02) (yo2-1) [I-cos (2x/xo) 1. 
When x = + rx,, z = + rz0/2 the conditions for "match- 
ing" with an unbounded unperturbed plasma and an exter- 
nal shaped magnetic field have in this case two components. 
Integrating over the region O<x(rxo, - ~ z ~ / 2 < z < r z ~ / 2  
we get for the current in the system 

I" 

4Bd In[t+(tx-i)"l I=  dt. 
0 0  y -  t2-l 

The condition that the configuration can be realized is: 

Bxo2 (yoz-1) /B,'<1, B,," (7,'-I) /B,"91, 

whence for B,, = B, the maximum value y2, (3.  We show 
in Fig. 1 the magnetic force-line configuration. The exam- 
ples of "attractive" fields given above correspond to a solen- 
oidal geometry of the system. In conclusion we consider a 
model of a field in which the "attractive" regions alternate 
with "repulsive" regions: 

sh u=A sin a, a,+a,,=A sin a. (2.11) 

Putting 

0=4 arctg[X(z)/Z(z) 1, 

we get 

The expressions forp, , y2, the charge density, and the com- 
ponents of the electric and magnetic fields then take the form 
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k 2,p2, v2, andA are arbitrary parameters. The expression for 
the momentum, y2, the charge density, and the electric and 
magnetic field components have the form 

p,=4hXZ (ZZ-X2) / (X2+Z2) ', 

Monotonic solutions (2.12) leading to bounded distribu- 
tions of the functions (2.13) are realized when A >  0. When 
k 2  = 0 we have 

The solution (2.14) corresponds to a quadrupole mag- 
netic field configuration in the medium. We restrict the con- 
sideration to distributions of the functions which are sym- 
metric in x and z, putting R. = 2p2. In that case 

On the equipotential surfaces cosh p z  = a cosh p x  ( la1 > 1 
is an arbitrary constant) 

here the running coordinate la 1 <r2< a ,  
r 2 ( x = 0 , z = 0 )  = 1, r 2 ( x , z + a ) - + ~ .  On the surface 
a = + (2'" + 1 ) the momentum takes on extremal values: 
pYextr = f 2p2, when, putting I&,, = y2,, we get 

When y = yo the charge density is a maximum and is inde- 
pendent of r2: 

nmm=1+4 (yo2-1) ; 

when y = 1 

n=1-4(~,2-1) [ 1 - 4 / ~ '  (yo2-1) I 

and as r2+ a 

whence, putting n,,, 20, we have <5/4. 
The expressions for the electric and magnetic field com- 

ponents on the y = const surfaces have the form 

FIG. 2. 

The magnetic field line configuration is shown in Fig. 2. As 
r2-+ a the maximum value of the magnetic field on the sur- 
faces y = 1 is 

The expression for the current is similar to the one consid- 
ered earlier. The magnitude of the current is restricted by the 
quantity B,. In a force Ex (7.4 w ) #O, E, (7- w ) # O  the 
given configuration cannot be realized in an unbounded sys- 
tem. The N-soliton solutions of Eq. (2.1 1 ) correspond to 
multipole configurations of the magnetic field. 

3. Our analysis shows that the leeway in the choice of 
equilibrium configurations for the motion of a charged fluid 
in self-consistent crossed fields determined by the conditions 
that an electron flow can be formed, exists also in a longitu- 
dinally inhomogeneous system. Such configurations can be 
realized, for instance, through the injection of electrons from 
a "non-equipotential" cathode in a suitably shaped external 
magnetic field, or when striking a high-current discharge 
when the gas pressure is lowered in shaped crossed E- and B- 
fields. Under conditions of integral charge compensation 
there correspond formally to each form of interaction in the 
system two signs-"attraction" and "repulsion." This fact 
reflects the property of a solenoidal-type equilibrium config- 
uration (the existence of a surface on which the longitudinal 
component of the magnetic field changes sign) and can be 
rigorously explained in the framework of a self-consistent 
kinetic description by studying the trajectories for the mo- 
tion of individual particles. We note here that vanishing of 
B, on some surface (an "attractive" field is then realized) is 
possible in an unbounded system only when there exist loops 
in the projections of the electron trajectories on the xy plane. 

The equilibrium configurations considered above are 
realized for a comparatively low level of relativistic behavior 
of the electron flow, but thereare no restrictions on the limit- 
ing current. For a solenoidal geometry the average current 
density in the ring is determined solely by the quantity y;,, 
and for given y,,, and N, the dimensions of the ring are 
proportional to the magnitude of the current in the system. 
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