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Antibonding (quasistationary and virtual) states are found. The dependence of their energy 
and width on the internuclear distance R and the charges Z ,  and Z2 is investigated. A general 
expression is obtained for the energy spectrum of the electrons produced upon ionization, and 
a calculation of this spectrum for the reaction H (  1s) + H+ +H+ + H+ + e is given. 

1. INTRODUCTION 

Antibonding (quasistationary and virtual) states in the 
problem of two Coulomb centers Z1eZ2 have not been inves- 
tigated until now. This is explained primarily by the fact the 
problem does not contain an obvious effective barrier of the 
type with which a quasistationary state is usually associated. 
However, in the study of the ionization process in the adia- 
batic approximation the question of the existence of such 
states inevitably arises. The ionization of a quasimolecular 
system with long-range Coulomb interaction is connected 
with the superpromotion of a diabatic term, through the 
Rydberg bunching of levels, into the continuous spectrum.' 
Such diabatic terms for the problem of two Coulomb centers 
were discovered in Ref. 2 and were studied there below the 
boundary of the continuous spectrum. The behavior of the 
diabatic terms above the boundary of the continuous spec- 
trum depends on the structure of the quasistationary levels, 
and it is this behavior which determines the energy spectrum 
of the electrons produced upon ionization. In view of this it 
becomes necessary to seek and investigate the antibonding 
states in the region in which the diabatic term emerges into 
the continuous spectrum. Such an investigation is also of 
general theoretical interest, since because of the long-range 
Coulomb interaction the existing theory of antibonding lev- 
els as poles of the S-matrix3 is inapplicable here, and the 
situation is not even qualitatively clear. 

In this paper we find quasistationary and virtual states 
in the problem of two Coulomb centers, investigate the de- 
pendence of their energy and width on the internuclear dis- 
tance R and the nuclear charges 2, and Z,, and also obtain a 
general expression for the energy spectrum of the electrons 
produced upon ionization and give the calculation of this 
spectrum for the reaction H(1s) + H + + H +  + H+ + e. 
Various methods can be used for seeking and calculating the 
quasistationary and virtual terms. Our method consisted in 
the following. Adibatic terms Ei (R)  of the same symmetry 
are different branches of one analytic function E(R) .  Two 
terms E , (R)  and E,(R) are joined into a single analytic 
function by a common branch point Rc (Im Rc #O), in the 
neighborhood of which the difference of the terms has the 
form4 

El ( R )  -E2 ( R )  =const (R-R,) ", 

and, therefore, starting for real values of R from the term 
E, (R),  after passing around the point Rc and returning to 

the real R axis we find ourselves on the second term E, (R ). 
If El (R)  is an adiabatic bound-state term, and E2(R) is an 
adiabatic antibonding-state term, we thereby have a com- 
paratively simple method of calculating antibonding terms 
that uses the already existing program for calculating dis- 
crete terms in the complex R plane.2 Here one must first find 
the corresponding branch points R,. The search for the 
branch points was carried out automatically in our program 
from the condition, which follows from the expression ( 1 ), 
that the derivative dEi (R)/dR becomes infinite at Rc. 

For the classification of the bound states, below we shall 
use the spherical quantum numbers nlm of the united atom 
(R = 0) and their spectroscopic notation: I = s, p, d, ..., 
m = cr, n-, S, ... . To a quasistationary or virtual term we shall 
assign the quantum numbers of the discrete term with which 
it is conected by the branch point Rc (with a bar over the 
quantum numbers: x). By a quasistationary state, as usu- 
al, we mean a state with Re E(R ) > 0, and by a virtual state 
we mean a state with Re E ( R )  < 0. In the article we use the 
atomic system of units. 

2. QUASISTATIONARY AND VIRTUAL TERMS ASSOCIATED 
WITH SUPERPROMOTION OF A DlABATlC TERM 

The phenomenon of superpromotion was discovered in 
the problem of two Coulomb centers and consists in an infi- 
nite chain of close quasi-intersections between pairs of adia- 
batic terms, Enlm (R)  and En + , , ,  (R) ,  for all n>l + 1 (Ref. 
2). Replacing the quasi-intersections by exact intersections, 
we obtain a system of diabatic terms, in which one term 
( Wlm ) emerges into the continuous spectrum. Associated 
with each quasi-intersection there is in the upper half-plane 
of R a branch point1' R,,, , in the neighborhood of which 

En+,, ,,(I?) -E,,,(R) =const (R-R,,,)'". 

The set of all branch points R,,, with a fixed choice of I and 
m forms an infinite series Sn,,Im of points (no = I + 1 is the 
principal quantum number of the lowest adiabatic term in 
the given series), localized in a small region R of the com- 
plex R plane and converging to a certain limit point 

R,, =lim R,,,. 
.,-.OD 

The branch points Rnlm successively connect all the terms of 
the given Clm) series into a single analytic function E,, (R ). 
In the neighborhood of the region R the energy surface 
Elm (R ) has the form of an infinite "spiral staircase," climb- 
ing which, i.e., moving toward the boundary of the contin- 
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uous spectrum, we cross increasingly excited terms (higher 
"floors"). The boundary of the continuous spectrum is 
reached after an infinite number of clockwise turns around 
the region fl. By passing around fl in the anticlockwise di- 
rection we pass to the lower-lying terms, until we reach the 
ground term El + ,,,, (R ) in the given series S ,(,, , . 

As a result of a calculation using the scheme described 
in the Introduction, we have found a new branch point on 
the ground term El+  ,,,,, (R)-a branch point that is com- 
mon with a certain antibonding term E , +  (R).  This 
branch point is located near the branch point Rl + ,,,, (the 
first point in the series S, + ,,,, ) . Then, on the antibonding 
term E ,+ ,,,, (R) ,  we found a further branch point, which 
coincides with the limit point R,, and connects the term 

E ,+ (R)  with the limiting Rydberg term 

E,," ( R )  = lim En, ,  ( R )  
7,-- 

Thus, the infinite "spiral staircase" closes on itself through 
the antibonding term E ,+ ,,,, (R),  i.e., turns into a ring. In 
Fig. 1 we give the results of a numerical calculation of the 
antibonding terms of the molecular ion H;, in the form of a 
standard pattern of poles of the S-matrix in the complex 
plane of the wave number k = (2E) lJ2.  The position of the 
poles depends parametrically on the internuclear distance. 
The pattern of the poles is symmetric about the imaginary k 
axis. The poles in the left half-plane of k correspond to the 
antibonding terms E :+ (R)  that are obtained when one 
passes around the branch points in the lower half-plane of R. 
With change ofR the poles move along a trajectory similar in 
shape to a hyperbola with vertex on the imaginary axis at the 
point k, =2[1(1+ 1 ) ] - ' I 2 .  The internuclear distance at 
which two symmetric poles coalesce at the vertex of the hy- 
perbola corresponds to the minimum of the diabatic term 
W,, , the position of which, for m = 0, is approximately 
equal to2 R, ,=l( l+ 1) .  With decrease of the internuclear 
distance from the value R = R, the two poles move to oppo- 
site sides, and, as R -0, move away to infinity. As a result, 
when R = 0 the lower half-plane of k is completely cleared of 

FIG. 1. Trajectories of poles of the S-matrix in the complex plane of the 
wave number k = ( 2 E ) " '  for the antibonding states 
--- 
2pu, 3du, 4fo, and 5 of the molecular ion H,t . The values of the 

internuclear distance R are indicated. 

FIG. 2. The same for the antibonding state F o f  the system ( Z , , e Z , )  for 
different values of the charge 2, = 1, 10,20; Z, = 1. 

Im k 
1 - 

poles, as it should be for a one-center Coulomb p ~ t e n t i a l . ~ . ~  
As can be seen from Fig. 1, with increase of R, for 123, the 
trajectories of the poles intersect the bisectrix and the state is 
transformed from a virtual into a quasistationary state. 

The effect of the charges 2, and Z, on the described 
pattern of the poles of the S-matrix reduces mainly to a 
change of the characteristic scale in the R plane and k plane. 
With increase of the total charge Z = 2, + Z2 the distances 
in the R plane decrease in proportion of Z - I ,  while the dis- 
tances in the k plane increase in proportion to 2 .  The de- 
pendence on the charge ratioZ,/Z, is weak. In Fig. 2 we give 
the trajectories of the poles of the 4fa state for the charges 
2, = 1, Z, = 1, 10, 20. 

A qualitative feature of the behavior ofthe poles of theS 
matrix in the presence of long-range Coulomb interaction is 
the fact that the symmetric poles coalesce on the imaginary 
axis at k # O  (see Fig. 1 ) . In the case of a short-range poten- 
tial such a situation is possible only for an s-state, and for 
I # O  the poles always coalesce at the point k = 0 (Ref. 5) .  
This difference from the previously known behavior is ex- 
plained by the fact that theS-matrix has at k = 0 an essential 
singularity associated with the Rydberg bunching of the lev- 
els toward the continuum boundary, from which an isolated 
pole cannot split off on change of the parameters of the Ham- 
iltonian. 

The results given above pertain to the region of internu- 
clear distances 0 < R < R,. For R > R ,  it is not possible to 
calculate the antibonding terms by the method that we have 
used, because of the divergence of the continued fraction 
corresponding to the radial equation. However, it should be 
noted that in this calculation there is no particular need for 
this, since the energy spectrum of the electrons produced 
upon ionization depends on the behavior of the antibonding 
terms only for R < R 0 / 2 ,  when the diabatic term W,, has 
already emerged into the continuum. 

In the problem of two Coulomb centers there are also 
other antibonding terms besides those discussed above. In 
particular, we have found new series S,,,, with no > I + 1 ,  
which are located in the complex R plane at approximately 
the same value of the real part of the internuclear distance as 
the series with no = I + 1, but further from the real R axis. 
These series are analogous in their structure to the series 
Sl+ ,,,, and differ from these latter only in the fact that 
terms En,, (R ) with I + 1 < n <no  are not involved in them. 

- 4 -2 
I 1 I I 
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Each new series S,,,,, also has its own antibonding term 
E  ( R  ), through which it closes on itself. However, the S- 
matrix poles corresponding to these terms are situated far 
from the real k axis, and therefore are of no physical interest. 
This also applies to the other antibonding terms not men- 
tioned here. 

3. ENERGY SPECTRUM OF THE ELECTRONS 

In the study of ionization the aim of the theory is to 
calculate the ionization cross section and the energy spec- 
trum of the electrons. As already noted, the ionization pro- 
cessZ,e + Z, -Z,  + Z, + e is explained in the adiabatic ap- 
proximation by the passage of the quasimolecular system 
Z,eZ, through an infinite sequence of quasi-intersections 
that are bunched toward the boundary of the continuous 
spectrum, this sequence being induced by the piercing of the 
Rydberg series of levels by the diabatic term W,, . To calcu- 
late the ionization cross section it is sufficient to know the 
characteristics of these quasi- intersection^.^ The problem of 
calculating the specturm of the electrons, which we shall 
consider below, is more complicated. 

The general expression for a nonstationary wavefunc- 
tion in the adiabatic approximation has the form6 . 

where 

E," = lim E ,  (R) , 
R+ o. 

R, ( E )  is the inverse function to E, ( R ) ,  and 

is the adiabatic wave function, in which the variable R  has 
been replaced by E. In ( 2 )  the functions Ri ( E )  and pi ( R , E )  
are to be regarded as the analytic continuation, into the en- 
tire complex E  plane, of the solution of the stationary Schro- 
dinger equation 

and in fact describe not only the initial ith adiabatic term but 
also the entire set of the terms connected with this term by 
branch points in the complex R  plane. As t -  - cc one can 
displace the ends of the contour of integration over E in ( 2 )  
into the upper half plane and calculate the integral by the 
method of steepest descent; this leads to the initial condition 

$ ( r ,  t )  - rpi ( r ,  E,-) esp  ( - iE,"t)  
I+-m 

As t  - + cc the ends of the contour must be displaced into 
the lower half-plane of E. In this case the contour will link 
with the standard cut on the boundary of the continuous 
spectrum ( E  = 0 )  and, as a result, besides the saddle points 
there appears an integral taken along the cut O(E < cc and 
describing the wave packet of the ionized particles: 

qion (r ,  t )  = ( 2 n u )  -'" 

xexp { 5 u R, ( E / )  d ~ '  - i ~ t )  
El0 

The adiabatic wave function pi ( r , E )  for E  < 0  is normalized 
to unity. For E >  0  it describes a particle moving away to 
infinity with momentum k 

rpi-exp ( i k r )  
and can be represented in the form 

rpi ( r ,  E )  =Ci ( E )  xi ( r ,  El 3 ( 4 )  

wherexi ( r , E )  is the adiabatic wave function, normalized to 
unit flux. Substituting ( 4 )  into (3),  we obtain +hi,, ( r , t )  in 
the form of an expansion in the continuum function xi ( r , t )  
with normalized flux, whence, for the probability density of 
the energy distribution of the particles, we obtain 

I 

This expression was obtained in Ref. 6 for short-range poten- 
tials by another method. In fact, the presence of the long- 
range Coulomb interaction and the associated Rydberg 
bunching of levels is unimportant for the above derivation of 
the expression ( 5 ) .  This becomes clear even without a spe- 
cial investigation if we note that expressions ( 2 )  and ( 5 )  are 
exact for the Demkov-Osherov model,6 which contains, in 
particular, the variant with a long-range Coulomb interac- 
tion. In the framework of this variant of the Demkov- 
Osherov model the ionization process has already been con- 
sidered in the paper by Demkov and Komarov.' 

The expression for the nonstationary wave function 
+h(r,t) ( 2 )  has been taken, for simplicity, for a head-on, uni- 
form collision of the nuclei, when R = vt. In the case of an 
arbitrary trajectory of the nuclei, in place of R  ( t )  one must 
introduce the variable r = ut ( v  is the velocity of the nuclei at 
t  - - cc ), which has the meaning of the internuclear coor- 
dinate along which the nuclei are moving, and replace 
Ri ( E )  by r i  ( E )  in (2 ) - (5 ) . '  

As can be seen from ( 5 ) ,  to calculate the electron spec- 
trum it is necessary to know Ri ( E )  for E  > 0 .  In discussions 
of the ionization process it is more usual to use the inverse 
function E, ( R ) ,  which gives the position and width of the 
quasistationary state as the term emerges into the contin- 
uous spectrum. As a whole, both functions carry equivalent 
information about the system. However, the electron spec- 
trum is determined not by values of E, ( R )  for real R ,  but by 
values of R, ( E )  for real E  > 0 .  Since Im Ri (E) # 0  for 
E  > 0," these two functionally related sets {E ,R}  differ from 
each other. 

In Fig. 3 we give curves of Re Ri ( E )  and Im Ri ( E )  for 
several channels W,, of ionization of the molecular ion H: . 
The calculation was performed using the same program as in 
the determination of the antibonding terms E  ,iG(R ) . The 
only difference was that, after passage around the branch 
point R c ,  the calculation was then performed along the real 
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FIG. 3. Dependences Re Ri (E )  and Im R, (E )  for several channels W,, 
of ionization of the molecular ion. The dashed lines are calculated using 
formula (6),  and the scales of the energy axes in the two figures are the 
same. 

axis of E, not of R.  The curves obtained for Re Ri (E )  and 
Im Ri (E)  can be approximated with good accuracy by the 
simple expressions 

Re R, ( E )  =2 Re R,/{l+[1+4 Re R,,E/(Zl) I"), 

In Fig. 3 the results of the calculation using formula (6)  are 
given by dashed lines. It can be seen that there is an apprecia- 
ble discrepancy with the exact calculation only for I = 1, 2; 
for 123 the exact and approximate curves coalesce on the 
scale used in the figure. 

To calculate the electron spectrum it is necessary to 
know not only the function Ri (E )  but also the function 
Ci (E). In principle, the latter can also be calculated exactly 
for the problem of two Coulomb centers. However, taking 
into account that it appears only in the pre-exponential fac- 
tors, it is fully justified to replace Ci (E) by its analog 
C (E) for the one-center (hydrogen-like) system. Here 
we keep the long range Coulomb interaction, which has the 
greatest influence on the analytic properties and form of the 
function Ci (E) .  If we compare the Coulomb-wavefunction 
asymptotic forms (36.15) and (36.23) in Ref. 4, it is not 
difficult to obtain for C y ( E )  the following expressions: 

In Fig. 4 we give differential (with respect to the ener- 
gy) cross sections for production of electrons for the reac- 
tion 

H ( I s )  +H++H++H++e (8)  

FIG. 4. Differential (with respect to the energy) cross sections for pro- 
duction of electrons for several values of the collision velocity: a )  calcula- 
tion for the system H (  1s) + H +  for the ionization channel W,,; b) ex- 
perimental data for the system Ne+ + Ne (Ref. 7). 

for several values of the collision velocity u. These cross sec- 
tions are obtained by integrating P ( E )  (5 )  over the impact 
parameters p in the approximation of rectilinear flight 
(R 2( t)  = p2 + u2t * ). Here we used exact numerical valuesof 
Ri (E) ,  and Ci ( E )  was taken in the form ( 7 ) .  In the calcula- 
tion we also took into account the double passage through 
the region of ionization as the nuclei came together and flew 
apart. In the literature there are no experimental data on the 
electron spectra for the reaction (8).  From a comparison of 
the curves given in Fig. 4a with the available experimental 
spectra for other colliding partners7 (Fig. 4b) it can be seen 
that they explain at least qualitatively the dependence of the 
cross section both on the electron energy and on the collision 
velocity v. 

The authors are grateful to Yu. S. Gordeev, Yu. N. 
Demkov, I. V. Komarov, E. E. Nikitin, V. I. Osherov, and L. 
I. Ponomarev for useful discussions. 

"The terms possess the obvious symmetry property Ei (R)  = E:(R *), 
and therefore to each branch point R, in the upper half-plane there 
corresponds a conjugate branch point R *, in the lower half-plane. 

''A zero value of Im Ri (E )  for E > 0 would imply the existence of a bound 
state above the boundary of the continuous spectrum. 
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