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It is shown that allowance for the fine structure of a multiply charged ion ( H  ion) makes the 
line contours radically different from those in the relativistic treatment. The spectral function 
becomes asymmetric, and narrow components due in particular to the nonmonotonic variation 
of the terms appear. Detailed calculations were made for the 4- 3 transitions of H ions with 
Z = 22 and 30 in a plasma with parameters Ni - 101'Z2 cm-' and T-Z  eV. 

1. INTRODUCTION 

The mechanisms that broaden the lines of hydrogen and 
hydrogenlike ions ( H  ions) in a plasma have been investigat- 
ed quite in detail.'-' The level splitting in the total angular 
momentum of the electron (i.e., of the fine structure), how- 
ever, is usually neglected (see, e.g., Ref. 3, p. 32). It is none- 
theless clear that this neglect is not justified in the analysis of 
multiply charged ion line shapes, since the role of the relativ- 
istic effects increases with the nuclear charge. At the same 
time, analysis of the influence of the fine structure on H-ion 
line contours is timely in view of the recent active research 
into highly ionized (and in particular, laser) 

We present here estimates (Sec. 2 )  that show the sub- 
stantial role played by the fine splitting of n<4 states for 
multiply charged H ions in a plasma having the frequently 
considered parameterss7 (ion density Ni - 10I7Z * cm-', 
ion temperature T-Z  eV, H-ion nuclear charge Z > 10). 

We present also calculations (Sec. 3 )  that demonstrate 
the strong influence of the fine structure on the character of 
Stark splitting. For example, owing to the presence of quasi- 
crossing terms, certain adiabatic terms have a nonmono- 
tonic dependence on the field strength. 

We show, finally (Sec. 4) ,  that the nonlinear character 
of the Stark effect leads to a radical change of the line con- 
tour compared with the results of the usual nonrelativistic 

In particular, the line contour turns out to be 
asymmetric, there are several maxima near the frequencies 
corresponding to those microfield values at which the Stark 
shift reaches an extremum, and also near transitions between 
weakly displaceable components. Comparison with the re- 
sults of the usual t h e ~ r y l - ~ , ~  shows that allowance for the 
fine struture decreases the effective line width. 

2. SOME ESTIMATES 

When considering the stark effect, the relativistic split- 
ting of a level n can be neglected only if 

is much smaller than the splitting 

due to the electric field F, i.e., if 

Here a = 1/137 is the fine-splitting constant, Z the nuclear 
charge, and D, the H-ion dipole moment. If we use for the 
estimate the average Holtsmark (static) microfield pro- 
duced in the plasma by the ions (Ref. 3, p. 44), viz., 

( Z  is the average charge of the plasma ions), it is clear that 
neglect of the fine structure is justified only at a sufficiently 
high ion density 

For simplicity we put here and elsewhere 2-Z. 
If condition ( 1) is not met, the stark effect becomes 

nonlinear in the field, and this should influence strongly the 
line shape. 

Note that the condition that the field be quasistatic 
(i.e., that I F  I/F be small compared with D,F) sets also the 
lower bound of the ion density (Ref. 3, p. 27): 

Here ZZZ, A = 2 2  is the atomic weight of the ion, and n' is 
the principal quantum number of the lower level. It is clear, 
however, that for sufficiently large Z and moderate tempera- 
tures 

there exists a range of Ni at which the broadening by ions is 
static, but the fine structure must be taken into account in 
the calculation of the level shifts. This is the case, for exam- 
ple, for an H-ion plasma with parameters Ni - lOI7 ~ m - ~ ,  
T S  Z *, and Z >  10, which is of interest for the feasibility of 
amplification on the 4- 3 transition of H ions."7 We present 
therefore, below, calculations for the 4-3 transitions of 
multiply charged ions (Z = 22 and 30) at Ni and Tsuch that 
the ion broadening can be regarded as static, but the fine 
structure is radically manifested in the line shape. 

The natural and the electron-impact broadening can be 
neglected at the plasma parameters of interest to us. Com- 
paring thus the electronic width y, =: 30N, n4/Z 2u, (Ref. 2)  
(N, is the electron density and u, =: (2T, /me ) ' I2  is their 
characteristic thermal velocity) with the static width 
-n2N2", we find that the broadening by electrons is sub- 
stantial only if 
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Te - Z  eV and N, -ZNi ). At these densities condition ( 1 ) 
is met and the fine structure of the levels is inessential. 

We take into account below also the Doppler broaden- 
ing due to the thermal motion of the radiating ions. The ion 
motion is here assumed free, which also limits their density. 
More accurately, the Doppler width should be less than the 
heavy-particle collision frequency (see, e.g., Ref. 8, p. 25). 

For Coulomb collisions, this condition yields 

More substantial in an expanding plasma is frequently the 
Doppler effect due to the microscopic m o t i ~ n , ~ ~ ' ~  It can be 
easily taken into account in actual problems if the spatial 
distribution of the velocities is known. 

It would be simplest to investigate the influence of rela- 
tivistic effects on the contour of the La line ( 2 - +  1 transi- 
tion). This is, however, not of sufficient practical interest, 
since the main contribution to the broadening of this transi- 
tion is made as a rule by the Doppler effect. On the other 
hand, when transition between excited states are considered, 
it is necessary to resort to numerical computations. 

3. NONLINEAR STARK EFFECT DUE TO THE FINE 
STRUCTURE 

H ion in the absence of a field 

Disregarding the structure and the spin of the nucleus, a 
multiply charged H ion is described by the Dirac equation. 
The complete set of quantum numbers describing the elec- 
tron state is n, I, j and m, where I is the orbital quantum 
number, j the total angular momentum, and mj the projec- 
tion of the total momentum. The quantum number I is not a 
"good" one and determines only the parity of the state. The 
H-ion energy levels are given by the Sommerfeld equa- 
tion' 1-13 

Here k = j + 1/2 = 1,2 ,..., n; I = j + 1/2 at k #n, I = j - 1/ 
2 = n - 1 at k = n, and the relativistic units me = c = fi = 1 
(a = e 2 )  are used. 

The wave eigenfunctions of the Dirac equation for an 
electron in a Coulomb field are of the form 

where ~ , , m J  is a spherical spinor, 1 = 0, 1, ..., n - 1, I ' = 2j - I, 
r is the distance from the nucleus, and rare the angles char- 
acterizing the radius vector r; the radial wave functionsg and 
fare normalized by the condition J (g2  + f ,)r2dr = 1. 

The states described by (5)  and (6)  are degenerate both 
in the projections m, of the total angular momentum and in 
the orbital momentum I. The radiative corrections to (5)  lift 
the double degeneracy in I. The most significant here is the 
splitting of the states ns,,, - np,,, (Lamb shift), but even 

this is < 3% of the total fine-structure interval (at Z -  20) .I4 
The radiative corrections to the levels j# 1/2 are negligibly 
small. 

Description of the Stark effect 

The only conserved quantum number in an external 
uniform electric field is the projection mj of the angular mo- 
mentum on the Z axis along which the field is directed. In a 
superweak field, when the level shift is much smaller than 
the Lamb shift, a quadratic Stark effect takes place. With 
increasing field, states with I = j f 1/2 are mixed in and the 
Stark effect becomes linear. The energy shifts are then deter- 
mined in the Pauli approximation: 

The + sign pertains to sublevels with j = 1 f 1/2. The shift 
of the state with j = n - 1/2 is quadratic in the field. 

Further increase of the field leads to mixing of states 
with different j. Analytic expressions for the shifts in such 
fields were obtained only in the case n = 2 (Ref. 15). For the 
cases n = 3,4 of interest to us we must use numerical meth- 
ods. In strong field, when E,, (F) %En, - ,,, - En,,, , the fine 
structure is insignificant, the Stark effect is linear and is de- 
scribed by the known nonrelativistic parabolic-coordinate 
 equation^"^'^*'^ (for the relativistic corrections see Ref. 15). 

We shall be interested in the case of intermediate fields, 
when 

The splitting en, (F) in the field is weak compared with the 
distance to the neighboring level with another quantum 
number En , - En,. , n #nr, and the radiative corrections are 
neglected. In this case it is convenient for the unperturbed 
Hamiltonian H, to define in the Dirac Hamiltonian 

in such a way that the perturbation is "reckoned" from the 
state En,,, 

Here PnjmJ = In, j,  m, ) (n, j, m, I is the operator of projec- 
tion on the state In, j, m, ). 

Since the shifts are small, it suffices for our purpose to 
use first-order perturbation theory in the external field F. 

Owing to the doublet degeneracy of the unperturbed 
states in I the zeroth-approximation wave functions must be 
chosen in the form of the symmetrized combinations: 
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and 

In, 1, j ,  mj> at j=n-'1,. 

The point is that the choice of any other basis leads, in first 
order perturbation theory, to a radical difference of the F- 
dependences of the physical quantities at F = 0. Incidental- 
ly, in our case the vicinity of the point F = 0 is inessential, 
since the microfield distribution function at this point is zero 
(see Sec. 4).  We have therefore diagonalized the perturba- 
tion operator ( 1 1 ) in the basis of the functions In, I, j,  m, ). 

Since m, is a good quantum number, the matrix (n, I, j, 
m, I V In, I ' ,  j', mj') is block-diagonal and can be separately 
diagonalized for different values of m,. For a fixed m,, the 
diagonalized matrix V has a dimensionality (2(n - Imj I ), 
its diagonal consists of the level shifts relative to the state 
np,,, , and the off-diagonal quantities are 

C L ' ' ~ F ( ~ ,  I ,  j ,  m,lzln, I', j', m,). 

The matrix element here is a particular case of the more 
general expression 

( Y,, are spherical harmonics), an expression necessary for 
the calculation of the radiative-transition probabilities. The 
explicit form of these expressions is given in the Appendix. 

Calculation results 

The matrix V defined by ( 11 ) was diagonalized by the 
Jacobi orthogonal rotations method." This yielded a matrix 
S that diagonalizes the perturbation, S -' VS = E(F) .  

We note some of the results (see Fig. 1 ). At large values 
of m, the Stark effect changes from quadratic to linear in 
weaker fields than in the case m, = 1/2. This is due to the 
small splitting of the states with large angular momentum 
n - 1/2>j> mi. The terms of the interacting states do not 
cross in the adiabatic approximation, as is in fact the case for 
the dependences of E,, on F a t  various m, . The repulsion of 
the terms in the quasicrossing terms leads to a nonmono- 
tonic dependence of the shift of the symmetric state In, 1/2, 
1/2)'+' on F. This circumstance is most important, since 

FIG. 1. Dependence of the Stark splitting of levels n = 3 ( a )  and n = 4 
(b)  at m, = 1/2 of a multiply charged ion (Z = 22) on the field strength 
F. The field strength is in units of the characteristic Holtsmark field 
F,, = 2 . 2 Z N f ' ' ~  lo8 V/cm (N, = 10"Z2 cm-3 = 4.84. 10'9cm-3). The 
+ ( - ) sign indicates that the wave function corresponding to the given 

level becomes symmetric (antisymmetric) as F-0. 

maxima of the spectral functions occur at frequencies corre- 
sponding to an extremum of the E ,  , (F) dependence. When 
account is taken of the interaction of the fine-structure sub- 
levels, the only terms that are not shifted are those with 
Im, I = j  = n - 1/2. Note that in the Pauli approximation 
(7 )  the states wth arbitrary m, are not shifted at j = n - 1/ 
2. This is due to neglect of the couplings of the states 
j = n - 1/2 to the other levels. Incidentally, the shifts of the 
levels that are immobile in the strong-field limit are small in 
intermediate fields. Near the corresponding frequencies 
there are also maxima of the spectral functions (see Sec. 4) .  

Probabilities of radiative transitions 

Analysis of the relativistic effects on the probabilities of 
allowed, weak ( E  2, M 1, etc. ), and forbidden radiative tran- 
sitions has shown that, accurate to 5%, the dipole approxi- 
mation is adequate at Z 5 40. The radiative-transition proba- 
bilities are then 

A (n ,  a ,  m-+nf,  a', m') 

Here Sa8 (F) are elements of the matrix S, which determine 
the coefficients of expansion of the wave function of the state 
a of the "dressed" basis (which takes the field F into ac- 
count) in terms of the wave functions p of the unperturbed 
basis, and wnnl are the frequencies of the n -n' transition. 

The only selection rule for the radiative transitions ( 13) 
is the condition ( m  - m'l 5 1. Other selection rules are sub- 
stantially violated because of mixing of nj states of differing 
parity. The number of allowed transitions in the field is 
therefore quite large. For the 4 -+ 3 transition at a field inten- 
sity of the order of the splitting there are 298 transitions with 
probabilities ranging from 1% to 30% of the probabilities of 
the transitions allowed in the absence of the field. 

4. SPECTRAL FUNCTIONS OF THE TRANSITIONS 4+3 

General formulas 

The line contour of the H-ion a -P transition in a plas- 
ma is determined by the convolution of the Doppler, impact, 
and Holtsmark contours: 

Sap ( E )  = l a p  ( E )  /Naa, (14) 
m m 

Here 

2 
H(.) = - J y sin exp [- (+)*I dy 

nx 0 

is the Holtsmark distribution function of the ionic micro- 
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FIG. 2. Spectral functions S,-,, ( E )  for Z = 22 (a) and Z = 30 (b).  
Curves 1-j= 1/2, 2-3/2, 3-5/2. The energy origin is that of the 
4,,,, -3s,,, transition [see Table I for the values of the maxima of the 
spectral functions S,"_";, = max,((S,-,, ( E ) )  and of the rates of the 
spontaneous transitions A ( 4 -  3, j )  1. 

field, F,, = 2.6031ZeN f'3 is the characteristic value of the 
field,'s3 Ea8 (F) is the energy of the a-0 transition with 
allowance for the shifts of the levels a and 0 in the field F, v, 
is the characteristic thermal velocity of the ions, and rap are 
the elements of the matrix that determines the relaxation due 
to radiative transitions and collisions with the electrons. 

We shall neglect broadening due to spontaneous radia- 
tive transitions and to collisions with electrons. (Note that 
to take collision broadening into account it is necessary to 
diagonalize the operator V + i r )  . Calculating the limit ( 16) 
as rao -+ 0 we get - 

Calculation results 

The line contours were calculated using Eq. ( 17) for a 
net with mesh 0.02 eV. The steps in Fwere variable, starting 
from the requirement that the line contours be described 
with accuracy not worse than 5%. To obtain the summary 
spectral function of the 4- 3 transition, information is nec- 
essary on the relative populations of the level n = 4.  Esti- 
mates show that at the considered plasma parameters 
(N, z 10" Z 3  [ ~ m - ~ ] ,  T, ZZ [eV] ) the states with n = 4 
aredistributed in proportion to the statistical weights. At the 
same time, the levels with n = 3 do not "have time" to be 

TABLE I. Characteristics of 4- 3 j transitions. 

completely mixed. Only the populations of the degenerate 
states with like j are proportional here to the statistical 
weights. We therefore calculated in place of a single spectra4 
function W,, ,  (E) the three functions 

for j= 1/2, 3/2, and 5/2 respectively. Here a "runs 
through" all the states with n = 4, and 0 all the states with 
n = 3 and with the given fixedj. Note that the normalization 
constants for j  = 1/2, 3/2, 5/2 are related as 1:2.98:2.66 for 
Z = 22 and as 1:2.99:2.7 for Z = 30. 

Figure 2 shows the spectral functions S(E) = S ( E ) /  
.Tax normalized to their maximum values Pax 
= max,S(E). The values of ST:;,";, and the probabilities of 

the spontaneous transitions are listed in Table I. 
The most important feature is that the spectral func- 

tions are asymmetric (including also the summary spectral 
function S443 ). This is due to the asymmetric character of 
the fine splitting. Maxima exist near the extrema (E-0.03 
eV for Z = 22 and E z 0 . 1  eV for Z = 30) and at energies 
corresponding to weakly mixable components. 

The line shapes for Z = 22 and 30 are different. The 
reason is that we have assumed N, -2 and accordingly 
D,F,,-Z 'I2. At the same time, the fine splitting is propor- 
tional to Z4. Therefore the interaction of the sublevels with 
different j assumes a lesser role with increase of Z,  and the 
shifts are described in the Pauli approximation (7) .  The lar- 
gest deviation from (7)  occurs at Z=: 15. 

5. CONCLUSION 

We conclude by considering the extent to which the 
usual estimates of the quasistatic line width hold for multi- 
ply charged ions. It must be noted above all that in those 
cases when condition ( 1 ) is violated the concept "linewidth 
of the n - n' transition" becomes practically meaningless. 
One can speak of linewidth of the individual components 
n j-n'j', although their spectral functions can have several 
maxima. The effective widths obtained in the present paper 
for the transitions 4 -  3, j = 1/2, 3/2, 5/2 are respectively 
0.16,0.18, and0.18eVforZ=22and0.56and0.4eVfor  
Z = 20. The customary estimate using the formula 

AE=8,3.10-'5(n2-n'2) ( N i  [cmP3 I )"  rev], 

proposed by Griem," yields 0.8 eV for Z = 22 and 1.2 eV for 
Z = 30. These values are 2-5 times larger than the results of 
the numerical calculation. Estimates based on the approxi- 
mate expression (7)  for the term shifts come somewhat clos- 
er to the exact values of the effective widths, but they remain 
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incorrect for the terms with n = n - 1/2 (see Sec. 3 ) .  Thus, 
an adequate description of the Holtsmark broadening of 
multiply charged ions in a plasma calls for a complete analy- 
sis of the Stark splitting, similar to that carried out above 

APPENDIX 

We present an expression for t :  

The angle integrals Q can be expressed in terms of Clebsch- 
Gordan coefficients and 6 j symbols9 ( I  ' = 2 j - I ) :  

Q (l,j,mi, Ljzmz) 

The radial integrals (g,rg,)  and (f,rf,) are given by 

Here r is the Euler gamma function, E~ are the Dirac ener- 
gies of the level n, j,, and the remaining quantities are de- 
fined as follows: 

The integrals R, from which we have left out some of the 
invariant parameters, are expressed in terms of integrals of 
confluent hypergeometric functions cP: 

R(a ,  b, a, $, n,, n,) = jxa+b+'e-(a+8)s/20 (-n,, 2a+l; a x )  

where ,F, is the Gauss hypergeometric function and ( a ) i  is 
the Pochhammer symbol. 
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