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Formulas relating the cross sections for collision-induced n lL  n' and n +n' transitions between 
highly excited atomic levels to the differential cross section for elastic scattering of an 
ultralow-energy electron by the perturbing atom and the kinetic energy distribution function 
for a weakly bound electron in the initial state are derived within the framework of the quasi- 
free electron model with the aid of the impulse approximation. A theory, based on these 
formulas, of the collisional quenching of the Rydberg states of an atom A(n1) is developed 
which, together with the potential scattering of an electron e- by the perturbing atom B, takes 
account of the presence of a low-energy resonance on a quasi-discrete level of the negative ion 
Bp, and is therefore applicable to collisions with the alkali-metal atoms. It is shown that the 
behavior and magnitudes of the cross sections for this process differ essentially from what was 
found in earlier investigations of the case of quenching of Rydberg states by inert-gas atoms, 
for which it is sufficient to use the scattering-length approximation. Specific calculations of the 
cross sections for inelastic and quasielastic quenching of the nS and nD states of Li and Na 
atoms in their own gases (for which atoms reliable values for the 3P-resonance energy E, and 
width r, are available) are carried out. It is established, in particular, that the relative roles of 
the potential and resonance scattering depend essentially on the principal quantum number n 
and the magnitude of the energy defect A&,,,,, for the nl-n' transition. The results obtained in 
the paper are used to explain the available experimental data on the Rb(nS) + Rb Rydberg- 
level quenching and K(nS) + Rb Rydberg-level broadening processes, and the energy E, and 
width r, of the 3P resonance on the quasidiscrete level of the negative ion Rb- are determined 
from the experimental data. 

1. INTRODUCTION 

At present the processes of collisional quenching of the 
Rydberg states of atoms by neutral particles are being active- 
ly investigated both experimentally and theoreti~ally.',~ The 
theory of these processes is based on Fermi's quasi-free elec- 
tron model, which was developed in a number of papers3-' 
(for a more comprehensive bibliography, see Ref. 1, Chaps. 
6-8). In this model the collision of a highly excited atom 
A(n1) with a perturbing atom B is treated as an elastic scat- 
tering of the outer quasi-free electron by this atom, the ion 
core A+ being only responsible for the shaping of the elec- 
tron momentum distribution in the given Rydberg state In1 ) . 
The major portion of the theoretical investigations has, until 
recently, been devoted to the investigation of the process of 
quasielastic quenching of Rydberg levels as a result of 
nl-nl' transitions involving a change in the orbital angular 
momentum, but not in the principal quantum number n 
[i.e., as a result of I-mixing transitions (see Ref. 1, Chaps. 6 
and 8 ) ]  

But recently there were independently obtained analyt- 
ic formulas for the cross sections for inelastic n - n' (Refs. 8- 
10) and nl-n' (Refs. 9 and 10) transitions between highly 
excited atomic states and also for the corresponding rate 
 constant^.^ In Ref. 9 the semiclassical approach developed in 

Ref. 7 for the I-mixing process (AE,,,,, . = 0)  is generalized 
to the case of transitions involving a change in the energy of 
the Rydberg atom ( A&,,,,. #O), while the results obtained in 
Ref. 8 and 10 are based on the impulse approximtion576 and 
the binary theory of form factors (see Ref. 1, Chap. 11 and 
Ref. 11 ) . These formulas are used in Refs. 9 and 10 to quan- 
tiatively explain the experimental data on the inelastic-colli- 
sion-induced quenching of the Rydberg nl levels of alkali- 
metal atoms in inert gases in the case of low I values, when, 
because of the large magnitude of the quantum defect S,, the 
major role is played by the transitions involving a change in 
the principal quantum number n. Numerical calculations of 
the cross sections for quenching of atomic nl levels in inert 
gases are carried out in Refs. 12 and 13 within the framework 
of the impulse approximation for the region of small values 
of the nl-+nf transition energy defects A&,,,,. (i.e., for suffi- 
ciently high values of n ) .  It should be noted that the domi- 
nant contribution to the cross sections for both quasielastic 
and inelastic quenching of the highly excited levels in the 
experimentally investigated region of quantum numbers n is, 
as a rule, made by the scattering of the perturbing atom B on 
the weakly bound (quasifree) electron e- of the atom 
A(n1) . But in a number of situations the scattering on the ion 
core A' is important, even decisive (see, for example, Refs. 
14-16 and 9) .  
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The presently existing theory, based on the quasifree 
electron model, of collisional quenching of the Rydberg 
states of atoms (Ref. 1, Chaps. 6 and 8, and Refs. 6-12) 
pertains to the case of slightly polarizable perturbing atoms 
B (in particular, the atoms of the inert gases), for which the 
standard variant" of the effective-radius theory is valid. For 
such atoms the first term of the expansion1' of the amplitude 
f,, of the elastic scattering of an ultralow-energy electron e- 
reduces to the scattering length L and a second (correction) 
term, due to the polarization interaction, depends only on 
the magnitude Q of the momentum transferred in the colli- 
sion of the particles e- and B. A qualitatively different situa- 
tion obtains in the presence of a low-energy resonance at a 
quasidiscrete level of the perturbing particle B, a resonance 
whose role in the broadening and shifting of the Rydberg 
levels is investigated within the framework of Alekseev and 
Sobel'man' theory5 in Refs. 18 and 19. Thus for example, for 
the alkali-metal atoms the presence of the low-energy 3P res- 
~ n a n c e ~ ' . ~ '  and the fact that they are highly polarizable lead 
to a situation in which the amplitudef,, of the elastic scat- 
tering of the ultralow-energy electrons essentially depends 
on both the electron energy E = k 2/2 and the scattering an- 
gle e,,.. In this case the cross sections for collision-induced 
nl- n' and n -. n' transitions between the Rydberg levels can- 
not be expressed in terms of the form factors [as is usually 
done (see Refs. 1,6, and 1 1 ) 1, and there are no formulas that 
are valid for an arbitrary form of the elastic electron-atom 
scattering amplitudef,, (E, e,,. ). 

In the present paper we derive such formulas with the 
aid of the impulse approximation and also with the use of the 
quasicontinuum approximation for highly excited atomic 
states (see Sec. 2).  We show that, to compute the cross sec- 
tions for collision-induced nl-. n' and n - n' transitions, we 
need information about the energy and angle dependences of 
the scattering amplitudef,, ( E ,  e,,. ), whereas the cross sec- 
tions for broadening and shifting of the Rydberg levels are 
determined within the framework of the Alekseev-Sobel- 
'man theory5 by the electron-atom forward scattering ampli- 
tudef,, (E, ekk' = 0).  We carry out on the basis of the for- 
mulas obtained a theoretical analysis of the processes of 
collisional quenching of the highly excited states of an atom 
A (nl) for the case in which a low-energy resonance occurs at 
a quasidiscrete level of the negative ion B- in the elastic 
scattering of the ultralow-energy electrons e- by the per- 
turbing particle B (see Sec. 3). We carry out specific calcula- 
tions of the cross sections for inealstic and quasielastic 
quenching of the nS and nD levels of alkali-metal atoms by 
atoms of their own gases [Li(2S), Na(3S), and Rb( 5s)  ] 
with allowance for both the resonance and potential scatter- 
ing (see Sec. 4).  For the case of the quenching of lithium and 
sodium atoms we identify ranges of the values of the quan- 
tum number n (see Figs. 1 and 2 below) in which the role of 
the low-energy 3P resonances at the quasidiscrete levels is 
expecially important. 

We find that the experimentally observed large cross 
sections for quenching2%nd broadening23 of the nS Ryd- 
berg levels of rubidium and potassium atoms in collisions 
with Rb (5s)  atoms (see Fig. 3 below) are accounted for by 

the contribution of the 3P resonance, and cannot be de- 
scribed within the framework of the Fermi model with the 
use of only potential scattering. We propose a method for 
determining the parameters of the low-energy resonances in 
electron-atom (e- - + B )  scattering from the points on, and 
the slope of, the plot of the experimentally obtained quench- 
ing or broadening cross sections for the highly excited levels 
of the atom A(n1) against the principal quantum number n. 
We find with the aid of this method that, for the 3 P r e ~ ~ n a n c e  
in the elastic scattering of electrons on Rb (5s)  atoms, E, 
= 1.8 x lop2 eV and F, = 2.3 x eV. They are in good 

agreement with the theoretical data obtained in Ref. 21 on 
the basis of a modified effective-radius theory. 

2. CROSS SECTIONS FOR COLLISION-INDUCED nl+n'and 
n+n'TRANSITIONS BETWEEN HIGHLY EXCITED ATOMIC 
LEVELS IN THE IMPULSE APPROXIMATION 

Let us derive the formulas relating the cross sections for 
collision-induced transitions between the Rydberg states of 
the atom A(n1) to the differential cross section for elastic 
scattering of an ultralow-energy electron e- on the perturb- 
ing atom B. In the case when the colliding atoms A(n1) and 
B have thermal energies E, their relative velocity V, = (2E / 
p ) ' I 2  (p  is the reduced mass of the particles A+ and B) is 
substantially smaller than the velocity v, - l/n of the weakly 
bound electron in an orbit in the entire region of not too high 
values of n ( 5 100) that is normally investigated in experi- 
ments. In this case the cross section for collision-induced 
nl-n' transition is given in the impulse approximation by 
the following formula" (see Ref. 1, Chap. 8 )  : 

  ere f zLm' (q, q') is the nlm -.nfl 'm' transition ampli- 
tude; k, k' = k + Q and q = p V,, q' = q - Q are electron 
(e-) momenta and the momenta associated with the rela- 
tive motion of the particles A' and B before and after the 
collision; Qis the momentum transfer; f,, (k,kl) is the elastic 
electron-atom scattering amplitude; and G,,, ( k )  is the elec- 
tron wave function in the momentum representation. 
Further, let us see (as is done in form-factor calculations for 
bound-bound transitions between highly excited atomic 
states [see, for example, Ref. 1 1 ) ] the quasicontinuum ap- 
proximation. Accordingly, let us represent the cross section 
( 1 ) in the form 
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where AE,,,,. = E,, - is the change that occurs in the en- 
ergy of the highly excited atom on undergoing the 
nl-n' transition in question [E,. = - 1/2nt2, E,, = - 1/ 
2(n - andS, is thequantumdefect], li) = Inlm), and 
If) = Inf lpf) .  The d~~ = dnf/nj integration in (2) has 
been replaced by summation over n,.. It should be noted that 
the formula (2 )  gives the cross section for transition from 
the initial nl level of the atom A (nl) to all the n'l ' sublevels of 
the final n' level that are hydrogenlike, and thus have the 
same energy E,, = - 1/2nt2. Owing to the rapid decrease of 
the quantum defects 8,. as the quantity I ' increases, the final 
Rydberg n'l' states (even for the heavy alkali-metal atoms 
being investigated here) can practically be considered to be 
hydrogenlike, starting from 1' > 2 or 3. As to the contribu- 
tion of the first few nonhydrogenic n'l '  states (i.e., of the 
states with 1'<2 or 3) to the total nl-n' transition cross 
section 

it can be neglected in the case when n, n'% 1 because of the 
small statistical weights of these states (for greater details, 
see Refs. 8 and 9) .  

Let us perform the subsequent transformations in the 
Heisenberg representation. To do this, we use the spectral 
decomposition of the S function, as well as the well-known 
properties of the time-translation operators exp( - iHt): 

in the impulse approximation being used here would be ex- 
ceeded if all the terms of the expansion after the first one 
were retained (skce all the terms containing the potential- 
energy operator U for the interaction of the electron e- with 
the ion core A+ were neglected in the derivation of the initial 
formula ( 1 ) [see Ref. 24, Chap. 11 ) 1. Accofidingly, in (4)  
we can assume that the operator exp ( - iHt) commutes 
with the scattering amplitudef,, (k,kl), so that, using the 
completeness property 3 1 Gf ) ( Gf 1 = 1 of the eigenfunc- 
tions of the Hamiltonian H for the outer electron of the Ryd- 
berg atom A(nl),  we arrive at the following result: 

on 

x exp (-iA~,l,nvt)fe~' (k, k+Q) exp (iX?'t) 

Thus, we can, within the framework ofthe quasifree electron 
model, eliminate the dependence of the cross section for col- 
lision-induced nl-n' transition between the Rydberg levels 
on the final state, and express this cross section in terms of 
some operator averaged over the initial state li) of the atom. 
This fact is a consequence of the impulse approximation, and 
also of the quasicontinuum approximation for the highly ex- 
cited atomic levels, and is in accord with the general results 
of the theory of quasifree scattering on a system of weakly 
bound particles (see, for example, Ref. 24, Chap. 1 1 ) . 

Next, let us use the well-known Baker-Campbell-Haus- 
dorff formula 

exp(b) exp(ij) = exp(A+B+ll,[A, B]+'/Iz[A, [A,  B]] 

exp(-ifit) IGi (k) )=exp(-kit) IGi(k) >, +'II?[[A, a ] ,  Bl+.  . .), (7 )  

(G, (k') I exp(iPt)  =(G, (k') 1 exp (ie,t), ( 3 )  

Here fi and 2 ' are the Hamiltonians corresponding to the 
initial k and final k' = k + Q momenta of $e highly excited 
electron in the momentum representation; U(i)  is the poten- 
tial-energy operator for the interaction of this electron e- 
with the ion core A+; and i. = id /d k is the radius-vector 
operator. We can, using the relations (3) ,  transform the 
expression (2)  for the collision-induced nl-n' transition 
cross section into the following form: - 

x(G~ (k+Q) I exp (iRrt)feB (k, k+Q) exp (p in t )  I Gi(k)). (4) 

Further, let us use the following operator relation: 

exp (iAt) feB exp (-ifit) 

=jeB+i [A, fea]t+'/?[fi, 18, f e e l  I (it)d+ . 
=feB+i[U, fee]t+'lz[U, [u, f e s I I  (it)*+. .. 9 ( 5 )  

keeping in mind the fact that the degree of accuracy aimed at 

h h 

to expand in a series the operator exp(iH 't)exp( - iHt ), 
which determines the magnitude of the nl-n' transition 
cross section [see the formula (6)  1 : 

The following relations were also used in the derivation of 
the expression (8): 

A'-A= [ (k+Q) '-kY12=kQ+QZ/2? (9a) 
[ I ] ' ,  81=Q [k, l?l=iQP. (9b) 

Here $ = $(i) is the operator for the force [exerted by the 
ion core A+ on the outer electron e- of the atom A(n1) ] in 
the momentum representation. Notice that it is more con- 
venient to derive the second relation (9b) in the coordinate 
representation (in weich the force F = - dU/dr and the 
momentum operator k = - id /dr), and then take into ac- 
count the property of invariance of commutation relations 
on going from one representation to another. 

As is well known, for the quasifree electron model to be 
applicable, it is necessary that there be transferred to the 
outer electron of the highly excited atom A(n1) during its 
scattering by the perturbing atom B a characteristic momen- 
tum Q,, substantially greater than the impulse 
Ap - F,, + re, of the force exerted on this electron by the 
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ion core A+ during the characteristic e--B interaction time 
T,,, i.e., it is necessary that the following conditions be satis- 
fied (see, for example, Ref. 1 ) : 

Here re,+ is the characteristic dimension of the region of 
interaction between the electron e- and the core A+ 
(FeA+ -r,f is the corresponding force), i.e., of the e--A+ 
interaction region that makes the dominant contribution to 
the cross section for the nl-n' transition in question. Thus, 
within the framework of the impulse approximation used in 
the present paper, we should neglect in the formula (8 )  the 
change that occurs in the e--Af interaction potential ener- 
gy during the short period T,, of quite intense interaction 
between the electron e- and the perturbing atom B, and 
retain only the first term (i.e., the term linear in t ) ,  which 
determines the change that occurs in the kinetic energy of 
the quasifree electron in the course of the scattering of this 
electron by the particle B. Substituting, with allowance 
made for the foregoing, the result (8 )  into the expression 
( 5  ), we obtain for the collision-induced nl-n' transition 
cross section the expression - 

Evaluating the time integral in ( 11 ), and replacing the do,,. 
= dip,,, QdQ jqq' integral (O,,. is the solid angle in the rela- 

tive motion of the heavy particles A+ and B)  by an integral 
taken over the polar angle p,,. and all possible values of the 
momentum transfer Q, we have 

where 

Notice that the6 function in this formula separates out from 
the entire momentum space those momentum values which 
correspond to the given classical energy transfer AE,,,,, for 
the nl-n' transition, and plays the role of a microcanonical 
distribution. 

Let us represent the momentum wave function of the 
Rydberg electron in the form of a product of a radial and an 
angular part: G,,, ( k )  = g,, ( k )  ( k )  Y,, (8, ,pk 1, and sum 
over the magnetic quantum numbers m in ( 12) with the aid 
of the following well-known relation for the spherical har- 
monics: 

Let us orient the z axis of the coordinate system along the 
vector Q (so that cos BkQ = cos 8, = {), and let us repre- 
sent the element of solid angle associated with the electron in 

the form dRk = - dgdip,. Then, taking account of the fact 
that d k = k 2dkdRk, and performing in the formula ( 12 ) the 
integration over the electron and heavy-particle polar angles 
dip, and dip,,. , we obtain the following expression for the 
cross section for collision induced nl-n' transition between 
Rydberg atomic levels: 

where 

~ , = k ,  ( Q )  /k, ko ( Q )  = ( A E ~ I ,  n r - Q " I 2 )  1Q. 

The amplitude of the elastic scattering of the electron e- by 
the perturbing atom B in this formula is considered to be a 
function of the wave number and the momentum transfer Q, 
which is uniquely connected with the electron-scattering an- 
gle: Q = 2k sin ( Okk. /2). It can be seen directly from ( 13) 
that, for a given value of the momentum transfer Q, only 
those values of the wave number which lie in the range 
Ik,(Q) I < k < cc (i.e., for which the condition 0( /{,I ( 1 is 
fulfilled) contribute to the nl-n' transition cross section. 
Evaluating the d l  integral in the formula (13) with 
allowance for this circumstance, we arrive at the following 
result: 

Qmor - 
It 

o n l . n V = - J d Q . I  dklre.(k,Q)l'lgnl(k)12k. (14) 
V ~ 2 n ' 3 Q m 1 n  I%('?)! 

In the particular case when the quantity f,, = f,, (Q) ,  i.e., 
whenf,, depends only on the momentum transfer Q (and, 
consequently, the nl-n' transition cross section can be ex- 
pressed in terms of the corresponding form factors), the 
well-known binary-theory result" for the bound-bound 
transition cross section follows directly from the formula 
( 14) obtained above. 

Let us now derive a more convenient- for specific cal- 
culations- expression for the cross section in terms of the 
scattering amplitudef,, (E,Y), treated as a function of the 
electron kinetic energy E = k 2/2 and the cosine of the scat- 
tering angle v = cos Okk. . Let us at the same time take ac- 
count of the fact that, in the region of quantum numbers 
n 5 100 of interest to us, we have, for all values of 
@ern,, - ~AE,I,,, I/VE, IAE,,,, I =: 16, + An I/n3<Q */2, so 
that we can set Ik,(Q) / =.Q /2 and Q,,, =: cc in ( 14). Then, 
setting in ( 14) E = k 2 / 2  and v = 1 - Q ' / 4 ~ ,  and changing 
the order of integration, we finally have 

where emin = Q k, /8 =: I / 2/8 V i  . This formula gives 
the sought relation connecting the cross section for collision- 
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induced nl-n' transition between Rydberg levels of the 
atom A(n1) with the differential cross section 
da;F/dfl,,. = If,, (E,B,~ ) l 2  for elastic electron-atom scat- 
tering and the kinetic energy distribution function Ig,, (&) 1' 
for the highly excited electron e- in the initial state. 

It should be noted that, in experiments on the colli- 
sional quenching of the Rydberg levels of an atom in a buffer, 
or its own, gas, it is the total nl-n' transition cross section 
cJf, = Z,.a,,,,, summed over all the final levels n' [or, more 
exactly, the mean value ( ~ 5 ) .  = ( V,u$ ( V, ) )  ./( V,) . of 
this quantity at the given gas temperature TI that is mea- 
sured. Then, in the case of relatively low gas pressures, we, as 
a rule, deal with the cross sections ( a 5  ) for quenching of 
specified, selectively excited (with the aid of tunable lasers) 
Rydberg nl levels with definite values of the principal ( n )  
and orbital (I)  quantum numbers (see Ref. 1 ). For hydro- 
genlike nl levels the highly-excited electron kinetic energy 
distribution function /g,, ( E )  / *  needed for the computation 
of the nl-. n' transition cross sections from the formula ( 15) 
can, in the general case, be expressed in terms of the Gegen- 
bauer polynomials (see, for example, Ref. 25). In the case, 
being considered in the present paper, of Rydberg nl levels of 
alkali-metal atoms with small orbital angular momentum 
values, i.e., with I<n (when the quantum defect S, of the 
initial nonhydrogenic nl level can be substantial) we shall 
use for the function /g,, ( E )  l 2  in the formula (15) the well- 
known result7*'' 

in which averaging over the period of the rapidly oscillating 
component of the semiclassical kinetic-energy (E = k '/2) 
distribution function for the electron e- has been carried 
out. 

At high gas pressures, because of the large values of the 
cross sections for the I-mixing process, there rapidly get es- 
tablished conditions for the uniform population of all the 
degenerate hydrogenlike I sublevels (in accordance with 
their statistical weights 21 + 1 ) within the limits of one ener- 
gy level with principal quantum number n. In this case the 
formula for the cross section a,,, for collision-induced n -n' 
transition between Rydberg atomic levels with different 
principal quantum numbers can be obtained directly from 
( 14) and ( 15) by replacing the function /g,, ( E )  l 2  by its 
I-averaged value Ig, ( E )  1 2 .  The function Ig, (E) 1' is then giv- 
en by the following well-known formula (see Refs. 4 and 7)  : 

3. THE nl-n' AND n+n'TRANSlTlONS IN THE PRESENCE 
OF A RESONANCE AT A QUASIDISCRETE LEVEL OF THE 
PERTURBING PARTICLE 

Let us, using the formula ( 15) obtained in Sec. 2, inves- 
tigate the collision-induced nl-n' and n-n' transitions 
between Rydberg atomic states in the presence of a low ener- 
gy resonance at a quasidiscrete level of the perturbing atom 
B. In this case the total elastic electron-atom scattering am- 

plitudes f:;' corresponding to the two possible values 
S = I S  1/21 of the total spin of the e- + B system (with 
the particle B having the spin s )  can be represented in the 
following form (see, for example, Ref. 26, $ $ 133 and 134) : 

Here f and f r  are respectively the potential and resonance 
scattering amplitudes, PLr(v)  is a Legendre polynomial, S, 
and L, are the spin and orbital angular momentum of the 
quasidiscrete level of the negative ion B-, and E, and y are 
constants determining the energy E, and width T, of the 
resonance. From ( 18) it follows that the differential elastic 
e--B scattering cross section daj;B'/dflk,, averaged over 
the two possible values of the total spin S is, in the presence 
of a resonance, given by the following formula: 

where C(S,) = (2S, + 1)/2(2s + 1 ) is the spin factor. No- 
tice that the first (resonance) and second [describing the 
spin-averaged differential cross section d ~ ~ ~ / d f l , , ~  
= lfb (E,Y) l 2  for potential scattering] terms in the formula 
( 19) are, respectively, the decisive terms at electron energies 
E close to ( E - E , ) ,  and far from (IE - E,I%E,),  the reso- 
nance. The third interference term in ( 19) is (as follows 
from the specific calculations carried out in Sec. 4)  insignifi- 
cant, and has a slight effect on the value of the cross section 
dal,'"'/dflkk, only in the narrow transition region between 
the resonance- and potential-scattering domains. 

Substituting the first term in (19) into the formula 
(15), we obtain a general expression for the contribution 
a:,,, of the resonance scattering to the cross section for colli- 
sion-induced transition between Rydberg atomic levels: 

In the case, of interest to use here, of the 3P resonance on an 
alkali-metal atom, when 

the angle integral in the formula (20a) can easily be evaluat- 
ed. This enables us to relate the resonance contribution a',,,,. 
to the nl-n' transition cross section directly with the total 
cross section a:, (E) for elastic resonance scattering of an 
ultralow-energy electron e- by the perturbing atom B and 
the kinetic-energy distribution functionlg,,(~)1~ for the 
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Rydberg electron of the atom A(n1): 
w 3 

x oelr (E) I gnl (e) 1 'E" d ~ .  (21) 
Here the c, coefficients are equal to c ,  = 15/7, c, = 20/7, 
and c, = 12/7 and the cross section 01, is, as follows from 
( 19) and (20b), given in the case of the resonance by the 
following formula: 

For this shape of the resonance contour the energy E, of the 
quasidiscrete level (i.e., the position of the peak in the elastic 
electron-atom scattering cross section a:, (E, ) = a;,, ) is 
given in terms of the prescribed E,- and y-parameter values 
by the expression 

E,= (~o!'f)*{[I+ ( l + 8 / 2 7 ~ 0 y ~ ) ' ~ ]  "f [I- ( 1 + 8 / 2 7 ~ , , y ~ ) " ~ ] ' ~ ~ ) .  

It can be seen from (21) and (22) that the absolute 
value of the cross section a:,,,, is greatest in the case of the 
nl-n' transitions for which A&,,,,,. = 0 and, in particular, in 
the case of the quasielastic process of mixing of Rydberg 
atomic states with different oribital angular momenta I, but 
the same principal quantum number n. In this case the quan- 
tity a ,,,,, = ~AE,,,,,~. 12/8 V = 0 and all the electron energies 
O<E < w [whose distribution is given by the function 
/g,,, ( E )  1'1 contribute to the cross section a:,,,. . In other 
words, the entire resonance contour / f,, ( E )  j 2  of the elec- 
tron-atom scattering amplitude lies [see (21 ) 1 within the 
integration domain. In the case of inelastic nl- n' transitions 
with energy defects ha,,,,,. =. (6,  + An)/n3 (where 
An = n' - n )  the presence of a resonance begins to have a 
significant effect on the value of the cross section a,,,,,,. 
= a:,,,,. + el,,,. in the region of principal quantum number 
values 

n>n,= (/61+Anl/2k,T/'E)'", (23) 

for which the quantity E,, 5 E,. For n <n,, the resonance 
region E-E, = k f / 2  falls outside the integration domain 
E,,, < E <  co, SO that the quantity a:,,,, is small, and the 
nl-n' transition cross section is determined largely by the 
potential scattering [the second term in ( 19) 1. It should 
also be noted that the contribution a:,,,, of the resonance 
scattering decreases rapidly as the principal quantum num- 
ber n increases in the region n % (2E, ) - ' I2 .  It is explained 
by the fact that, in this region, the increase of n leads to the 
rapid decrease of the electron density Ig,, ( E )  I 2  [see the for- 
mula ( 16) ] corresponding to the resonance energies E - E,. 
Therefore, the resonance in the electron-atom (i.e., e- -B) 
scattering should most clearly manifest itself in the inelastic 
nl-n' quenching of the Rydberg levels of the atom A(n1) if 
its energy E, satisfies the condition E, < VE/16, + An1 and, 
consequently, the quantity n, < (2E,)-'I2. 

In the case of a narrow resonance, i.e., for r, < E,, it is 

possible to obtain a simple analytic formula for the magni- 
tude a:,,,. of the resonance contribution to the quasielastic 
(Aa,,,,,. = 0 )  nl-n' transition cross section. Indeed, in this 
case we can set the energy and width of the resonance equal 
to E, Z E , ,  and and r, =.2y~;" (see Ref. 26, $ 133) and re- 
place the contour I f ;,=, (&)  /' of the resonance part of the 
scattering amplitude [and, consequently, a:, ( a )  ] in the for- 
mula (2  1 ) by the Lorentz contour 

1 
IfLr-1(e) I'm- 

(rr/2) ' 
2E, (e-E,)'+ (r,/2)L ' 

Next, using for the distribution function g,, ( E )  I 2  in the 
region of small values of the orbital angular momentum of 
the initial level of the atom A(n l ) ,  i.e., in the region I <n, the 
expression (16), and also setting in the formula (21) the 
transition energy defect AE,,,,. = 0 (and, accordingly, 
E,, = 0) ,  we arrive, after evaluating the corresponding in- 
tegral, at the following result: 

Notice that this formula can be used in the region of suffi- 
ciently high values of n, specifically, in the region n $  n, 
(where a ,,,,, <E,) ,  to estimate the magnitudes a:,,,,. of the 
cross sections for the nl-n' transitions with small energy 
defects A&,,,,,. , and also in the case when the resonance width 
and energy are of the same order of magnitude: T, - E,. 

The collision-induced nl-n' transition cross sections 
4,,,. corresponding to the potential scattering of the elec- 
tron e- by the perturbing atom B should, in the case when 
the differential cross sections d@,/dRkk, = / fz, (c,Ok,. ) l 2  
are determined at low energies E by the contribution of a 
number of partial waves I, = 0, 1,2, . . . , be computed from 
the formula ( 15). In the present paper we shall, for the pur- 
pose of elucidating the roles played by the resonance and 
potantial scatterings in the quenching of highly excited 
atomic levels by the alkali-metal atoms, use the following 
approximation in the computations of the quantity 4,,. : 

i.e., we shall use the formula 

obtained in Ref. 9 within the framework of Fermi's zero- 
range pseudopotential model (here B, is the incomplete beta 
function). In this case the quantity Len and also the param- 
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eters~,, and y (which determine the energy E,, width T,, and 
contour of the 3P resonance) are chosen such that the quan- 
tity a::(&) = a:, (E) + 4 r L  $ furnishes the best description 
of the behavior of the total cross section for elastic scattering 
of the ultralow-energy electrons both in the near resonance 
region E - E, (where cfl <a:, ) and in the far-off region 

I E  - E, I >E,  (where cf, >a:, ). This is justified, since the 
energy dependence of the resonance part a:, (E) of the elastic 
scattering cross section is much more critical than that of the 
potential part cf, (E)  of the cross section in the not too broad 
range of electron energies E corresponding to the range of 
principal quantum numbers n in question. It should be noted 
that, in the case of n -n' transitions between degenerate hy- 
drogenlike atomic levels under conditions of uniformly pop- 
ulated I subshells, instead of the expression (26) we should 
use the I-averaged expression 

[see the formulas (20) and (24) in Ref. 91. Similarly, the 
formula for the resonance contribution a:,, to the n-n' 
transition cross section is obtained directly from (21) by 
replacing the distribution function Ig,, ( E )  l 2  [see ( 16) ] by 
the function /g, (E) l 2  [see ( 17) 1.  

Let us now discuss the limits of applicability of the im- 
pulse approximation for the process of collisional quenching 
of the Rydberg states of an atom. In the case of the potential 
scattering of the outer electron e- of a highly excited atom 
A(n1) by a perturbing atom B the characteristic e--B colli- 
sion time T,, -AeB/ueB is determined by the wavelength A,, 
- I/k(r,,+ ) and velocity u,, -k(r,,* ) in the relative mo- 
tion of the particles e- and B in the region of distances 
-re,. that is important for the nl-n' (or  n -n') transition 
in question, and the momentum transfer is of the order of the 
corresponding electron momentum, i.e., Q,, -k(reAA ) 
- (2/reA+ ) 'I2. Therefore, the condition ( 10) for quasifree 
scattering ( a  condition which implies at  the same time the 
suddenness of the perturbation) can be transformed into the 
following form: r:c* > I. Furthermore, for the impulse ap- 
proximation to be applicable, the conditions re, + $ I f,, 1 ,  

1 f A +  , / and re, + A,, , which determine whether or not we can 
separately consider the two collisional-quenching mecha- 
nisms stemming from the scattering of the perturbing parti- 
cles B by the weakly bound electron e- and the core A+ of 
the highly excited atom A(n l ) ,  and also allow us to neglect 
the corresponding interference effects,24 should be fulfilled. 
The characteristic dimension of the e--Af interaction re- 
gion that makes the dominant contribution to the cross sec- 
tions for nl-n' and n -n' transitions between Rydberg lev- 
els with energies differing by AE is given by the relation9 
re, + - 2n2/ [ 1 + (nA&/ VE ) 2 ] .  Therefore, taking account of 
the fact that the B-on-At scattering amplitude [which is 
determined by the characteristic dimension of the region of 
interaction of these particles: l fA+Bl-RA+B 
- (4 + '/r) 'I2, where + ,( VE ) is the total elastic-scat- 
tering cross section] satisfies the inequality IfA+, > 1 a.u. in 
the region of thermal collision velocities VE,  and that the 

amplitude I f,, I -LeR k 1 a.u., we arrive at  the following re- 
striction on the admissible values of the principal quantum 
number n: 

Specific estimates show that the impulse approximation can 
be used to describe the quenching of highly excited levels in 
the region of sufficiently high values of n, specifically, in the 
region n 2 no, where the quantity no depends on the types 
colliding atoms A(n1) and B. For inelastic collisions of Ryd- 
berg atoms with inert-gas atoms, the characteristic values of 
no in the thermal-velocity region range roughly from 10 to 15 
(for greater details, see Ref. 9 ) .  

Let us now consider the situation in which the reso- 
nance scattering plays an important role. In this case in the 
region of small values of the energy defect AE,,,. , where 
E,,, < E,, the dominant contribution to the quenching cross 
sections is made by electron energies E-E, = k f / 2  and, 
correspondingly, distances re,+ -E; I ,  while the scattering 
amplitude If,, (E-E,) I -A, = l/k,. Therefore, the condi- 
tions re,+ > If,, 1, I fA+, I and re,+ >A,, assume the follow- 
ing form in the present case: 

and are consequently fulfilled in the case of low-energy re- 
sonances. For the impulse approximation and the standard 
decay model for a quasidiscrete level in a background of a 
quasicontinuum of highly excited atomic states to be appli- 
cable, it is also necessary that the resonance width T, be 
significantly greater than the energy level spacing 
AE,,,+, - K 3 ,  i.e., that 

In the case, under consideration here, of the 'P resonances 
on the atoms of the alkali metals Li, Na, and Rb, this condi- 
tion is fulfilled when n 9 8,7, and 10 respectively. In the case 
of inelastic quenching in the region n 5 n, (E,,,,, 2 E, ) the 
dominant contribution to the nl-n' transition cross section 
is made by the electron energies E k E,,,,, even in thge pres- 
ence of resonance scattering. Accordingly, the region of dis- 
tances r,, is determined as before by the condition (27).  
But in the case of thermal collisions of Rydberg atoms with 
alkali-metal atoms, the characteristic dimension of the 
B-A' interaction region, as determined by the polarization 
interaction, i.e., the quantity R A  , -a,/V,)'/', turns out 
to be substantially greater than the corresponding quantity 
for collisions with inert-gas atoms. For example, for the 
Rb (nS)  + Rb(5S) quenching process we have R, - 100 
a.u. (a,, = 310 a.u.) ,  so that, on account of (27),  the im- 
pulse approximation is valid when n k n,,, where n,, lies in the 
range from 25 to 30. It should also be noted that, for the 
results obtained in the present paper to be applicable in both 
the case of potential, and the case of resonance, scattering of 
the electron e by the perturbing atom B, it is necessary that 
the quenching cross sections given by the formulas (21 ) and 
(26) do not exceed the cross section of the Rydberg atom, 
i.e., that u ,,,,,, < (5r /2)n4.  
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4. DATA ON THE QUENCHING AND BROADENING OF 
RYDBERG ATOMIC LEVELS OF THE ALKALI METAL ATOMS 

Of primary interest to us, in investigating the process of 
collisional quenching of Rydberg atoms by alkali-metal 
atoms, is the analysis of the role of the low-energy 3P reson- 
ances in the elastic electron-atom scattering. It can be as- 
sumed that the parameters of these resonances for the Li and 
Na atoms have been determined sufficiently accurately, 
since the results obtained in different investigations (see, for 
example, Refs. 20, 21, and 27) are in good agreement with 
each other. For the K and Rb atoms the accuracy of the 
numerical computations of the elastic electron scattering 
cross sections is, as noted in Ref. 20, much lower. At the 
same time even the present-day experimental procedures for 
the direct measurement of such cross sections do not allow 
us to get into the region of ultralow energies E -  lo-' eV 
characteristic of the 3P resonances on the K and Rb atoms,27 
and only indicate the existence of these resonances. Appar- 
ently, the most accurate values for the energy E, and width 
I?, of these resonances are the values obtained in Ref. 21 
within the framework of a modified effective-radius theory. 
As will be seen below, the experimental data on the broaden- 
ing and quenching of Rydberg atomic levels by alkali-metal 
atoms in the region of sufficiently high values of the princi- 
pal quantum number n [where the formulas ( 15 ) and (21 ) 
are applicable] can also be used to determine the parameters 
of the low-energy 'P resonances. 

Let us first give the results obtained in the present inves- 
tigation for the cross sections for quenching of the Rydberg 
nS and nD levels of lithium and sodium atoms in their own 
gases, since there are available in this case detailed numeri- 
cal-computation data2" on the cross sections for elastic scat- 
tering of ultralow-energy electrons by Li (2s )  and Na (3s )  

FIG. 1 .  Cross sections u$ for quenching of the Rydberg levels nD (curve 
1 )  and IIS (curve 2)  of lithium atoms Li (171) as a result of 
111-11 + An(Ari = 0, + 1, + 2, + 3, . . . ) transitions induced in colli- 
sions with Li(2S) atoms at an energy E = ,uVS/2 = 900 "K. Thecurves 3 
are plots of the cross section for the quasielastic transition nl-n + An, 
with An = 0, while the curves 4, 5, and 6 are respectively the plots of the 
cross sections for the inelastic transitions nl-n + An with 
AII = + 1, + 2, and f 3, as computed for the nl levels with 6, < 1 and 
I<n.  The dashed curves correspond to the contribution 4, of the poten- 
tial scattering (LC,,. = 4.5 a.u.1 and the continuous curves are plots of the 
total cross sections a:, = 4, + a:,,, i.e., the cross sections that take ac- 
count of the contribution of the 'P resonance ( E , ,  = 3 . 2 ~  10 ' a.u., 
y = 11.4a.u.). 

atoms. Using these data, we determined the parameters&,, y, 
and LCf, which we need for computations with the formulas 
(21 ) and (26) (see the captions to Figs. 1 and 2) ,  and which 
determined within the framework of the theory presented 
here the behavior and magnitudes of the cross sections for 
resonance [a:,, (22) ] and potential (05 ~47i-L)  scattering. 
As can be seen from Figs. 1 and 2, the relative role of the 
potential and resonance electron-atom scattering in the pro- 
cess of collisional quenching of highly excited levels depends 
essentially on the magnitude of the nl-n' transition energy 
defect AE,,,,. and the principal quantum number n. The 
quenching of the nD levels of lithium and sodium atoms in 
the region of not too high values of n occurs largely without a 
change in the principal quantum number, i.e., is largely due 
to the quasielastic transitions nD-nl '  ( 1  ' > 2) ,  because of 
the small values of the quantum defects ( 6 g  = 0.002 and S F  
= 0.01 5).  In this case the contributions of the resonance 

and potential scatterings are of the same order of magnitude 
in a broad range of n values (see the curves 3 and 1 in Figs. 1 
and 2 ) .  

In the case of the quenching of the nS  levels of lithium 
and sodium atoms, which on account of the large values of 
the quantum defects (6;' = 0.4 and 6;" = 1.35), is due to 
inelastic nS--n' transitions between levels with different or 
identical principal quantum numbers (n '  = n and n - 1 for 
Li; n' = n - 1 and n - 2 for Na) ,  the resonance scattering 
plays a much greater relative role. This pertains also to the 
inelastic nl--n' transitions between highly excited levels 
with An = f 1, f 2, + 3, . . . in the case when the initial nl 
states have small quantum defects (6, < 1 ) . In the region of n 
values ranging roughly from 20 to 40 the contribution of the 
resonance scattering to the quenching cross section is several 
times greater than that of the potential scattering (see the 
curves 2 and 4-6 in Fig. 1 and curve 2 in Fig. 2 ) .  As n in- 
creases further, the role of the 3 P r e ~ ~ n a n c e  begins to abate in 
accordance with the condition n $ k ; '- 15 (see Sec. 3 ) .  
Notice also that, in the region of sufficiently high n values, 
the total quenching cross section a,f: may be due not only to 
transitions to the nearest levels, but also to an entire group of 

FIG. 2. Cross sections a$ for quenching of the Rydberg levels nD (curve 
1 )  and nS (curve 2) of sodium atoms Na(n1) as a result of 
nl-11 + An(An = 1, + 1, + 2, t 3 , .  . . ) transitions induced in colli- 
sions with Na(3S) atoms at an energy E = ,u Vi/2  = 430 "K. The dashed 
curves correspond to the contribution #(, of the potential scattering 
(LC,,- = 5 a.u.) and the continuous curves are plots of the total quenching 
cross sections a$ = 4, + a:,, i.e., the cross sections that take account of 
the contribuiton of the 'P resonance ( E , ,  = 7 x 10 ' a.u., y = 30 a.u.) .  
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levels n' (cf. the curves 1 and 3 in Fig. 1). The role of the 'P 
resonance declines in the low n-value region [i.e., in the re- 
gion n 5 15 (see Figs. 1 and 2) ] as well. This is explained by 
the fact that in this case the quenching process occurs with 
large energy defects A&,,,,,, so that the electron energies 
close to the resonance energies, i.e., the energies EWE,,  do 
not, in accordance with the condition n Bn, [see (23) 1, con- 
tribute to the cross sections. Let us note that the estimation 
from the formula (23) of the quantities n, for the quenching 
of the nS levels of lithium and sodium atoms in their own 
gases at relative-motion energies E = pVi /2  equal respec- 
tively to 900 and 430 "K yields n,L' z 15 and nFaz  18. This is 
in good agreement with the results obtained (Figs. 1 and 2).  

As follows from the analysis carried out in the present 
paper, contrary to the assertions made in Ref. 22, the avail- 
able experimental data22 on the quenching of the Rydberg 
atoms Rb(nS) in collisions with Rb(5S) atoms cannot be 
explained within the framework of the Fermi model with 
allowance made for only the potential scattering. The esti- 
mates obtained here with the aid of the formula (26) for the 
contribution of the potential scattering [with, in particular, 
the use of the same elastic e--Rb(5S) scattering data (Ref. 
2812' used in Ref. 221 show that the corresponding quench- 
ing cross sections &, are an order of magnitude smaller than 
the experimental values reported in Ref. 22. It is natural to 
expect that, because the energies E, of the ,P resonance on 
the Rb (5s)  atom are much smaller than the corresponding 
energies for the Li(2S) and Na (3s )  atoms, this resonance 
should play an even greater role in the quenching of the Ryd- 
berg levels of the Rb(nS) atom in its own gas than in the 
above-described cases (see Figs. 1 and 2) .  This is confirmed 

FIG. 3. Cross sections for quenching and collision broadening of the Ryd- 
berg n S  levels of rubidium and potassium atoms in collisions with Rb(5S) 
atoms. The curve 1 is a plot of the quenching cross sections ajf, for the 
Rb(nS) + Rb(5S) process, as computed from the formula (21) with the 
parameters E, = 4X l o r 4  a.u. and y = 60 a.u, and energy E = ,uR,,,, V i  
/2 = 400 "K; the open circles indicate the experimental data obtained by 
Hugon et al.** at T = 400 "K. The curves 2 and 3 are plots of the broaden- 
ing cross section 4, for the process K(nS)  + Rb(5S) at E = p,,,, V i / 2  
= 513 "K, ascomputed from the formulas (21 ) and (30) with the follow- 

ing parameters: 2 )  E" = 8X a.u., y = 30 a.u.; 3 )  E" = 1 x lop3  a.u., 
y = 20 a.u. (Ref. 21 ); the points A indicate the experimental data ob- 
tained by Heinke et al.' at T = 5 13 "K. 

by the specific calculations carried out in the present paper 
(curve 1 in Fig. 3) ,  which indicate that the experimental 
results for the Rb(nS) + Rb - Rb( #nS) + Rb quenching 
process occurring in the 34<n<43 regionz2 can be well de- 
scribed with the use of the above-obtained resonance-scat- 
tering formula (21) [see also (16) and (22)]  and the 
,P-resonance parameter values E, = 4X 10W4 a.u. and 
y = 60 a.u. The dominant contribution to the quenching 
cross section in this case is made by the transition 
nS-n - 3, 1 ' > 2 (quantum defect S,Rb = 3.15), with the 
minimum energy defect AE,,, - , ~0.15n- ' ,  although in 
the calculations we also took into account the transitions to 
the other levels n' (the contribution of which does not exceed 
5 or 10% in the case when n 5 45). 

We can also furnish within the framework of the above- 
presented theory of inelastic transitions between highly ex- 
cited atomic levels, which takes account of the presence of a 
resonance at a quasidiscrete level of the perturbing particle, 
a quantitative explanation of the available experimental data 
(see Ref. 23 and the references cited therein) on the broad- 
ening of the Rydberg nl levels of atoms in an atmosphere of 
alkali-metal atoms. In this case we should use the following 
well-known relation (see, for example, Ref. 29) : 

which relates the collision-broadening cross section a:, with 
the total cross section for all the inelastic nl-n' transitions 
(i.e., with the quenching cross section a5 =a$' = 8,. u,,,,. 
for the nl  level in question) and the total cross section 

el u',: = a,,+ + age- (nl-nl) for elastic scattering of the per- 
turbing particle B on the atom A(n1). Let us consider as an 
example, the broadening of the Rydberg levels of K(nS) 
atoms (quantum defect 6: = 2.18) in collisions with 
Rb(5S) atoms, a process which has been experimentally in- 
vestigated in the broad n-value range 9<n<55 by Heinke et 
~ 1 . ~ ~  The calculations carried out here with the formulas 
(21 ) and (30) (the curve 2 in Fig. 3) show that the experi- 
mental data obtained by Heinke et al.23 are explained by the 
presence of the 3P resonance on the rubidium atom, and are 
quantitatively well described (in the region n 2 30 of appli- 
cability of the theory) with the use of the following param- 
eters,' of the quasidiscrete level of the negative ion 
Rb-:E, = 8 X lop4 a.u. and y = 30 a.u., which correspond 
to an energy E, = 1.8 X lop2  eV and a width at half-maxi- 
mum T, = 2.3X lo-* eV. The contribution of the elastic 
scattering of the Rb atom on the K +-ion core to the broaden- 
ing cross section is in this case a;,,+ = 3.6(aR,/ 
VE ) =: lod1* cm2, which does not exceed 30% of the cross 
section even at the high values of n - 55. The contribution 
age- (nl-nl) of the elastic scattering of the perturbing Rb 
atom by the Rydberg electron e- of the K(nS) atom in the 
n-value range under consideration is negligibly small. 

The values found above for the parameters of the ,P 
resonance at the quasidiscrete level of the negative ion Rb- 
are in good agreement with the data obtained in Ref. 2 1 (E, 
= 2.3 X 10W2 eV and T, = 2.5 x lo-' eV) through the ex- 

trapolation of the results obtained in a numerical calculation 
of the electron-on-rubidium atom scattering phases in the 
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region of very small energies. Our results therefore corrobo- 
rate Fabrikant's2' and Johnston and Burrow's2' conclusions 
that the characteristic values of the energy and width of the 
'P resonance for the Rb(5S) atom are of the order of lo-' 
eV, and not as low as the values found by Kaulakys" and 
Rabin and Rebentrost'' (E, = 1.3X lo-' eV, T, 
= 4.4 x l op4  eV), who determined the values from the os- 

cillating (for n ranging roughly from 15 to 25) components 
of the measured widths and shifts of the Rydberg nS  levels of 
the rubidium atom in its own gas. Also shown in Fig. 3 
(curve 3) are the cross sections a:, for broadening of the 
Rydberg nS  levels of potassium atoms in a rubidium gas in 
the region n k 30, as computed from the formulas (21) and 
(30) with the use of Fabrikant's data2' (which correspond 
to the parameters E~ = 1 X a.u. and y = 20 a.u.). It can 
be seen that the sensitivity of the computed cross sections to 
the resonance parameters is fairly high. At the same time, as 
follows from the approximate expression (25),  in the region 
of high values of n ( > n, ) the slope of the plot of the nl-n' 
transition cross section against the principal quantum num- 
ber n is determined first and foremost by the value of E,, 
while the cross section values are proportional to the ratio 
r r E ;  3'2. 

Thus, using the formulas obtained in the present paper 
for the cross sections for inelastic collisions of Rydberg 
atoms with perturbing neutral particles and the available (in 
a fairly broad range of n values) experimental data on the 
cross sections for quenching or broadening of highly excited 
atomic levels in a gas, we can determine the parameters E, 
and r, of the low-energy resonances occurring in the elastic 
scattering of ultralow-energy electrons by these particles. In 
doing this, we should naturally make sure in each specific 
case that the conditions of applicability (see Sec. 3) of the 
theory presented here are fulfilled. It should also be noted 
that, in the case when the contribution a',,(B-e-) of the 
resonance to the cross sections for collisional quenching 
(broadening) of the Rydberg levels is significantly greater 
than both the contribution 4, ( B  - e- ) of the potential scat- 
tering of the perturbing atom B by the quasifree electron e- 
and the contribution u,, ( B  - A + ) from the scattering on the 
A + -ion core, the accuracy of this computation is largely de- 
termined by the quality of the experimental data themselves. 

The authors are grateful to V. I. Kogan, L. P. Presnya- 
kov, I. I. Sobel'man, and 0. B. Firsov for a discussion of the 
results and to M. I. Chibisov for interest in the work and for 
fruitful discussions. 

"Note that the system of atomic units e = me = f i  = 1 is used in a11 the 
formulas in the present paper. 

"Notice that Balling's computational data'' for the region of low electron 
energies (where, as emphasized in the Ref. 20, the numerical calcula- 
tions are much less accurate) are at variance with the results of the more 

recent theoretical2' and experimental" investigations, which definitely 
indicate the existence of the 'P resonance. 

"It should be noted that the broadening cross sections o:, computed with 
tha aid of the formula (30) from the experimental data'2 on the quench- 
ingof the nS levels ofthe rubidium atom in its own gas are approximately 
2.5 times greater than the corresponding experimental results'' obtained 
in direct collision-broadening cross section measurements. This cannot 
be explained by the insignificant difference in the gas temperatures 
T = 400 and 5 13 "K in these experiments. One of the possible causes of 
this may, apparently, be connected with the complexities of the measure- 
ment of the vapor pressure of the alkali-metal atoms in experiments of 
this kind (see, for example, Ref. 1, Chap. 7).  Because of the indicated 
discrepancies in the experimental quenching22 and broadening2' data, 
the values obtained from these data for the parameters E,, and y of the 'P 
resonance on the rubidium atom differ slightly from each other. 
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