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The instability, caused by magnetically induced currents, of a nonequilibrium conducting 
medium in zero external magnetic field is described. The mechanism of such an instability is, 
in a sense, universal. The conditions for the effect to be observable are obtained on the basis of 
an analysis of different physical situations, and the feasibility of experimental observation is 
discussed. 

In the present paper we consider the macroscopic con- 
sequences of, and the microscopic mechanisms underlying, 
the following relation between a current and a magnetic 
field, a relation which is possible in homogeneous conduct- 
ing media: 

Such a relation can be realized only in a nonequilibrium me- 
dium. Indeed, the Onsager symmetry relations are valid in 
the equilibrium case. As shown in the Appendix, a direct 
consequence of these relations and ( 1) would be a relation 
between the magnetic-moment density and the vector poten- 
tial of the electromagnetic field: 

which is not possible on account of gauge invariance. (In 
superconducting materials gauge invariance is violated, and 
we can have relations of the type (2). ')  Accordingly, the 
results obtained by Eliashberg in Ref. 2 are incorrect. If thz 
equilibrium medium possesses a magnetic structure, then x 
in (2)  coincides with x given in ( 1 ) for a medium with a 
time-reversed magnetic structure (i.e., a medium with oppo- 
sitely directed spins), and gaugeinvariance considerations 
again allows us to conclude that x =O. Therefore, the effect 
predicted recently by Labzovskii3 is forbidden on the basis of 
these considerations. A 

In a nonequilibrium medium x+O in the general case. 
Since xaP is a pseudotensor, this requires that the symmetry 
group of the nonequilibrium medium, which is the intersec- 
tion of the symmetry group of the equilibrium medium and 
that of the agent causing the state of nonequilibrium, not 
contain the operation of spatial inversion. Well-known ex- 
amples of magnetically induced currents are the currents 
generated as a result of the Hall and Nernst effects; xaP is 
then proportional to the electric field E and the temperature 
gradient VT, respectively. The currents responsible for the 
photoelectromagnetic~ffect4 are also magnetically induced 
currents. The tensor x in this case is proportional to the 
intensity of the external radiation. If we assFme that the 
original equilibrium medium is isotropic, then x has the sim- 
ple tensorial structure 

normal to the surface). The form ( 3 ) allows us to graphical- 
ly interpret the magnetically induced current as the result of 
the action on the carriers of the Lorentz force, which is al- 
ways perpendicular to the mag%etic field. But in the general 
case the tensorial structure of x is more complicated than 
(3) .  In this sense a good example is the magnetically induced 
current predicted by Ivchenko and Pikus5 should occur in a 
gyrotro~ic crystal with hot electrons. In this case the struc- 
ture of x is completely determined by the symmetry of the 
noncentrosymmetric equilibrium medium, and is rather ar- 
bitrary. 

The form of xaP is important for the analysis of the 
stability of a homogeneous nonequilibrium medium against 
low-freq%ency, low-wave-number electromagnetic excita- 
tions. If x has the structure (3) ,  then the medium is always 
stable. It is Bliashberg's2 idza that this type of excitation is 
unstable in the case when x reduces to a pseudoscalar. In 
pef. 6 the present author carried out a symmetry analysis of 
x in an anisotropic medium in the presence of a temperature 
gradient, and demonstrated the possibility of the convective 
instability of low-frequency electromagnetic excitations- 
thermomagnetic waves7."in such a medium. 

This mechanism of instability development is universal, 
in the sense that, when certain symmetry requirements, 
which will be discussed below, are met, it can be realized in 
any conducting medium in an arbitrarily weak state of non- 
equilibrium. 

In the first section we consider the stability of electro- 
magnetic excitations at the phenomenological level, and ob- 
tain the criteria for instability. Further, we carry out consis- 
tent analyses of the magnetically induced currents in the 
particular cases when the nonequilibrium state is due to the 
presence of dissipative fluxes in the medium, external elec- 
tromagnetic radiation, the passage of sound through the ma- 
terial, and the inequality of the carrier and lattice tempera- 
tures. Then we analyze within the framework of a simple 
model the question of the final phase of the development of 
the instability. In conclusion, we consider the feasibility of 
experimental observation of this effect. 

1. Let us write the Maxwell equations describing the 
evolution of an electromagnetic field in a medium in the 
form 

XaB=eaBINT (3)  + u a ' r o t h ) .  (4) 

for all the three examples (in the case of the photoelectro- 
magnetic effect the specified vector N is directed along the Here A is the vector potential of the electromagnetic field 
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and the terms on the right-hand side correspond to the nor- 
mal conduction current ( c f B  is the conductivity tensor) and 
the magnetically induced current. These equations are valid 
at frequencies w 4 u, 1/r and wave numbers k 4 I -' (7 is the 
time characterizing the momentum relaxation of the carriers 
and I is the mean free path). Let us determine the electro- 
magnetic-excitation dispersion law. Assuming the conduc- 
tivity to be isotropic, we obtain 

io (k) = (C/O) [ik ( X ~ Y - ~ Y ' )  / 2 f  k (xULxYY- (x'Y+xY') ' / 4 )  ' 
- ckZ/4n]  =ikv,*ku-Dk2. (5) 

The signs f pertain to the two different polarizations, 
which, in the general case, are elliptic, and the vector v and 
quantity u are respectively determined by the antisymmetric 
and symmetric-with respect to the indices-parts of xaB. 

It can be seen from (5)  that Eq. (4)  with k%x/c de- 
scribes the usual "diffusion" of a magnetic field in a conduct- 
ing medium. For k <x/c the nature of the evolution of the 
excitations is essentially different. If u is imaginary, we have 
for a given k waves propagating with a constant ~elocity.'.~ 
The polarizations are then linear, and 2iu has the meaning of 
the difference between the velocities of propagation of waves 
with different polarizations. If u is real, then instability de- 
velops at small k values: the perturbation of one of the ellip- 
tic polarizations grows exponentially, moving with velocity 
u. For one-dimensional wave packets this instability is con- 
vective in the case when uf > u2 and absolute when uf < u2. 

Notice that u is real if 

Thi~condi t io~  is fulfilled at least for some directions of k if 
det x, Z O .  If x, is a sign-variable matrix, then (6)  is fulfilled 
for all directions; otherwise the k directions for which the 
excitations are unstable lie inside some elliptic cone. 
Allowance for the conductivity anisotropy does not alter the 
above presented instability criterion, namely, the require- 
ment that det x, $0. Indeed, for k(x/c the disperison rela- 
tion has a form similar to (5 ): 

io ( k )  =c [ik (KT"-K") /2+k ( P Z L V U -  ( R q K " )  2 / 4 )  ' h ]  

wheze K = ( 8 - ' ) a " ~ y p .  Instability obtains when 
det K, #O. In ihe absence of an external magnetic field and 
under conditions of a mild state of nonequilibrium the m2- 
trix is symmetric and nonsingular. The determinant det K, 
gansforms like a pseudoscalar; therefore, in order for det 
K, #O, the symmetry group of the nonequilibrium medium 
should not contain reflection planes. When this symmetry 
condition is fulfilled, there is no reason for this determinant 
to be equal to zero. 

Thus, electromagnetic excitations with small wave vec- 
tors k are unstable in any infinite reflection-plane-free medi- 
um in an arbitrarily weak state of nonequilibrium. In order 
to understand why this effect is not observed everywhere, we 
should turn to the analysis of the situation in a bounded 
medium. 

Global instability can occur only if the smallest dimen- 
sion of that region of the conducting medium where the state 

of nonequilibrium is maintained is greater than, or of the 
order of, c/x. This is due to the fact that the magnetic field 
inducing the currents should be produced by these same cur- 
rents. To illustrate this point, let us consider the natural- 
frequency spectrum of electromagnetic excitations varying 
in the z direction in an isolated conducting plate of thickness 
d (the z axis is~erpendicular to the plane of the plate), as- 
suming 8 and x are constants. The boundary conditions to 
(4) are the following: H = 0 at the surfaces. Using these 
conditions, we obtain from (5) the spectrum: 

Hence we have the criterion for instability 

If there is no global instability, we can, apparently, ob- 
serve wave amplification in the medium in question. It fol- 
lows from (5)  that the excitations with frequency w 5 x2/u 
will be amplified. The maximum growth rate Im k-x/c, 
and the amplification will be substantial if 

Thus, the fulfillment of condition (6b) is the minimum 
requirement for observation of the effect in question. In 
many problems the nonequilibrium medium can be consid- 
ered to be infinite, and (6b) intuitively seems to be not too 
rigid, but analysis of specific mechanisms for the mainte- 
nance of the state of nonequilibrium shows that the criterion 
presented above for the onset of instability is very rigid. 

2. Let us consider the situation when the state of non- 
equilibrium is maintained by the passage of electric current 
or heat flux through the medium. The symmetry conditions 
necessary for the occurrence of instability are fulfilled if the 
symmetry group of the equilibrium medium is discrete, and 
the flux vector does not lie in any of the reflection planes of 
this group. Thus, we shall be dealing with conducting crys- 
tals. 

Weakly nonequilibrium experimental situations can be 
created in which the characteristic drift velocity of the carri- 
ers [ -u,  u in (5) ] is much smaller than the rms velocity u,. 
In this case the general form of x is 

It follows from the Onsager relations that AaYB = - AYaB. 
Analysis shows that, in the case of the passage of current, 
instability can occur in crystals of the C,, , C,, C , ,  , S,, and 
C,,  classes and the classes obtained by the addition of a cen- 
ter of inversion. In the case of the passage of heat flux 
through the sample instability can occur in crystals of the 
C, ,  , D ,, , and D, c l a ~ e s  a s ~ e l l .  

The coefficients A and B can be determined by solving 
the kinetic equation for the carriers: 
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Here p is the quasimomentum, E~ is the energy, 
U; d d d p a ,  no= (1 + e''-p"T ),-I W(p, p') is the scat- 
tering probability, and one band is left. Let us introduce the 
operator S(p, p') through the relation 

I and express the coefficients of interest to us in terms of it: 

It can be seen from (8) that, when the anisotropy is - 1, all 
the c2mponents of AaYP are of the same order of magnitude. 
For x the usual Hall estimate is valid: 

If we limit ourselves in (7 )  and ( 8) only to elast& scattering, 
then we find that PYP = - BYaP . For the part x ,  which has 
this symmetry we again have the usual estimate 

where Q is the thermoelectric coefficient. The expression for 
the other components x2 in the case when elastic scattering 
predominates contains an additiongfactor which is small in 
comparison with the expression for x ,. In crystals ofthe C, ,  , 
,, , and D, classes the instability is governed precisely by 

x,. The most promising-from the experimental stand- 
point-crystals,~i and Sb, belong to the D,, class. 

Let us consider the criterion (6b). If current is passed 
through the medium, then from (6b) and (9) we find that, 
for instability to occur, it is necessary that 1 5 aEd(er/cm). 
Notice that the magnetic field produced by the transmitted 
current is then of the order of cm/er, i.e., it substantially 
changes the conductivity over the cross section of the sam- 
ple. The initial assumption that the sample is homogeneous 
is not valid. Under these conditions another instability 
mechanism, unrelated with the anisotropy, is also effec- 
t i~e .~- ' '  Nevertheless the mechanism described above oper- 
ates in the inhomogeneous case as well. If it is more effective 
in this case than the mechanism considered in Refs. 8-1 1, a 
substantial increase in the critical current for the onset of 
instability should be experimentally observed in samples of 
the same thickness in those cases when the current vector lies 
in a symmetry plane of the crystal. 

In the case of the passage of heat flux through a homo- 
geneous isolated sample, no magnetic field is produced, and 
the criterion (6a) reduces to aQVTder/c2m 2 1. Since 
VTd<T, we should have aQTer/c2m) 1, which coincides 
with the observability criterion for thermomagnetic waves, a 
criterion which is fulfilled in pure materials at low tempera- 
tures. Kopylovs has experimentally observed stable thermo- 

magnetic waves under different conditions, including those 
in which the heat flux is not parallel to a symmetry plane of 
the crystal. It is $fficult to say whether this is explained by 
the smallness of x, noted above or by the characteristics of 
the experimental geometry. 

3. Let the nonuniformity be maintained >y external 
electromagnetic radiation. The expression for x should be 
constructed from the tensor characterizing the medium, the 
polarization vectors, and the wave vector of the radiation. 
But allowance for the wave vector in this expression is equiv- 
alent to allowance for the small quantities, v,/c and e2/c, 
since the electromagnetic radiation propagates much faster 
than the characterktic velocity of the carriers. Therefore, in 
the expression for x we retain only the terms of zeroth order 
in the wave vector: xaP = FaBysEyE g; F ~ @ " + O  if the crys- 
talline medium does not possess a center of inversion. Under 
these conditions the magnetically induced currents are simi- 
lar in the mechanism of their generation to the photoelectro- 
magnetic current. '* ,I3  

Let us first consider a pure semiconductive material at 
low temperatues. The presence of free carriers in this case 
can be ignored. If the energy of the radiation quanta is higher 
than the threshold energy, then the pr2duction of pairs of 
free carriers occurs. We can determine x with the aid of the 
method used in Refs. 13 and 14 to compute the photoelectro- 
magnetic current. The current in this case is determined 
with the aid of the correction to the carrier distribution func- 
tion obtained by solving a kinetic equation of the type (7)  
with a particle source defined in terms of the characteristics 
of the radiation. For the source we have 

Here n and m number the bands, D L  are the matrix ele- 
ments of the dipole-moment operator, and w is the radiation 
frequency. From this we immediately determine the rate of 
energy absorption by the material in a unit volume: 

For 2 we obtain [see (8) 1 

In a medium possessing a center of inversion af /at is even in 
p, while xaB (p)  is odd. If there is no center of inversion, 
these quantities do not possess a definite parity with respect 
to p (Ref. 13 ): af /at does not because of the asymmetry in 
the pair production processes; xQB (p) ,  because of the asym- 
metry in the scattering of the free carriers. In the general case 
this asymmetry is not formally small, but is, apparently, nu- 
merically small because of the structure of real noncentro- 
symmetric crystals. We shall characterize the degree of 
asymmetry by the dimensionless pazameter { 5 1. 

It is convenient, in estimating x, to express the answer 
in terms of a: 
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Here v, - [ m  (w - A) ] ' I 2  is the characteristic velocity of the 
nascent carriers. In subsequent estimates we shall assume 
that v, and w are of the order of the corresponding atomic 
quantities. 

It is natural to assume that the radiation is exponential- 
ly damped as ikpropag2tes into the sample from the bound- 
ary, and that x(z)  = xe-'". Therefore, for the criterion 
(6a) to be fulfill$, it is necessary that xS/c k 1 in any case. 
The estimate of x in the form ( 10) allows us to write this 
criterion in the form of a limitation on the radiation flux I, 
since I = ES: 

The inequality ( 11 ) depends weakly on the characteristics of 
the specific material (largely through 7) .  Therefore, to 
maximize the probability for the occurrence of the instabil- 
ity, we should use pure materials at low temperatures. For 
T- lo-* sec and<- 1, I k lo2 W/cm2. Such a large value of1 
will, apparently, not permit the observation of the instability 
under conditions of steady irradiation, since it will be diffi- 
cult to remove this heat flux from the sample. The instability 
growth time (or the reciprocal frequency below which the 
waves are amplified in the sample) can be estimated, using 
(5 )  and the simplest estimates for the photoconductivity. 
We obtain Ti,,,, - (S/I)r,, - sec (where rre, is the 
characteristic lifetime of the carriers) under the assump- 
tions made above, and xS/c - 1. This allows us to hope that 
the instability can be detected in a pulsed irradiation regime. 

Let us now consider the situation when the intraband 
mechanism of radiation absorption predominates (i.e., the 
case of low frequencies and high free-carrier densities). The 
radiation in this case can be taken into account by including 
the field term eEa df /dpa in the kinetic equation. Introduc- 
ing the operator S, (p, p') defined by the relation 

and expressing in terms of it the quadratic (in E) correction 
to the distribution function, we obtain 

In this case 

h 

For w) l / r  the second term in the expression (12) for x 
contains the small factor ( ~ 7 ) - I  in comparison with the 

first term; for w 5 l / r  both terms are of the same order of 
magnitude. The noncentrosymmetric nature of the crystal 
manifests itself here in the properties of W(p, p') and S(p, 
p'). Estimating (12) in much the same way as was done 
above, we obtain 

Here E, is the carrier energy measured from the bottom of 
the band andp, is the characteristic quasimomentum of the 
carriers. It should be noted that in form and in value ( 13) is 
very close to ( lo) ,  ( 11 ) in spite of the significant difference 
in the physical situations, a difference such that the values of 
S in the two situations can differ by several orders of magni- 
tude. The estimates ( 10) and ( 13) can be obtained from the 
following crude qualitative arguments: a carrier, having ab- 
sorbed an amount of energy AE, will change its velocity by an 
amount Av- ( d v / d ~ ) A ~ .  This change in velocity is pre- 
served during the time period r ;  therefore, under the appro- 
priate symmetry conditions in the case when i. is a constant a 
current j,-ei.~dv/d~ will flow in the medium. This current 
will change by an amount on the order of its value in a mag- 
netic field of intensity - cm/er; whence x -erj,/cm. 

Note that magnetically induced currents also arise 
when, for a given crystal symmetry, the polarization of the 
radiation is such that the photoelectromagnetic current is 
forbidden on the basis of symmetry considerations. In this 
case the vector v in (5 )  is identically equal to zero, and only 
absolute instability can occur. 

4. The arguments adduced above suggest that the esti- 
mate (13) can be improved if the nonequilibrium state is 
maintained not by electromagnetic radiation, but by sound, 
since for u,>c,, the absorption of phonons more effectively 
changes the carrier velocity: AV-C,,AE/E~. In contrast to 
the situation with electromagnetic radiation, the phonon 
wave vector q d%es not, when it is taken into account in the 
expressions for x, introduce in the general case addition? 
small factors. This allows us to use in the determination of x 
the simple model of an isotropic medium. The requirement 
that there will be no reflection planes will be met if elliptical- 
ly polarized transverse sound przpagates in such a medium. 

Let us compute the tensor x to leading order in c,, /v,. 
In this order we can take account of the interaction of the 
carriers with the lattice distortion by the standard meth- 
od,1s'16 i.e., through the modification of the Hamiltonian for 
the carriers: 

= E  (p) fm-'  (k+l)p,p,,8ukl~x,. 

The computation of the correction to the distributionJunc- 
tion which is quadratic in u allows us to determine x. We 
obtain the estimate 

which is greater than ( 13) by %factor of u,/c,, . But in this 
order the tensorial structure of x reduces to (ea is the sound 
polarization vector) 
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and det x, = 0. The magnetically induced current, which 
has the structure 

j=x3Hq-' Im [ (e', e ,  q )  ]+x,  Im [e* (e ,  H ,  q ) ]  q-I 

and is responsible for the instability, appears in the next or- 
der in cac /vo: 

x3,&- (e2/cm) (i?lpo) sql for q l a l ;  

when ql- 1, the estimate ( 13) is valid. In the case of arbi- 
trary elliptic polarization of the sound there is instability in 
the kllq directions. 

The drift, determined by ( 14), of electromagnetic exci- 
tations in the q direction makes the onset of global instability 
impossible in this situation. The estimate for the observabi- 
lity of the amplification coincides with (13). These esti- 
mates are valid for both metals and semiconductors if B is 
taken to be that part of the dissipated acoustic energy which 
is absorbed by the carriers. 

5. Ivchenko and Piku$ have described the situation in 
which the carrier temperature differs from the lattice tem- 
perature in a gyrotropic conductor. Such a nonequilibrium 
state leads to a situation in which xaBf 0, and the tensorial 
structure of xaB is entirely determined by the crystal sym- 
metry. The crystal must be enantiomorphic for instability to 
occur. If in this case the crystal does not belong to the pyro- 
electric class, then v=O, and there can be only absolute in- 
stability. Let us estimate the magnetically-induced-current 
tensor, neglecting, unlike Ivchenko and P i k ~ s , ~  the spin ef- 
fects. In the case when the electron and phonon tempera- 
tures differ slightly from each other, the effect can be treated 
as the result of the interaction between the carriers and the 
nonequilibrium phonons, whose occupation numbers satisfy 

The change in the electron-phonon collision integral, writ- 
ten in the standard17 form, is given by 

6Nq {npnO-npo} )[ W (p', q;  p) 6stp 01 = J Ti;;i; 

Here summation over the types of phonon polarization is 
implied and W(pf, q, p )  is the probability for absorption by a 
carrier of a phonon with wave vector q, followed by a transi- 
tion into the statep: 

if the Umklapp processes are ignored. Similarly to ( 12 ), we 
obtain 

i = e.6St. {f), 
(2.;)" 

In making estimates, we should take accurate account of the 
parity of the integrands with respect to q. This determines 
the order of the answer in c,,/v,, which is assumed to be 

small. Then for the first term in ( 14a) we again obtain the 
estimate ( 13). The order of magnitude of { is determined by 
the asymmetry in the scattering processes. If the scattering 
by the impurities predominates, then 5- 1. The asymmetry 
is small in the case of scattering on the phon~ns '~ . ' ~ ;  in the 
region T 2 w,, for example, 5- min{.r/.rimp ; amT/po) (.rimp 
is the characteristic time for the scattering on the impuri- 
ties) if scattering on the phonons predominates. Assuming 
that the electronic and phonon bands are isotropic, that Fer- 
mi statistics is obeyed, and that q/po4 1, we obtain for the 
first term in ( 14a) the expression 

dS . . 
x a k  { J a (xa'(p) ) W ( p P /  j w ( p ) - )  &.  

F.S. as, F.S. 
vo 

In the case of an arbitrary spectrum and arbitrary statistics, 
and for q/po 4 1, ( 14) goes over into 

The second term in ( 14) is the result of the allowance made 
for H in the collisional term. In general it gives a correction 
on the order of the small quantity ( 91)-', but in this case, 
because of the change in parity with respect to q in the inte- 
grand, we gain the factor v,,/c,, . We obtain the estimate 

.. 
x- (e21cm) ( d o )  B/mcac, o=min {T,  oo) . (15) 

For w 4 1 / ~  this contribution is greater than the contribution 
from the first term. For small q we obtain 

Similar estimates carried out on the basis of the spin mecha- 
nism proposed by Ivchenko and Pikus5 for the effect yield 
x - (e2/cm )a, n r B / ~ ~ ,  which is la, times smaller than ( 13 ) . 
This allows us to infer that the spin mechanism is not very 
effective here. 

The observation of the magnetically induced currents in 
the situation described above is of interest in its own right. 
The estimates ( 13 ) and ( 15) allow us to hope that the effect 
will be measurable, especially as ( 15) increases with de- 
creasing temperature. This estimate, like the entire proce- 
dure, is valid when ql) 1. When ql S 1, ( 15) goes over into 
(14). The instability criterion can also be written in the 
above form I - ' 5 x/c&, which does not explicitly depend on 
the sample geometry. Here I is the power flux absorbed by 
the electrons. The numerical estimates for I are better than 
the estimate given in Sec. 3 only at extremely low tempera- 
tures (specifically, at T S  lo-' OK). 

6. If the condition for global instability is fulfilled, then 
a weak electromagnetic perturbation grows exponentially, 
and the question arises of the solution of the nonlinear gener- 
alization of Eq. (4). In the case of a mild state of nozequilib- 
rium the nonlinearity of (4) arises because 6 and x tensors 
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depend on the magnetic field produced by the growing per- 
turbations. This means that the characteristic scale of the 
magnetic fields that arise in the course of the development of 
the instability will be mc/er, and in this case the magnetic 
field will have an appreciablceffect on the carrier motion, 
the relative changes in b and x being - 1. 

It is not difficult to see that in the case of an unbounded 
medium, because of the development of the instability , a 
regime in which the magnetic field is periodic both in space 
and in time cannot be established. The system will not ac- 
quire a higher symmetry, and for the law of dispersion of 
electromagnetic perturbations about this regime in the case 
when w and k are respectively much smaller than the fre- 
quency and spatial period of the magnetic field we oktain as 
before the relation (5a) with renormalized b and x. This 
indicates that such a regime is unstable. Apparently, the re- 
gime that will actually be established will be characterized 
by a magnetic field H that varies randomly in space and 
time. 

In a bounded medium this cannot be so. As an illustra- 
tion, let us consider a simple model of such an instabilit~ in 
an isotropic noncentrosymmetric medium. The tensor x in 
this case reduces to a pseudoscalar, and depends only on I H 1. 
We shall ignore the dependence of u on H. In dimensionless 
variables Eq. (4) has the form 

H=rot rot H+rot [ x  ( H ) H ] ,  x  (0 )  =I. (16) 

Here the time and distance are measured in units of u/x2 and 
C/X, respectively, and we have taken the curl of (4).  The 
steady state solutions to ( 16) are characterized by a wave 
vector k, and have the form of helicoidal structures (kllz): 

H,=Ho sin kz, H,=Ho cos kz, k = x  ( H , )  . 

The stability of such a solution can be investigated analyti- 
cally. The perturbation can be characterized by a vector qll k. 
Then the dispersion relation has the form 

Here 

x o = x  (Ho)  , x i = 2 [  HZ& ( H )  /a ( H z ) ]  I H=HI,. 

It can be seen that all the solutions are unstable in the limit of 
an unbounded medium. 

As an example of a bounded medium, let us consider a 
plane-parallel plate of thickness d. We shall consider solu- 
tions that vary in the direction of the normal to the plane of 
the plate; k and q can then assume quantized values: 
k = (2n-/d) ( n  + 1/2), q = 2n-m/d. Instability occurs if 
q # 0 and q2 <x i .  Therefore, all the steady state solutions to 
( 16), except the solution with k = n-/d = x(Ho),  are unsta- 
ble. The zeroth order solution is unstable if d > r. A stable 
solution results when d = n- + E. A stochastic regime appar- 
ently obtains when d ) ~ .  

7. In conclusion, let us discuss the possibility of observ- 
ing the instability described above. In spite of the fact that 
this effect is a purely symmetry-related one and in an un- 
bounded medium with the requisite symmetry the instability 
occurs no matter how small the deviation from equilibrium 

is, the condition (6b) for the occurrence of global or observ- 
able convective instability is a fairly stringent limitation, 
which explains why the effect is not generally observed. 

Apparently, the best experimental conditions for the 
manifestation of the above-described mechanism can be 
achieved in conductors in the presence of a heat flux. In this 
respect, experiments with materials less symmetric than Bi 
are promising. But under such conditions there is always the 
possibility that the instability will be of a solely convective 
nature. 

In the case when the instability is maintained by other 
means, there exists an almost universal limitation, ( 13 ), on 
the energy flux absorbed by the carriers. Then, even in ma- 
trials with the longest r ,  the energy flux I is much higher 
than the energy fluxes normally used in low temperature 
physics, but, the removal of the heat produced by such fluxes 
evidently is a purely technical problem. As indicated above, 
of particular promise here is the study of noncentrosymme- 
tric conductors. 

In any case we can precisely specify the conditions un- 
der which, with the state of nonequilibrium maintained in a 
given way, we can observe the instability in a given sample by 
applying a magnetic field and measurjng the tensor xaB. 

The author is grateful to G. M. Eliashberg, L. S. Levi- 
tov, and E. L. Ivchenko for detailed and useful discussions 
related to the subject of the present paper. 

APPENDIX 

the most general form of the relation connecting the 
current density and the magnetic field is the following: 

P ( x )  = Qab (x, x') A6 ( x ' )  a'.'. 

Let us consider the current repsonse to a homogeneous mag- 
netic field. Let us choose the vector potential in the form 
A" (x) = eaBYHBxY /2. For the mean current density we ob- 
tain 

Here V is the volume of the system. Let us now compute the 
mean magnetic-moment density in the presence of a homo- 
geneous vector potential: 

Under equilibrium conditions the Onsager relations im- 
pose on the kernel p (x, x') the following constraint: 
pB (x, x') = (x', x) .  Taking this into account, we ob- 
tain M" = xBaAP/c. 
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