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A detailed theoretical study is made of the frequency and temperature dependence of the 
intrinsic dielectric loss in crystals of different symmetries for temperatures much lower than 
the Debye temperature, where the loss is due to the interaction of acoustic phonons with the 
alternating electric field. This work is essentially an extension of previous theoretical studies 
which considered the dependence of the loss on the crystallographic system, the degeneracy of 
the phonon spectrum, and the presence or absence of a center of symmetry in the crystal. It  is 
shown that the detailed behavior of the loss is sensitive to the crystal class. Results are 
presented and tabulated for all 32 classes. The influence of accidental degeneracy of the 
phonon spectrum is investigated for all the typical forms of accidental degeneracy, i.e., those 
which occur with a finite probability. The reasons for the discrepancy between the conclusions 
of this study and the results of Coombs and Cowley are discussed, and the present results are 
compared with the existing experimental data. 

INTRODUCTION 

In this paper we make a theoretical study of the intrinsic 
dielectric loss in ordinary crystalline dielectrics of different 
symmetries. We consider the case of low temperatures T ( O  
( O  is the Debye temperature), where the intrinsic loss is due 
to the interaction of the alternating electric field E with the 
acoustic phonon system. 

The intrinsic loss in crystals was first studied theoreti- 
cally by Vinogradov,' who obtained an expression for one of 
the contributions to the loss (the so-called "three-quantum" 
contribution) and found that for T S O  this contribution is 
proportional to T. Stolen and Dransfeld2 pointed out the 
existence of another loss contribution (the four-quantum 
contribution) and showed that for T S O  it is proportional to 
T  '. Coombs and Cowley3 detected still another intrinsic loss 
mechanism, which is characteristic of noncentrosymmetric 
crystals and is due to the perturbation of the phonon distri- 
bution function; this has since come to be called the quasi- 
Debye contribution. 

In our previous papers4-' we showed that the frequency 
and temperature dependence of the three-quantum loss, like 
its order of magnitude, are extremely sensitive to the crystal 
symmetry, by which we mean not only the presence or ab- 
sence of a center of symmetry in the crystal, but also the 
presence of symmetry axes and generally of acoustic axes 
which lead to degeneracy of the phonon spectrum. The im- 
portance of lines of degeneracy of the phonon spectrum in 
the kinetics of phonons has been pointed out by Herring.' 

The contribution to the dielectric loss from the regions 
bordering lines of symmetry degeneracy has been discussed 
by Balagurov, Vaks, and Shklo~skii,~ who considered the 
loss in cubic displacive ferroelectrics, but they concluded 
that this is not the dominant contribution in cubic ferroelec- 

different from that proposed by Coombs and C ~ w l e y . ~  The 
origins of this discrepancy are discussed in Sec. 3. 

As examples, in Refs. 4 and 5 we discussed in detail the 
crystal classes C,, , C4, , and C,, . The results of those pa- 
p e r ~ ~ ~ ~  also hold for a number of centrosymmetric and non- 
centrosymmetric classes (see Tables I and 11). Generally, as 
we shall see, it is the crystal class that determines the form of 
the frequency and temperature dependence of the three- 
quantum loss for T ( O .  Therefore, the need arose for a sys- 
tematic study of the loss in all classes; for some of the classes 
we have obtained new data here. In particular, we have con- 
sidered in detail the question (only briefly touched upon in 
Refs. 4 and 5) of how the loss is affected by the presence of 
lines of accidental contact of acoustic branches. As a result, 
the findings of Refs. 4 and 5 are corrected and supplemented. 

We restrict discussion to the case of low frequencies w of 
the alternating field: 

For T 2  O  the loss is due, by and large, to short-wavelength 
acoustic and optical phonons, and the situation becomes 
even more complicated: the answer can depend on the space 
group of the crystal symmetry. In this paper we discuss only 
briefly the behavior of the loss of TR O  (Sec. 4 ) .  

2. NONCENTROSYMMETRIC CRYSTALS 

For noncentrosymmetric crystals, the loss can be writ- 
ten as the sum of two contributions-the quasi-Debye and 
three-phonon. The quasi-Debye loss is given by the formula 
(seep. 221 of Ref. 5): 

trics. '' 
In Refs. 4-7 we compared the various contributions to (PI2 A<i)A(jb. (2.1) 

the loss and obtained a general picture of the dielectric loss in 
crystals of different symmetries over a wide range of fre- Here the summation is over three acoustic branches a; I is 
quencies w and temperatures T. This picture is qualitatively the linearized operator for normal phonon-phonon colli- 
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TABLE I. Noncentrosymmetric crvstals. - 
Symmet~ 

class 
Loss in the presence of additional 
"optional" acoustic axes 

Loss for minimum 

required by symmetry 
6, 

0 1 03T 
0 1 o".6T, o?T2 
0 1 03T 
0 1 oa.sT, OPT= or oaTa - - 1 oaT, o T 3  
- 1 o*5T, oaT2 
$ I oT3 

sions, R, ( k )  is the phonon frequency, No is the Planck func- where M is of the order of the average mass of the atoms 
tion, and A(a,k)  is the electrophonon potential (EPP), making up the dielectric, and v is some average sound speed. 
which characterizes the change in the phonon frequency in We shall sometimes find it convenient to write this estimate 
an electric field. in a somewhat different form, setting 

- 
- 

+ 
- 
-- 
+ 

-+ 
- 
- 

+ 
+ 
+ 

- 
For thermal phonons, we have in order of magnitude 

M V ~ = ~ U % ~ / @ ~ ,  
1 T jz-z-.  (')", 
t M u 2  C3 (2'2) wherep is the density of the crystal. To determine the tem- 

TABLE 11. Centrosymmetric crystals. 

II 

6,  k 
6 
6 

63, k 
6 3  

fta 

1 

k 
kt62 

kagr 

6, k 

6 

Loss in the presence of additional 
"optional" acoustic axes 

.I 
1 
1 
1 

6 
6 

6 
6 
6 

6 

1 

1 

II I I 

required by symmetry 

Note. In classes C,, and D,, the angle 9 is measured from the acoustic axis lying in the 
symmetry plane. In C,, if there is no such axis, then 9 should be replaced by 1. 
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perature and frequency dependence of the quasi-Debye loss, 
it is necessary to use the estimate for A given in Refs. 4 and 5: 

[h [= l /p '"v .  (2.3) 

This value of A will be called the standard value for noncen- 
trosymmetric crystals and will be denoted by A,. If we as- 
sume that A has the standard value and that the main contri- 
bution to integral (2.1) is from thermal phonons,2' i.e., 
phonons with fin -- T, we obtain the following estimate for 
the loss: 

This estimate is good for all noncentrosymmetric classes 
with the sole exception of the longitudinal loss in the class 
D,. One can show that for this crystal class the longitudinal 
component of the electrophonon potential can be estimated 
as 

It follows that a formula like (2.4) holds for the longitudinal 
component I ~ E , ,  , but with (T/@13 replaced by (T /@) ' .  

At the same time, we do not share the view of Coombs 
and C ~ w l e y , ~  who assume that the electrophonon potential 
is equal to zero for the class 0. Below [see Eq. (2.25) 1 we 
write an explicit expression for the invariant in the free ener- 
gy expansion that gives the standard value of A for this class. 

Three-quantum loss 

Three-quantum processes can be either decay or coales- 
cence processes. For the first we have the e ~ t i m a t e ~ . ~  

where a, = @/fi. The longitudinal loss in group D,, for 
which Im&mw5T, is again an exception. 

Three-quantum coalescence processes, in which a 
quantum of the electric field attaches to an acoustic phonon 
to form a phonon of another branch, give the following con- 
tribution: 

where the superscripts indicate the number of the vector 
component of the electrophonon potential. The off-diagonal 
(in the branch index a )  components of the electrophonon 
potential determine the amplitudes of transitions involving 
two phonons a and a '  and the alternating electric field. The 
amplitude of such a transition is fiAaO1 E(Ra Rat ) ' I 2 .  

The decay formula (2.6) gives the minimum possible 
value of the intrinsic loss. It is important to know whether 
the coalescence expression (2.7) is larger than this value. 
This can happen only if the absorption involves phonons 
whose frequencies 0 are much higher than w (e.g., thermal 
phonons) .3' In this case phonons of two vibrational branches 

of nearly equal frequency can participate in the coalescence 
process. In other words, such processes can occur in accor- 
dance with the general ideas of Herring near lines (or sur- 
faces) of contact of two acoustic branches. In practice, these 
branches must be transverse or quasitransverse. 

Thus, the problem reduces to one of analyzing how the 
branches diverge and how the electrophonon potential be- 
haves as one moves away from the point of contact. We have 
carried out such an analysis for all crystal classes. As an 
illustration we consider examples of several classes. The re- 
sults for the other classes are given without derivation. All 
the results are tabulated. 

Classes C , ,  C,, and D,. According to Herring," lines of 
contact due to symmetry can occur only along the threefold, 
fourfold, or sixfold axes. Lines of accidental degeneracy in 
noncentrosymmetric crystals can lie only in symmetry 
planes,4' of which there are none in the given classes. 

However, noncentrosymmetric crystals can have 
acoustic axes (see, e.g., Ref. 12). These are directions along 
which the velocity of quasitransverse waves as calculated in 
the theory of elasticity (the elastic approximation) coincide. 
In approximations to higher order in ka, the phonon fre- 
quencies should diverge for these classes. Therefore, lines of 
this kind will be called lines of quasidegeneracy. 

If there are no such lines, the loss is given by the decay 
formula (2.6). However, if such lines do exist, they lie along 
random directions, and so there are no symmetry limitations 
on the electrophonon potential. Accordingly, its off-diag- 
onal components comply with the standard estimate (2.3). 
Taking the k, axis along the line of quasidegeneracy, we can 
write the k dependence of the divergence of the branches in 
the form 

Here v and v, are quantities which are of the order of the 
speed of sound and depend on the azimuthal angle p. This 
expression takes two circumstances into account: 1 ) the 
transverse divergence of the phonon frequencies in the elas- 
tic approximation is a linear function of k, ; 2) the longitudi- 
nal divergence of the phonon frequencies arises in the next 
order above the elastic approximation and should therefore 
be proportional to k I. In the spirit of Ref. 5 (seep. 208), we 
obtain an estimate for the contribution to the loss: 

which is valid for w 4 w , , where 

The loss in this case is determined by subthermal phonons, 
specifically, those for which the longitudinal divergence of 
the branches is less than w .  In all such cases the loss is pro- 
portional to T [see Eq. (2.6) ]. 

In the opposite case, when w ) w ,, the frequency of the 
rf quantum is so high that the longitudinal divergence of the 
vibrational branches can be neglected, and the contribution 
to the loss turns out the same as from the line of degeneracy: 
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In all the formulas for the three-quantum loss written below, 
we indicate only the form of the temperature and frequency 
dependence. To obtain an estimate of the loss, we must make 
the formulas dimensionless by dividing one power of T by 
Mu,, the remaining powers of T (if present) by the Debye 
temperature 0, and the frequency w by the Debye frequency 
a,. 

In Table I the class D, is put in a separate row. As was 
shown by Khatkevich," crystals of the rhombic system al- 
ways have acoustic axes. We have taken this into account in 
calculating the loss. Column 4 of Table I gives the results 
obtained with allowance for the mandatory acoustic axes 
which must exist by virtue of the crystal symmetry and 
whose orientation depends on the relationship among the 
elastic constants and in this sense is random. In column 5 we 
give the results which are due to the presence of additional 
acoustic axes which may or may not exist in the crystal de- 
pending on the relationships among the elastic constants. 

Class C, has a symmetry plane. Lines of true degener- 
acy can lie in this plane. If there are no such lines, then the 
loss in class C, is the same as in classes C ,  and C,. If such 
lines do exist, their contribution to the loss is given by the 
standard expression (2.1 1 ) . Unlike the case of centrosym- 
metric crystals, here such a line does not give rise to anisotro- 
py of the frequency and temperature dependence of the loss, 
in spite of the fact that when k lies in the symmetry plane the 
electrophonon-potential vector in this plane vanishes. 

Class C,,  belongs to the rhombic system. In this class 
there are two mandatory acoustic axes." If these axes do not 
lie in the symmetry plane, the result is the same as for D,. 
However, if they or any of the nonmandatory axes lie in the 
plane, the result is given by (2.1 1 ) . 

Classes C3, D,, and C , ,  . These classes have four manda- 
tory acoustic axes, one of which is along the C3 For 
the first two classes this is a line of quasidegeneracy, and for 
the third class it is a line of true degeneracy. For the manda- 
tory lines of accidental (quasi) degeneracy, an estimate of 
the electrophonon potential is given by the standard expres- 
sion A, ,  and the contribution of these lines is given by (2.9) 
or (2.1 1 ) . Allowance for the lines of symmetry degeneracy 
does not alter this estimate. 

Classes C,, D,, C,,  , C , ,  , and D ,, belong to the hexag- 
onal system. Accordingly, in the elastic approximation the 
phonon spectrum is degenerate on the higher-order symme- 
try axis, and the branches diverge quadratically with dis- 
tance from this axis. In the first two classes there is quaside- 
generacy, and in the other three classes there is true 
degeneracy. It should be noted that our statements about 
classes C , ,  and D ,, disagree with the conclusions of Her- 
ring.8 Since the classes C , ,  and D ,, belong to the hexagonal 
system, the elastic approximation for them should yield a 
quadratic divergence of the branches rather than the linear 
divergence given by Herring. The fact that the C3 axis is a 
true line of degeneracy in the group C , ,  (and is not of quasi- 
degeneracy, as Herring has it in Ref. 8 ) ,  can be seen from 
another paper by Herring1' (see Table I1 of that paper). 

The contribution to the loss from a line of symmetry 
degeneracy is determined by the dependence of the electro- 
phonon potential on k and on the angle 9 between the line of 
degeneracy and k; The powers of k and 9 are given in Table I. 
Also given are the resulting frequency and tenlperature de- 
pendence of the absorption. As an illustration, let us find the 
functional form of the electrophonon potential for several of 
the cases indicated in Table I. 

By analogy with Refs. 4 and 5, one can obtain the fol- 
lowing general expression for the electrophonon potential: 

eiS ( k ,  a )  em (k, a ' )  &?' = (Ep.ilmnklkn +. .. 1, (2.12) 
apQ,(k) Q a r ( l i )  

where ei ( k , a )  are the polarization unit vectors of the acous- 
tic vibrations, 6 is a fifth-rank tensor of a constitutive nature, 
and the ellipsis denotes terms containing higher powers of k 
and the corresponding constitutive tensors of higher rank. 
These terms must be taken into account when the lower- 
order terms vanish by reasons of symmetry. 

The quantity in the numerator of (2.12) is nothing but 
the average value (over the volume) of the product of two 
components of the strain tensor due to two acoustic vibra- 
tions, a and a'. The problem thus reduces to finding the inde- 
pendent components of the constitutive tensors 6,. . . , or, 
equivalently, to constructing the invariants of the symmetry 
transformations of the given crystal classes. These invariants 
should be linear functions of the electric-field components 
E, and bilinear functions of the components of the strain 
tensor or its spatial derivatives and should not contain total 
derivatives with respect to the spatial  coordinate^,^' since 
such terms do not contribute to the volume energy. 

Let us analyze some concrete examples, starting with 
class C 3 , .  TWO of its longitudinal invariants (i.e., those cor- 
responding to a field E directed parallel to the C,  axis) are 
given by the real and imaginary parts of the expression 

where u is the elastic displacement vector. Hence, with 
allowance for (2.12), we obtain for the longitudinal electro- 
phonon potential the relation 

However, there is another invariant which, as we shall see, is 
less important. It gives an electrophonon potential which is 
proportional to a higher power of k but which does not con- 
tain 9. This invariant is given by 

and corresponds to 

Using (2.7), we see that the invariant (2.15) gives 
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At larger frequencies, however, the invariants (2.13) play 
an increasing role. They give the standard dependence 

which is dominant over contribution (2.17) for 
O W ,  = n, ( ~ 1 0 ) ~ .  

Let us find out whether these results can be altered by 
the accidental contact of vibrational branches. In the elastic 
approximation, the dispersion relations have cylindrical 
symmetry. Therefore, if there is accidental contact of vibra- 
tional branches, it occurs along the surface of a cone in k 
space. 

In the next order above the elastic approximation, the 
contact vanishes, i.e., there is actually a surface of quaside- 
generacy. For frequencies w  $ w ,  it behaves like a surface of 
true degeneracy, and we have, with allowance for the invar- 
iants (2.13), 

At frequencies w  g a l ,  we should use for the frequency split- 
ting an expression of the type 

AQ=[ (vk,) 2+v,2aZkl,']'". 

Here v  and v, are quantities of the order of the speed of sound 
and depend on the azimuthal angle, and k and k, are the 
components of the vector k along the generatrix of the cone 
and perpendicular to the surface of the cone, respectively. In 
this case 

A comparison shows that for frequencies w  % a D  ( T /  
0)4 the contribution from a surface of quasidegeneracy is 
much larger than the contribution from a line of symmetry 
degeneracy. 

For the transverse invariant let us take 

This invariant leads to the standard estimate for the values of 
A,, which, moreover, remains finite at 9- = 0. Hence for 
I=,, estimate (2.19) obtains at all frequencies. The pres- 
ence of accidental degeneracy cannot alter this result, but it 
can lead to dispersion of the absorption coefficient at fre- 
quencies w  -- w  ,. 

Let us now turn to the group C,,  . This group has al- 
ready been considered by one of the  author^,^.^ so we shall 
confine ourselves here to a few additional remarks. As was 
pointed out in Ref. 4, the contribution to the transverse loss 
from a line of symmetry degeneracy is given by expression 
(2.11 ). It was also noted in Ref. 4 that the presence of a 
surface of accidental degeneracy at frequencies w  % w  , leads 
to a contribution of type (2.19) to the transverse loss. To 
obtain the loss for w ( w , ,  we must take into account that in 
the next order above the elastic approximation, a surface of 
accidental degeneracy "decomposes" into 12 lines lying in 
the symmetry planes. The frequency splitting near a line of 

the kind is of the form 

where k, is the component of the wave vector in the direction 
perpendicular to the symmetry plane. The contribution 
from each such line is 

In evaluating the longitudinal loss we encounter the pe- 
culiar situation that the form of the invariant alone does not 
permit a definite conclusion as to the form of the electro- 
phonon potential. For example, one can easily write invar- 
iants which at first glance could lead to off-diagonal compo- 
nents of the electrophonon potential. An example of such an 
invariant is the product ofEz times any combination appear- 
ing in the expression for the elastic energy of a hexagonal 
crystal. However, for a suitable choice of correct zero-order 
functions, the contribution from such terms in (2.12) gives 
zero for a #af.  

In fact, suppose that the wave vector k deviates slightly 
from the z axis, so that its x component lies in the symmetry 
planexz. Then the correct zero-order function would be two 
transverse vibrations, one of which is polarized along x and 
the other along y. At the same time, there would be no com- 
ponents of the constitutive tensor 6 [or of any of the higher- 
order tensors in (2.12) ] which have only one index y, since 
the group C,, includes a symmetry transformation which 
exchanges y and - y. And since k,, = 0, the corresponding 
invariant must vanish. 

If, however, we consider only the invariants of lowest 
order in k, they, like the elastic spectrum, have cylindrical 
symmetry. In this case we can always assume that the xz 
plane passes through the symmetry axis and the vector k, so 
that the contribution of the lowest-order invariants is zero 
for any orientation of k. To write the invariant one must 
therefore take into account derivatives of higher order. 

The above considerations permit finding the depen- 
dence of All and A, on k and 9- and, consequently, the depen- 
dence of the loss on w  and T for all noncentrosymmetric 
classes of the hexagonal and tetragonal systems (the diver- 
gence of the branches with distance from the symmetry axis 
in the latter case is also quadratic). This dependence is given 
in Table I. 

In the elastic approximation, classes T, 0, and Td of the 
cubic system have lines of degeneracy parallel to the edges or 
along the body diagonals of the cube. However, in the higher 
approximations in k the degeneracy remains only for the 
class T, and is lifted for classes T and 0, so that we are 
actually dealing with quasidegeneracy (see Ref. 8).  

Here the class T has no analog among the classes con- 
sidered above. Along the twofold axis there is quasidegener- 
acy with a quadratic divergence of the branches and with a 
nondiagonal electrophonon potential, which is given for any 
direction by the standard estimate. The correctness of the 
latter assertion can be seen with the aid of the invariant 
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plus terms obtained by cyclic permutation of the coordi- 
nates. 

For the class 0 we will simply give an invariant which 
yields a diagonal (and, incidentally, a nondiagonal) electro- 
phonon potential. We wish to stress the existence of the first, 
since its presence contradicts Coombs and C ~ w l e y . ~  The in- 
variant is of the form 

+ terms obtained by cyclic permutation of the coordinates. 
In this way we have obtained the data of Table I. The 

first column lists the noncentrosymmetric classes. The sec- 
ond column indicates the presence of degeneracy ( + ), qua- 
sidegeneracy ( - ), or neither (0). The third column gives 
the dependence of the electrophonon potential on the angle 
9 (measured from the direction of highest symmetry) and k. 
A "1" in this column indicates that the electrophonon poten- 
tial does not depend importantly on either t? or k. For cubic 
crystals the ones mean that there is no such dependence 
along the degeneracy or quasidegeneracy directions which 
give the leading contribution to the loss. For the class T these 
are the C, axes, for class 0 the C, axes, and for class T, theS4 
axes. 

The frequency and temperature dependences are given 
in the order in which they should succeed one other as the 
frequency is increased in an experiment. For rhombohedra1 
crystals, column 4 also takes into account the contribution 
from the three mandatory lines of accidental degeneracy dis- 
cussed above. The dashes in column 5 indicate that the fre- 
quency and temperature dependence of the loss do not 
change when the accidental degeneracy is taken into ac- 
count. An asterisk means that the coefficient multiplying the 
powers of w and Tin the corresponding frequency and tem- 
perature intervals can exhibit dispersion at the intermediate 

equal to 4. Again, the longitudinal loss in class D6 is an ex- 
ception to these rules. 

3. CENTROSYMMETRIC CRYSTALS 

General consideratlons 

In this case the total loss is the sum of the three-quan- 
tum and four-quantum losses. In noncentrosymmetric crys- 
tals the quasi-Debye loss was known to be dominant for 
WT 5 1. Therefore, the behavior of the three-quantum loss in 
this frequency region was not of interest. For centrosymme- 
tric crystals, however, it is important. 

For WT, 1 the three-quantum loss is described by the 
general expression (2.7). For 07 5 1, as one of the authors 
has s h o ~ n , ' ~ . ~  the situation is as follows. If for 07 2 1 for- 
mula (2.7) implies that I ~ E  oo wn with n > 2, then for wr 5 1 
the concept of a three-quantum loss cannot be introduced in 
a consistent manner, and the intrinsic loss on the whole is 
due to the four-quantum contribution (see below). On the 
other hand, if n ( 2 ,  then even for wr 5 1 one can isolate a 
principal contribution to the loss that turns out to be just as 
sensitive to the details of the phonon spectrum as was the 
three-quantum loss for w r )  1. Remarkably, this isolation is 
possible even though the collisional spreading of the phonon 
frequencies here is greater than o .  We will keep the term 
"three-quantum" for this contribution, although it is not 
completely accurate in this frequency region. 

We shall use the following prescription to obtain an 
expression for the three-quantum loss for wr< 1 (Refs. 14, 
6).  If n < 2, then all but one the powers ofw in the expression 
obtained from formula (2.7) for wr 2 1 should be replaced 
by the same power of 1 / ~ .  If n = 2, an additional factor of 
In ( Tr/fi) should also be appended. 

The four-quantum loss at low temperature was also 
considered in Ref. 6. This loss turns out to be insensitive to 
the symmetry of the crystal and admits the estimate6' 

frequency w ,. T 

Overall picture of the loss in noncentrosymmetric crystals 

A schematic is shown in Fig. la. At low frequencies the 
quasi-Debye loss is predominant. This loss passes through a Three-quantum1oss forwr* ' 
maximum at w =: 1/r and then starts to fall off. It then gives In centrosymmetric crystals the diagonal components 
way to the three-quantum loss, which causes a new increase of the electrophonon potential are identically zero. The off- 
of the intrinsic loss. A general feature of the three-quantum diagonal components are estimated as475 
loss is that extrapolation into the region fiw =: T gives a uni- IAI ~ k a / p ' " v .  
versa1 value, specifically, the value corresponding to the (3.2) 

maximum of the quasi-Debye loss. Here the sum of the expo- We shall call this the standard value for centrosymmetric 
nents of w and Tin  the highest frequency region is always crystals and denote it by A,. 

FIG. 1. Schematic of the frequency dependence of the 
imaginary part of the dielectric constant as a function 
of the field frequency o for tiw .( T ( @ ;  T is the charac- 
teristic collision time for thermal phonons; A=T4/  
MuZ@'; a)  noncentrosymmetric crystals, b) centro- 
symmetric crystals, longitudinal loss; 1 ) class C,, , 2 )  
class D ,, . 
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As in noncentrosymmetric crystals, the absolute mini- 
mum of the loss in centrosymmetric crystals is limited by 
decay process. The only estimate for these processes is now 
of the form (except for D,, ) 

Let us turn to a discussion of the individual crystal 
classes. In class Ci there is no symmetry degeneracy, and in 
the absence of accidental degeneracy the loss is given by 
(3.3). As Herring" has shown, however, in this class and in 
centrosymmetric classes in general there can be lines of acci- 
dental degeneracy. For the acoustic spectrum these are sim- 
ply acoustic axes, which in this case are true lines of degener- 
acy (and not lines of quasidegeneracy). If such axes are 
present, we get 

where we have taken into account that the divergence of the 
branches with distance from such an axis is linear and have 
assumed that the electrophonon potential is given by the 
standard value A,. 

In exactly the same way, symmetry degeneracy is ab- 
sent in the class C,, . Therefore, in the absence of accidental 
degeneracy decay formula (3.3) holds for this class also. If 
there are acoustic axes, they will by and large be lines of true 
degeneracy. Then, according to Herring," they can lie either 
in the symmetry plane or off it. In contrast to the case of 
noncentrosymmetric crystals, the contribution of the acous- 
tic axes lying in the symmetry plane gives rise to anisotropy 
of the frequency and temperature dependence. This property 
is common to all lines of degeneracy lying in symmetry 
planes in centrosymmetric crystals. 

We take the z axis to be perpendicular to the symmetry 
plane. In this case the transverse (with respect to the z axis) 
electrophonon potential is given by the estimate 

~ l ~ = A ~ k ~ / k  (3.5) 

(see Appendix), whereas the longitudinal electrophonon 
potential is given by the standard estimate A,. The contribu- 
tion to the longitudinal loss from a line of degeneracy lying in 
the symmetry plane is given by the standard estimate (3.4), 
while the contribution to the transverse loss is 

Im (3.6) 

We see that the contribution to the loss from such a line of 
degeneracy is sharply anisotropic. At the same time, the con- 
tribution from an acoustic axis not in the symmetry plane 
would not have this anisotropy. Specifically, for the class 
C,, this means that the contribution of the acoustic axes to 
the transverse (with respect to the C, axis) loss can be pro- 
portional either to w4T2 (in the first case) or to w2T4 (in the 
second). 

In the class D,, the three mutually perpendicular sym- 
metry planes are not completely equivalent. One of them is 
known to contain two acoustic axes,I2 and the longitudinal 
and transverse losses in Table I1 are defined with respect to 
the normal to this plane. 

For the other classes listed in Table I1 the lines of sym- 
metry degeneracy were studied by the method of invariants, 
while the remaining lines were studied on the basis of the 
considerations discussed above. 

We note that for the groups C,, and D,, , the situation 
in regard to the surface of accidental contact is reminiscent 
of that which we discussed above for noncentrosymmetric 
crystals of the hexagonal system. The difference is that now 
the expression of type (2.22) should contain (k  a ) 4  rather 
than (k  a ) ,  under the radical. Accordingly, the role of the 
characteristic frequency at which the transition from one 
limiting behavior to the other occurs is now played by 
w2 z fl, ( T /@) rather than 0 , .  The presence of dispersion 
in the loss at frequencies near w, is denoted by an asterisk in 
Table 11. 

As we see from Table 11, a characteristic feature of the 
three-quantum rf loss in centrosymmetric crystals is that the 
sum of the exponents of w and T is equal to 6 (except for the 
longitudinal loss in the class D ,, ) . 
Generaipicture of the loss in centrosymmetric crystals 

By considering Table I1 together with formula (3.1 ) for 
the four-quantum loss in the light of the above discussion, we 
can get a general picture of the loss. There is a qualitative 
difference between the behavior of the loss in noncentrosym- 
metric and centrosymmetric crystals: in the first case the 
curve of Im E ( W )  goes through a maximum and then a mini- 
mum, while in the second case it is a monotonic function of 
w. 

As an example, let us consider the frequency depen- 
dence of the longitudinal loss in crystals of the classes C,, 
and D,, (Fig. lb) .  In the first case the three-quantum con- 
tribution to the loss is dominant at all frequencies, while in 
the second case there is a transition from the four-quantum 
to the three-quantum loss as the frequency w increases. The 
transition by no means occurs at frequencies w =: 1/r, as was 
the case in the examples considered in Refs. 4 and 5. 

Comparison with Coombs and Co wieya 

We believe there is a fundamental difference between 
our results and those of Coombs and Cowley, primarily in 
regard to the so-called non-Debye (three- and four-quan- 
tum) losses. Let us briefly discuss this disagreement. 

Coombs and Cowley calculated the loss using a diagram 
technique. On p. 132 of their paper, in analyzing the denomi- 
nator of the single-particle phonon Green's function, they 
write: "The response is identical to that of a classically 
damped simple harmonic oscillator. There is a single damp- 
ing constant which is expected to be frequency independent 
in the low-frequency limit, say for o/25i-< lTHz." This 
statement is equivalent to saying that Im ~ o o w  over the en- 
tire frequency interval fiw 4 T. However, as can be seen from 
the present paper as well as from Refs. 4 and 5, the linear 
frequency dependence of the non-Debye loss (2.7) is actual- 
ly a rare exception rather than the rule. The powers of the 
frequency and temperature depend in an essential way on the 
conservation laws characterizing the interaction of the elec- 
tromagnetic field with the phonons, and they in turn depend 
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on the symmetry of the crystal. As a result, the damping 
coefficient off the mass surface in no way resembles that of a 
classically damped simple harmonic oscillator, as it has a 
far-from-trivial frequency and temperature dependence. 
The study of the frequency and temperature dependence for 
crystals of different symmetries is the central problem of the 
theory of dielectric loss. 

As to the quasi-Debye loss, the existence of such a con- 
tribution, with its specific frequency dependence, was estab- 
lished in Ref. 3. In Refs. 4 and 5 and in the present paper we 
have studied the temperature distribution of this loss. 

4. A FEW REMARKS CONCERNING THE CASE TLO 

In this case the alternating field interacts not only with 
long-wavelength acoustic phonons but also with optical and 
short-wavelength acoustic phonons. Using the results pre- 
sented above, one can estimate a lower bound on the high- 
temperature three-quantum contribution to the loss. This 
estimate is based on an extrapolation of the contribution 
from long-wavelength acoustic phonons into the short- 
wavelength region. The prescription for this estimate is to 
leave the frequency dependence as is but to replace all but 
one power of the temperature by O. Here the estimates of the 
contribution from lines (or surfaces) of quasi-degeneracy 
remains in force, since they are already proportional to T 
anyway for o(w,  (or ~ ( w , ) .  As to the region w)w, (or 
w SW,), it lies outside the domain of application of the the- 
ory when T 2  @, since at such temperatures it must be as- 
sumed that w, zw,  -- a,. 

For the contribution from the optical branches it can be 
shown that the presence of true lines of degeneracy does not 
alter these estimates. However, they can change substantial- 
ly when allowance is made for lines of quasidegeneracy, 
points of intersection of the lines of degeneracy with the 
boundaries of the Brillouin zone, certain singular points on 
the lines, and surfaces of degeneracy. It can be noted further 
that the contribution from the neighborhood of the Brillouin 
zone center should be different for polar and nonpolar vibra- 
tions. Analysis of most of these questions requires knowl- 
edge not of the crystal class but of the symmetry space group, 
and so for TZ O the loss generally is sensitive to the space 
group. 

5. DISCUSSION OF THE EXPERIMENTAL SITUATION 

Many papers have been written about the observation 
of dielectric losses in crystals, but most of the measurements 
have been made at low frequencies, where it is scarcely possi- 
ble to be sure that the loss is of an intrinsic nature. 

Papers on the observation of the losses at higher fre- 
quencies are few in number. We might mention the studies 
by Stolen and Dransfeld,* Owens,I5 and Hadni16 on alkali 
halide crystals. These studies dealt mainly with the high- 
temperature case. 

Here, however, we are interested in the low-tempera- 
ture loss. Let us therefore discuss the recent experiments of 
Ref. 17 on the loss in leucosapphire7' (A1,03, class D ,, of the 
rhombohedra1 system). In these experiments the tempera- 
ture dependence of the loss was studied at two frequencies: 

w = 27 . 9 GHz and w = 27 . 36 GHz. In both cases the 
loss was proportional to T' , with m = 4.79 + 0.27 for the 
first frequency and m = 4.85 + 0.33 for the second. This de- 
pendence was observed at temperatures between 260 and 60 
K; as T was decreased further the curve of I ~ E  ( T) became 
parallel to the abscissa. That the loss was of an intrinsic na- 
ture in these experiments can be considered established. 
Since the Debye temperature of leucosapphire is 1054 K, it is 
natural to use a theory developed for the case T(O in inter- 
preting the data of this experiment. 

On the other hand, this inequality is satisfied without a 
very large safety factor. It is therefore necessary to indicate 
what temperatures can be regarded as sufficiently low that 
the experimental data can be interpreted in the framework of 
the present study. It might be thought that a temperature is 
clearly small from our point of view if the various other ki- 
netic and thermodynamic characteristics of the crystal ex- 
hibit the power-law behavior given by the theory for T(O. 
As we know, however, both the specific heat and the thermal 
expansion of leucosapphire actually ".I9 do not obey a T law 
over anywhere near the entire temperature range 60-260 K. 
We do not see a contradiction between this circumstance and 
the fact that the loss obeys a power law over a much wider 
temperature range. The specific heat and thermal expansion 
contain contributions from all the vibrational branches, 
while the intrinsic loss contains contributions only from the 
transverse branches near lines of contact. There is also a 
substantial difference in the quantities over which the ther- 
modynamic average is taken: in the calculation of the loss 
the expression to be averaged includes the square of the elec- 
trophonon potential, which has a substantial dependence on 
k. 

However, since we know that the limits of the low-tem- 
perature region are exceeded in regard to the specific heat 
and thermal expansion, we should not expect a very detailed 
agreement with the predictions of the theory of intrinsic loss 
as to the power of T. The criteria by which the loss can be 
judged intrinsic in this case, we believe, are that the loss be 
proportional to a sufficiently high power of the temperature, 
that it be of the correct order of magnitude (we consider this 
criterion to be very important ), and that it be independent of 
the defect concentration. 

Let us examine how our theory permits interpretation 
of the experimental data for T< O. One possibility is indicat- 
ed in Ref. 17. It is based on similarity of the elastic properties 
of leucosapphire to those of a hexagonal crystal with a sur- 
face of degeneracy in the elastic spectrum. In this case, ac- 
cording to Refs. 4, 5, and 20, the loss is given in order of 
magnitude by the estimate 

Here rl is a dimensionless coefficient which characterizes the 
effect of the electric field on the elastic vibrations. The exact 
value of this coefficient remains unknown, but in order of 
magnitude it is between 1 and 100. If the values w = 6 . 10" 
sec-I, T = 100 K, 7 = 1, and the other values for leucosap- 
phire are plugged into (5.1 ), one gets I ~ E  -- 5 . lop9. This 
value would agree satisfactorily with the experimental esti- 
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mate" I m  5 5 - lo-' if r]=: 10'. This may mean that the 
electrophonon potential is 10 times as large as the value giv- 
en by estimate (3.2). Dimensionless factors of order 10 can 
arise in the theory; for example, in many crystals the anhar- 
monic stiffness constants are 10 times as large as the har- 
monic constants. 

As far as one can tell from published data, the elastic 
properties of leucosapphire are in fact relatively close to 
those of a hexagonal crystal. According to Ref. 21, the elas- 
tic stiffness constants in the temperature range of interest are 
(in 10" dyn/cm2): C,, = 49.5, C,, = 49.7, C,, = 14.6, 
C,, = 11.5, and C,, = 16.0. At the same time, the constant 
C,,, which characterizes the nonhexagonality of a rhombo- 
hedral crystal, is only C,, = - 2.3. If this "rhombohedral" 
constant C,, is neglected, the remaining constants are such 
that leucosapphire actually does have a surface of degener- 
acy. 

With allowance for C,,, however, this surface "decom- 
poses" into six acoustic axes in accordance with the symme- 
try of the rhombohedral crystal. In the intermediate direc- 
tions, i.e., between the acoustic axes, the transverse 
vibrational frequencies split. Estimates show that for 
C,, = - 2.3 the relative value of the splitting is less than 0.1. 
For thermal phonons, however, even a gap of this size is 
larger than the frequency w, and therefore at such low fre- 
quencies w leucosapphire cannot be treated as a hexagonal 
crystal. 

Furthermore, as we showed in Sec. 3, estimate (5.1 ) is 
only good at w )w,, even for a hexagonal crystal. For exam- 
ple, at 100 K we have w2=: 10'' for leucosapphire, i.e., a 
crude estimate puts us at the boundary of the domain of 
application of (5.1 ). (As the amount of experimental mate- 
rial accumulates, this estimate will need to be refined, since 
we do not know the actual values of the coefficients charac- 
terizing the dispersion of the sound velocity. ) 

Another possibility is to explain the experiments" in 
terms of a rhombohedral crystal. According to Refs. 4 and 5 
and the present study, the contribution to the loss from the 
neighborhood of a single point of contact of constant-fre- 
quency surfaces in rhombohedral crystals of class D,, 
differs from (5.1 ) by a factor of k / T ,  or approximately 
lo-'. However, this small factor, as we shall presently see, is 
compensated. Leucosapphire has six additional acoustic 
axes with a pair of contact points on each. An additional 
factor of 12 thus appears in the estimate. The estimate was 
also made on the assumption that the difference of the phase 
velocities of the transverse acoustic vibrations is of the order 
of the average velocity of transverse sound. Actually, how- 
ever, as can be judged directly from the shape of the recipro- 
cal-sound-velocity surfaces near the points of contact,I9 this 
difference is several times smaller. Accordingly, the loss 
turns out to be as many times larger." As a result, a factor of 
order 10' is obtained, so that order-of-magnitude estimates 
for a rhombohedral crystal also can in principle agree with 
the experimental data. " 

It should be kept in mind that this estimate for a rhom- 
bohedral crystal holds only for a)  I/T, where T is the char- 
acteristic collision time for thermal phonons in regard to 

both their anharmonic interaction with other phonons and 
their scattering by lattice defects. For an arbitrary relation- 
ship between w and 1/r the estimate is of the form6 

o T" T" 
~ r n  E X ~ O ~  -[ln + or arctg wr] . 

zpu A@ A' (02+1/z2)  
(5.2) 

For 137) 1 this expression goes over to the estimate discussed 
above. 

There are also intermediate possibilities which arise if, 
for example, one assumes that the elastic constants stand in 
definite relationships that are not dictated by the crystal 
symmetry. For example, a slight refinement of the values of 
the shear stiffness (and not only C,,) from the values given 
above can lead to a noticeable change in the angle between 
two neighboring acoustic axes and, in particular, to their 
practical coincidence. (To be convinced of this one need 
only compare Figs. 35A. 13.1 and 35A. 13.2 in Ref. 19, which 
were constructed for slightly different values of the elastic 
constants of leucosapphire: in one case there are no optional 
accidental intersections of the transverse branches, and in 
the other case there are such intersections.) If the angle 
between neighboring acoustic axes is so small that the corre- 
sponding frequency gap between them is smaller than w, 
then this is equivalent to the touching of constant-frequency 
surfaces which diverge quadratically in the symmetry plane 
and linearly in the direction perpendicular to this plane. 
Such an accidental touching would lead to a w'., T4.' law for 
WT) 1. We shall not discuss the other intermediate possibili- 
ties here. 

Additional data for choosing among the possibilities 
mentioned above can be obtained by studying the frequency 
dependence of the intrinsic loss. It must be remembered, 
however, that the intermediate case corresponding to an in- 
termediate temperature dependence and an intermediate 
frequency dependence can arise in experiment [e.g., Eq. 
(5.2) with wr=: 11. 

We are sincerely grateful to E. L. Ivchenko and G. E. 
Pikus for an extremely fruitful discussion and to V. B. Bra- 
ginskii for a detailed discussion of the experimental situa- 
tion. 

APPENDIX 

Electrophonon potential near llnes of accidental 
degeneracy lying in a symmetry plane 

Let us consider two (quasi) transverse acoustic 
branches having a line of degeneracy in a symmetry plane. 
One of the branches is even and the other odd with respect to 
reflection in this plane. We begin with noncentrosymmetric 
crystals. The longitudinal (with respect to the normal to the 
plane-the z axis) nondiagonal electrophonon potential is 
given by the invariant 

whereg is the direction of the line of degeneracy,and y and z 
are the directions of the polarization of the two degenerate 
(quasi) transverse vibrations. The transverse electrophonon 
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potential is given by the invariants 

(A. 1) 

We will be interested in the values of the electrophonon 
potential in directions close to the line of degeneracy: 
k = k, + Ak, where k, lies on the line of degeneracy. If Ak 
lies in the symmetry plane, then the invariants (A. 1 ) do not 
give off-diagonal components of the electrophonon poten- 
tial, since in this case a vibration, being either even or odd 
with respect to reflection in this plane, cannot simultaneous- 
ly contain they andz components of the polarization vector. 

If, however, the vector Ak forms an angle of the order of 
unity with the plane, then the correct zero-order functions 
are superpositions of vibrations polarized along y and z. In 
this case invariants (A1 ) will give a nondiagonal transverse 
electrophonon potential having an estimate which, from the 
standpoint of the contribution to the loss, is practically 
equivalent to the standard estimate: 

The longitudinal component of the electrophonon po- 
tential in centrosymmetric crystals can be provided by the 
invariant 

which leads to the standard estimate. 
Let us turn to the transverse component of the electro- 

phonon potential. Invariants which contain only the spatial 
derivatives with respect tog, i.e., which do not vanish when 
k lies on a line of degeneracy, can be constructed only by 
using u, and u, simultaneously. To lowest order, such in- 
variants are of the form 

For our choice of coordinate axes, if the vector k comes 
slightly out of the symmetry plane, then the correct zero- 
order functions, as before, are polarized in the yz plane. 
Therefore, the invariant (A.2), unlike (A. 1 ), does not con- 
tribute to the transverse nondiagonal electrophonon poten- 
tial. Allowance for invariants containing derivatives with 
respect to the coordinate r ] ,  directed perpendicular to in 
the symmetry plane, will not alter this conclusion. 

Allowance for invariants containing derivatives with 
respect to z leads to estimate (3.5) in the text. 

"We do not share this view, for reasons which have been discussed in 
detail in the paper by Tagantsev.1° 
The peculiarities of those cases in which the main contribution to the 
quasi-Debye loss if from subthermal phonons have been discussed in 
detail in the book by Gurevich (Ref. 5, p. 315) and will not be consid- 
ered here. 

" It is easily checked that the coalescence contribution from subthermal 
phonons with frequencies of the order of o turns out to be of the same 
order as the decay contribution (2.6). 

4' Herring" also discussed points of accidental degeneracy, but these 
should not be present in the long-wavelength part of the phonon spec- 
trum. 

5 '  This condition can also be regarded as a consequence of the fact that the 
Hamiltonian of the lattice vibrations is real. For electronic systems the 
limitations due to the reality of the Hamiltonian are also linked with the 
time-reversal symmetry of the wave equation. 

6' For centrosymmetric crystals the longitudinal loss in the group D,, is 
an exception. 

"We shall not discuss the data'' on the intrinsic loss in Y,AI,O,,. This 
material has many atoms in the unit cell and hence an enormous number 
of optical vibrational branches. Off-hand we would say that the theory 
will need further development in order to describe the loss in crystals of 
this kind. 

" Such an effect is in principle possible in hexagonal crystals as well if the 
constant-frequency surfaces intersect at a small angle along lines of acci- 
dental contact. 
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