
Repulsion of energy levels and conductivity of small metal samples 
0. L. Al'tshuler and B. I. Shklovskii 

B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR, Leningrad 
(Submitted 22 January 1986) 
Zh. Eksp. Teor. Fiz. 91,220-234 (July 1986) 

A metal sample of size L is considered in the one-electron approximation for the case in which 
the conduction electrons move in a random impurity potential. The fluctuations in the number 
of levels in an energy band of width E due to random variations in the potential are studied, 
and it is shown that the fluctuations are described by Dyson's expression when E(Ec,  where 
Ec = +iLl /L and D is the diffusion coefficient. For E )  E, the fluctuations in the number of 
levels are much larger than those found by Dyson. Thus for high energies the Wigner-Dyson 
postulates are not satisfied by an ensemble of metal samples. The relationship between the 
fluctuations in the sample conductivity and the fluctuations in the level density is analyzed, 
and the conductivity fluctuations are found to consist of two independent contributions. The 
first is determined by the fluctuations of the level number in a band of width max CE, ,T} 
centered in the Fermi level ( T  is the temperature). The second contribution is due to 
fluctuations of the diffusion coefficient. Both contributions are of the same order of magnitude 
when T g E c .  For T$ Ec the result depends on the dimensionality d of the sample. For d = 3 
the contributions from the state density and from the diffusion coefficient remain comparable, 
while the fluctuations in the diffusion coefficient are dominant for d = 1 and 2. 

1. INTRODUCTION 

Fluctuations of the residual conductivity in small con- 
ductors have recently attracted both experimental1-"nd 
theoretical i n t e r e ~ t . ~ - ~  The fluctuations can give rise to re- 
producible aperiodic oscillations in the conductivity when 
the magnetic field varies. The theory, which seems to agree 
with experiment, predicts that at zero temperature the reci- 
procal G of the sample resistance (i.e., the conductance) 
differs from its average value by an amount SG-e2/fi (it 
also depends on the size and shape of the sample): 

where ( . . . ) denotes an average over all realizations of the 
random potential. 

According to ( 1 ), the relative magnitude 6G / G  of the 
fluctuation is independent of the sample size L in the two- 
dimensional case (d = 2) and is proportional to 1/L for 
d = 3. We note that conductivity fluctuations caused, e.g., 
by fluctuations in the impurity concentration, should fall off 
as L d'2 . From this viewpoint the fluctuations described by 
Eq. ( 1 ) would appear to be anomalously large. 

However, these fluctuations can also be approached 
from another point of view. Thoule~s'~'  showed that the con- 
ductivity of a sample of size L is determined by precisely 
defined one-electron levels which lie in an energy band of 
width Ec = Dfi/L centered in the Fermi level (D  is the elec- 
tron diffusion coefficient and L 2 / D  is the characteristic time 
for an electron to diffuse through the sample). It is easy to 
verify that 

where N ( E )  is the number of levels in a band of width E. It is 

reasonable to assume that the fluctuations in the conduc- 
tance are due to the fluctuations SN(E,)=N(E,) 
- (N(E, ) ) in the number of levels N(Ec ) : 

6 G / ( G > = 6 N ( E c ) / ( N ( E , )  >. ( 3 )  

Using ( 1 ) and (2 ) , we readily find from ( 3 ) that 

6 N ( E c )  4, (4)  

whereas one would expect the result S N z N  ' IZ  for a disor- 
dered system. Thus from this point of view, the conductivity 
fluctuations ( 1 ) are anomalously weak. 

The fact that the level number fluctuations for a given 
energy band are small compared to N 'IZ indicates that there 
must be a repulsion between the levels. Since the appearance 
of Wigner's work,'' this phenomenon has been actively stud- 
ied for systems describable by a matrix Hamiltonian, all of 
whose elements fluctuate about zero in the same way with a 
large amplitude. This problem is treated, e.g., in the statisti- 
cal theory of nuclear spectra. I2 . l 3  Arguments based on level 
repulsion were first applied to small metal particles in Ref. 
14. 

Most of this work (see the recent paper Ref. 15 and the 
bibliography cited there) is concerned with how the repul- 
sion alters the distribution function for the distance between 
two adjacent levels. However, as suggested by the above dis- 
cussion, we are primarily interested in the different problem 
of calculating the fluctuations in the number of levels N(E)  
in an energy band of width E when the average number of 
levels (N(E))  in the band is large. This problem was first 
discussed by DysonI6 and was subsequently analyzed more 
fully in Ref. 17. Dyson showed that 
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where the number B is different for each of the three ensem- 
bles of random Hamiltonians introduced by in Ref. 16 (p is 
equal to 1,2, and 4 for the orthogonal, unitary, and symplec- 
tic ensembles, respectively, which we recall are character- 
ized by different symmetry constraints). According to Ref. 
14, the orthogonal ensemble describes metal particles when 
there is no magnetic field or spin-orbit scattering; the unitary 
ensemble is appropriate in a magnetic field, while the sym- 
pletic ensemble describes the case of strong spin-orbit scat- 
tering. In Eq. (5)  N(E) is the total number of states (count- 
ed with allowance for a possible s-fold degeneracy which is 
not removed by the random Hamiltonian). The simplest ex- 
ample is two-fold spin degeneracy in an orthogonal ensem- 
ble. 

The quantity k in (5) is equal to the number of the 
noninteracting series of levels; indeed, levels with different 
precisely defined quantum numbers do not interact with one 
another. It is clear that in this case the mean-square fluctu- 
ations for the level numbers in the different series can simply 
be added. 

It is clear from (5)  that 

i.e., the level number fluctuations are strongly suppressed by 
the repulsion, although they are still larger than predicted by 
Eq. (4). In other words, substitution of (5 ) into (3) leads to 
conductance fluctuations greater than predicted by ( 1 ). 

We will resolve this apparent contradiction in the next 
section, where the meaning of Dyson's result (5)  will be 
discussed in detail. We will find that Eq. (5)  applies only to 
an isolated sample, i.e., to specimens that retain all their 
electrons and therefore have unbroadened energy levels. On 
the other hand, Eq. ( 1 ) was derived for "open" samples in 
contact with two perfect conductors. The electron energy 
levels in this case are broadened by an amount - Ec = #iD / 
L ,. 

In Sec. 3 the impurity diagram technique is used to cal- 
culate the fluctuations of the number of levels in a band of 
width E in a metal sample. For an isolated sample and small 
E(E < Ec ), the result coincides with Eq. (5) .  We will see 
how the fluctuations SN get smaller when the sample is 
"opened" and Eq. (5 )  gradually merges into (4).  

The situation is very different when E) Ec . In this case 
the fluctuations SN(E) for isolated and open samples are 
comparable in order of magnitude and much larger than (4) 
and (51, 

where d is the dimensionality of the sample, L, = (Dti/ 
E) 'I2, 

Thus for wide bands E)Ec, metal samples do not obey the 
conditions postulated by Wigner and Dyson. 

Equation (6)  implies that as E increases, the system of 
levels becomes less "rigid" and ( [SN(E) ] ') depends on the 
sample volume Ld in the same way as if no repulsion were 

present between the levels. However, the repulsion still can- 
not be neglected, because the mean-square magnitude of the 
fluctuations and its dependence on E do not obey Poisson 
statistics. Indeed, (6)  implies that 

< [ 6 N ( E )  I 2 > / ( N  ( E )  )=e2/hGE<l,  

where GE is the conductance of a cube of side L, . The phys- 
ical significance of Eq. (6)  will become clearer from the 
qualitative derivation given in Sec. 2. 

In Sec. 4 we quantitatively analyze the relationship 
between the conductance and state-density fluctuations. We 
will see that for T(Ec the corresponding relative magni- 
tudes are indeed comparable. Nevertheless, one-third of the 
magnitude of the mean-square conductance fluctuations is 
due to fluctuations in the density of states; the remaining 
two-thirds is due to fluctuations in the electron diffusion 
coefficient. For temperatures T)Ec, the result depends on 
the dimension d. For d = 3, the state density fluctuations 
account for 1/6 of the total (SG ,), while for low dimensions 
the quantity (6G2)/(G)' turns out to be systematically 
greater than ( [SN( T) ] ')/(N(T) ) ': 

(6G2> ( N  ( T )  >' 
-, 

In TIE,, d=2 . 
( G Y  ( [ 6 N ( T )  1 ' )  .{ (T/EC)Oh, d = l  ( 7 )  

Thus for T)Ec and d<2, the fluctuations in the conduc- 
tance are due almost entirely to fluctuations in the diffusion 
coefficient, and Eq. (3)  does not even give the correct order 
of magnitude. 

It will also be shown in Sec. 4 that the state-density and 
conductance fluctuations are independent, i.e., 

where D is the diffusion coefficient. 

2. QUALITATIVE ANALYSIS 

The level repulsion is easiest to understand for the case 
of a 2 X 2 matrix Hamiltonian" with independent random- 
variable elements Hi,. In this case the probability density for 
the system to have the levels E ,  and E' is equal to 

Pz (81, ea) 

where f (Hi ), the distribution function of Hi,, varies on a 
scale H,. For real HI, (this corresponds to an orthogonal 
ensemble) and I&, - E, 1 4 H,, we find from (8)  that 

For a unitary ensemble, HI, is complex and Re HI, and 
Im HI, are independent random variables, and 

withj3 = 2. Relation (9a) withP= 4 can be derived similar- 
ly for a'symplectic ensemble. 

The multilevel distribution function was first derived 
by Wigner" for an orthogonal ensemble with 
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FIG. 1 .  

The result is 

PN {e,) = B ~ H ~ ~ ' ~ + ' " '  11 I e i - ~ I e x p ( - c  e i z / 2 ~ t ) .  
i >j i (11) 

The product of the lei - cj / for all i > j describes the repul- 
sion between the pairs of levels in the system; its origin can be 
explained as follows. Dimensional analysis shows that the 
function PN{&i) must contain a polynomial of degree 
N(N - 1 )/2. On the other hand, this polynomial must van- 
ish as I when E~ d ~ , ,  because only a pair of levels de- 
scribable by a 2 X 2 Hamiltonian needs to be considered in 
this limit. It follows that the polynomial must be of the form 
ni, , Isi - cj I. A more rigorous derivation of ( 1 1 ) can be 
found in Ref. 12, pp. 260-262. The generalization of ( 11 ) 
valid for all three types of ensembles is 

i >j i 

We will find it useful to exploit Dyson's analogy with elec- 
trostatics as formulated in Ref. 16. If we write ( 12) in the 
form 

it is clear that PN { E ~ )  is the probability density for N parti- 
cles at temperature /3 - ' to lie at the points ei on the energy 
axis if the particles repel one another by the "two-dimen- 
sional Coulomb" law 

U(ei-e,) =in (111 et-ejl). (14) 

and are confined by a quadratic potential E ~ / W  :/3 near the 
point E = 0. DysonI6 proposed an alternative method for 
confining a Coulomb gas, in which the E axis is regarded as 
closing back on itself to form a circle. Since we will be inter- 
ested in the density fluctuations of a Coulomb gas in an ener- 
gy interval small compared to the confinement region (i.e., 
to the total width of the spectrum), we need not specify the 
confinement mechanism. The only important thing is that 
the "gas" be in a state of mechanical equilibrium. 

To estimate the fluctuation 6N(E) in the number of 
levels in an energy interval E, we take an arbitrary point E 

and consider a small neighborhood of length 2E, which we 
split into halves (Fig. 1 ). Let us calculate the energy Wneed- 
ed to take the left-hand half into the right-hand half, i.e., to 
take the 6N levels from the segment [E - E, E] into the seg- 
ment [E, E + El. This is the energy required to form addi- 
tional charges of T SN in the two segments. We need con- 
sider only the interaction of these charges with one another, 
because in the unperturbed state the total force acting on 
each particle is equal to zero. (In the context of a Coulomb 
gas, the confining field acts as a compensating background 

in Wigner's approach and one can speak of particles and 
holes. ) 

If we calculate the difference between the interaction 
energies for the charges + 6N in the final and initial states, 
we find that the required energy is 

W-- (6N)'ln (l/E)- [-(6N)'ln (2/E)]=(6N)" (15) 

For a typical fluctuation SN, Wshould be comparable to the 
temperature /3 - '; it follows that 

Formula ( 14) gives the size of fluctuations which are homo- 
geneous over the energy scale E, and this is emphasized in 
(16) by the presence of the subscript E. However, fluctu- 
ations in the number of levels within the segment [E - E, E ]  

result not only from fluctuations of scale E but also from 
fluctuations of scale E /2, E /4, . . . , E /2", which may be 
regarded as independent (see Fig. 1 ). The minimum energy 
scale E /2" below which the above approach becomes invalid 
is comparable to the mean distance A E  /(N(E) ) between 
the levels. Therefore, 

Formula ( 16) has the remarkable property that there is 
no dependence on the subscript E. This implies that all the 
energy scales contribute equally to ( [SN( E) ] 2), 

Upon substituting (16) and (17) into (18), werecover Dy- 
son's result (5) up to a numerical factor. 

So far we have considered the number of levels in an 
energy band with well-defined boundaries. If the band center 
lies at energy E, the number of levels is equal to 

where 8(x)  = 0 for x < 0 and 8(x)  = 1 for x > 0. Bands with 
blurred edges are clearly of interest in physical applications. 
Formally, this amounts to replacing the 8-functions in ( 19) 
(solid curve in Fig. 2) by a smooth function F(E - E') with 
edges of width - y (dashed curve). In this case the fluctu- 
ations SN(E) clearly depend only on the amount of charge 
transported over energy distances greater than y. Rather 
thanusingEq. (17) fornin (18), wemustsetnzln(E/y) ,  
whence 

FIG. 2. 
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We note that the above qualitative analysis does not suffice 
to determine the numerical coefficient in Eq. (20); the value 
given here follows from the exact calculation in Sec. 3 for a 
metal sample. 

Equation (20) can also be interpreted somewhat differ- 
ently, We first consider a band with sharp edges but allow for 
the finite width y of the levels E~ (the broadening could be 
due, e.g., to inelastic collisions). The broadening of the lev- 
els can be allowed for in ( 19) by making the replacement 

One must now work with the total number of states rather 
than consider the number of levels. Of course, Eq. (20) also 
describes the fluctuations in the number of states. We note 
that Eq. (20) reduces to (5) if y=; A and to (4)  if y z E .  

The above results can be used to analyze the conductiv- 
ity of a small metal sample. As stated in the Introduction, the 
conductance is proportional to the number of levels in a band 
of width E,. However, it is clear that the band cannot have 
sharply defined boundaries. The Thouless approach,1° 
which is based on analyzing how a level shifts when the 
boundary conditions change, implies that the boundaries of 
the energy band are blurred by an amount comparable to the 
band width E,, itself. Equation (20) then implies (4) ,  and 
the repulsion of the levels causes fluctuations of magnitude 
-e2/fi in the conductance. The same result is obtained if an 
open sample is considered; in this case the level width y is 
again comparable to E, because electrons can escape from 
the metal, and (20) again reduces to (4) .  

It makes sense in principle to consider a "weakly open" 
sample, for which the contacts to the other conductors have 
a small transparency q. In this case formula (20) applies 
with y = VE, gE, . 

We have thus far examined some consequences of level 
repulsion in systems obeying the Wigner-Dyson postulates. 
For such systems the result (20) is valid whenever the band 
width E is much less than the total width of the spectrum. As 
was mentioned in the Introduction, an exact calculation 
(Sec. 3) shows that the Wigner-Dyson approach applies to 
metal samples only for sufficiently narrow bands E 5 E, . In 
the opposite limit E)Ec the level number fluctuations obey 
Eq. (6),  which differs radically from (20). To account for 
this difference, we note that from our perspective the chief 
assumption underlying the Wigner-Dyson result is that all 
the matrix elements have a scatter of the same order of mag- 
nitude. This is valid for a metal sample if a narrow energy 
band E 5 E, is considered. In this case an electron can dif- 
fuse through the entire sample during a time of order fi/E, so 
that all the matrix elements Hij  are comparable to E, in 
order of magnitude. By contrast, for a wide band an electron 
can diffuse through only a portion of the sample during the 
time fi/E: 

This suggests breaking the whole sample up into small cubes 
with sides of length L,. The states contained in a band of 
width E can be used to form wave packets that are localized 
within the cubes. Clearly, the matrix elements relating wave 

packets from a single cube differ dramatically in order of 
magnitude from the matrix elements relating packets from 
two cubes separated by a distance L )  L, . It is therefore rea- 
sonable to adopt an approximation in which each cube has 
its own system of levels, with no repulsion between levels in 
different cubes. By (20), the fluctuation in the number of 
levels in each cube is of order unity. (According to the defin- 
ition (22), the width is -E in an open cube of side L, .) The 
quantity ( (SN(E) 1 2, for the whole sample is therefore 
roughly equal to (L /LE ) d ,  the number of cubes (see Eq. 
(6) 1. 

We see that (L /L, )d in this problem is analogous to 
the number k of noninteracting series of levels that appears, 
e.g., in (5). For metal samples with a wide energy band, the 
effective number of series depends on the band width E. 

Equation (6) is of course valid only for L, $ I, where 1 is 
the mean free path. It is thus limited to low energies E &fi/r, 
where T is the collision time. We believe that ( [SN(E) ] ') 
stops increasing with E when E > fi/r because in a perfect 
crystal, the random potential broadens each level by an 
amount - fi/r. The changes in the number of levels in a band 
of width E)fi/r are therefore confined to narrow subbands 
of width fi/r near the edge of the main band, and these 
changes are independent of E. 

We observe that as the metal-dielectric interface is ap- 
proached, E, becomes comparable to the spacing A between 
the levels. Formula (20), and hence also the entire Wigner- 
Dyson scheme, thus does not apply at all. This is not surpris- 
ing, since in the dielectric phase (in which all the states are 
localized) the typical off-diagonal matrix elements H i j  are 
proportional to exp( - L /{) and decay with increasing 
sample size much faster than the spacing A -- L - (here 6 is 
the localization radius). This fact was noted in Ref. 18 for 
one-dimensional systems, in which the states are always lo- 
calized. 

3. DERIVATION OF THE PRINCIPAL RESULTS 

We will now use the diagram techniqueI9 to calculate 
the fluctuations in the density of the energy levels. The den- 
sity Y ,  of the electron states at a given energy E in a sample of 
volume V is 

Here and below, Y, is understood to be the total state density 
including possible degeneracy (e.g., spin degeneracy) of 
multiplicitys. As usual, one can express Y, in terms of G 
(r,rf),  the exact retarded Green function for an electron of 
energy E in the coordinate representation for a specified 
choice of the impurity potential: 

S 
v. = - - lrn GER (r, r') dr. 

n 17 

After averaging over the different realizations of the random 
potential, Eqs. (23), (24) yield the familiar expressions for 
the average density of states v. However, it is clear already 
from (23) that the fluctuations in v, must be very large. 

The state density correlation function for two different 
energies E , , E~ is 
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FIG. 3. Diagrams for calculating K(E~,E,): a )  diffusion contribution; b) 
cooperon contribution; c) diffusion (cooperon) pole-a sum over ladder 
diagrams. 

The correlation function for the electron propagators in the 
curly brackets can be calculated by the impurity diagram 
technique. The main contribution comes from the diagrams 
shown in Fig. 3, which were already considered in Ref. 20, 
where the spatial correlations of the state density were ana- 
lyzed. The so-called diffusons (Fig. 3a) and cooperons (Fig. 
3b) play a key role in these diagrams. They are obtained by 
summing ladder diagrams (Fig. 3c) with a small momentum 
difference or sum, respectively. One of the two electron lines 
must correspond to the retarded Green function GR ; the 
other corresponds to the advanced Green function 
GA = (GR )*. 

The expression for the correlation function K ( E ~ ,  E ~ )  
corresponding to the diagrams in Fig. 3 can be written as 

where Pr' (r,,r,) and P LC' (rl,r2) described a diffuson and 
a cooperon, respectively, in the coordinate representation 
and satisfy the equation 

Here y, and y, represent the damping (due, e.g., to inelas- 
tic electron collisions), and 

where A is the vector potential for the external magnetic 
field H. 

For an isolated sample, the boundary conditions for Eq. 
(27) require that the current across the surface S of the sam- 
ple must vanish: 

where n is the normal to S. 
Let us assume that H = 0 and there is no spin scatter- 

ing, and that the sample is a parallelelepiped of dimensions 
L, , L, , L, with L, >L, >L, . In this case it is easier to solve 
Eq. (27) in the momentum representation, for which 

and the quantization conditions follow from (29) 
(p  = =,y, 2): 

Expression (26) for K ( E ~ ,  E ~ )  then becomes 

where 

and we henceforth set f i  = 1 in all but the final results. If the 
sample is so small that (E ,  - E,] and y are much less than 
E , ,  = D /L  E ,  then only the term with n, = 0 must be re- 
tained in the summation over n, in (32), which thus simpli- 
fies to 

This shows that the state density correlation function is neg- 
ative when I E ,  - E ~ I >  y. On the other hand, (33) also shows 
that K(E,, E ~ )  is positive when E~ = E ~ .  AS y-0 it increases 
and becomes -v2 for y=: A. Such large fluctuations are also 
predicted starting from Eq. (23). 

The number of levels ( 19) in a band of energy width E 
centered at the point E is related to the unaveraged density of 
states (23) by 

e+E/2  

~ c c o r d h ~  to (25) and (34), the mean square fluctuation in 
the number of levels is equal to 

#+BIZ 

( [ 6 N  (E) 1 2 > =  3 del de2 l l ( e , ,  e2). (35) 
a-El2 

Substituting (33) into (35), we find that 
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if E gEc,. For E) y one readily checks that ( 36) coincides 
with (20) i f S =  k = 1. 

Now let E)EC, for all p. In this case energies 
I E ,  - ez 1 ) Ec, are important in (35 ), so that the summa- 
tion over n, in (32) can be replaced by an integration over 
dq, . The result for y 4 E is 

which for L, = Ly = L, = L agrees with Eq. (6)  if we set 
j? = k = 1 and d = 3 in the latter. 

If L, ,Ly , and L, differ greatly, we have in addition to 
the regions E)EC, and E4Ec, considered above the re- 
gions Ec., 4E4Ec,y ,EC,  and EC,, ,EC,  4E4EC,= . In the first 
region the sample is effectively one-dimensional ( d  = 1 ), 
while in the second case it is two-dimensional (d  = 2). To 
calculate K ( E ~ , E ~ )  and ( [SN(E) 1 2, in the first case, one 
must keep the terms with n, = n, = n in (32) and replace 
the summation over q, by an integration. In the two-dimen- 
sional case, n, = 0 and one must integrate over q, and q,. 
This results in Eq. (6). 

We have thus found that the level density fluctuations 
obey Eq. (20) for small E, while (6)  is valid for large E, 
provided we set /3 = k = 1. This result is not surprising- 
Eqs. (36) and (37) correspond to an orthogonal ensemble 
because we have so far neglected both the external magnetic 
field and the spin scattering of the electrons. 

To see how the other Dyson ensembles can occur in a 
metal sample, we consider for simplicity a d-dimensional 
cube. If a magnetic field H satisfying 

HWH,= (cAI4De) max { (EE, )" ,  E )  (38) 
is applied to the system, the cooperon contribution to 
K(&,,e2) can be neglected. If the Zeeman splitting gpH is 
nonetheless small compared to E, i.e., ifH(H, = E /gp (we 
note that in practice one always has Hc (H,), then 
( [SN(E) ] ') turns out to be just one-half the value given by 
(36) or (37). The same result also follows from (20) or (6) 
for a unitary ensemble (/3 = 2) with k = 1. 

In what follows we will need to recall how the diffusons 
and cooperons depend on the spin variables. It  is helpful to 
picture the diffusion as depending on the total spin j of an 
electron and hole and on its projection M, while the cooper- 

TABLE I. Values of the coefficients s, k, andp for several magnetic fields an 
ing strengths. 

ons depend on the total spin of two electrons and its projec- 
tion.'' When H)H,, the magnetic field suppresses not only 
the entire cooperon contribution but also the contribution 
from diffusons with M = * 1, so that K ( E ~ , E ~ )  is decreased 
fourfold. We can use (20) and (6) to interpret this result as 
follows: Although we are considering the unitary case 
(j? = 2), in fact we are dealing with two independent series 
of nondegenerate (s = 1, k = 2) levels which correspond to 
different projections of the electron spin. 

The symplectic case arises when one considers the spin- 
orbit scattering of the electrons by ordinary impurities and 

where T, is the characteristic spin-orbit scattering time. The 
scattering suppresses the triplet contributions to the state 
density correlation function, i.e., the contributions that cor- 
respond to unit total spin j (Ref. 21 ). Only the diffuson and 
cooperon singlet transitions ( j = 0) remain important. 
Therefore, K(EI,&2) is less than the value (33) by a factor of 
4. We recall here that the spin-orbit scattering does not vio- 
late invariance under time reversal and does not lift the two- 
fold degeneracy of the electron energy levels (the Kramers 
degeneracy, s = 2). The above result thus corresponds to 
Eqs. (20) and (6) with j? = 4 and k = 1, as expected for a 
symplectic Dyson ensemble. In the intermediate case Elpa/ 
T~ ) y and E < Ec , the mean square level density fluctuation 
is 

If both a magnetic field and spin-orbit scattering are 
present and conditions (38) and (39) are satisfied, then the 
state density fluctuations depend only on the singlet diffu- 
sion contribution, and K(E,,E,) is one-eighth the value given 
by (33). The level number fluctuations are thus given by 
Eqs. (20) and (6)  withj? = 2 ands = k = 1, i.e., the Dyson 
ensemble is unitary. Table I lists the coefficients s, k, and j? 
for several values of H and N T ~  . 

We close this section by considering the correlation 
functions for the number of levels in two different bands of 
width E centered at energies E,  and e,. If Ec ) E, I E ,  - E, I, y 
then it follows easily from (33 ) and (34) that the correlation 
function for the fluctuations in the level numbers is 

which shows that the correlation is negative if 
(el - E2)' > y2 + E '/2. This implies that the levels must re- 

~d spin-orbit scatter- 
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brackets (44) come from the diagrams in Fig. 4a and 4b, 
respectively. At zero temperature (el = E, = 0) 

FIG. 4. Diagrams for calculating the correlation function for the fluctu- 
ations in the conductivity. The arrows indicate the vector vertices. 

pel one another. For I E ,  - &,I %E,y, the correlation function 
falls off as the square of the distance between the bands, 

ksZ EZ 
(6N,,  ( E )  6N,, ( E )  )= - - 

TCZp - ( E I - - E z ) ~  ' 

In the region I E ,  - E, I ) E, ,E the magnitude and sign of 
the correlation function depends on the dimension: 

To lowest order in E, , the correlation vanishes altogether if 
d = 2. All of these results could have been anticipated from 
Eq. ( 6 ) ,  since the proportionality ( [SN(E) ] ,) a ,??I2 im- 
plies a positive correlation for level numbers in different 
bands ifd /2 > 1 and a negative correlation ifd /2 < 1; finally, 
it implies that the bands are uncorrelated if d /2 = 1. 

4. FLUCTUATIONS IN THE CONDUCTIVITY AND DIFFUSION 
COEFFICIENT 

The mean-square fluctuation in the specific static con- 
ductivity ua, is given by the sum of the diagrams1' in Fig. 4 
and has the form 

X ( 1  PA':, ( q )  1 '(6aJh+6Tdap) + fie [ p C m 2  ( 9 )  1 2 6 a , 6 ~ )  
P 

(44) 
We assume that the sample is isotropic on the average and 
that (gay) = u6,,. The first and second terms in the curly 

and straightforward calculations lead to the expression"' 

(6GaT6Gw)=(ksa/b) (ez/nJfi)'bd{6a,6,p+6ap6T,+6aT6w}, 

for the mean-square fluctuation in the conductance for a d- 
dimensional cube. 

If #E,, relation (45) breaks down. At a finite tem- 
perature, the contributions from the first and second terms 
in the curly brackets in (44) are thus unequal. The correla- 
tion function for the conductance fluctuations is expressible 
in the form 

where the coefficients G and G can be calculated from 
(44). Making the change of variables E + = E, f E, and inte- 
grating over E+ we obtain 

where 
x cth x-I 

f (x) = sh2x  ' 

There is good reason for regarding the two terms on the 
right in (47) as describing independent contributions to 
(6Ga,6Gw ) from the state-density and diffusion-coeffi- 
cient fluctuations. First, the Einstein relation 

implies that the state density fluctuations contribute an 
amount proportional to 6,,6,, . Second, it can be shown that 

where 

is the effective density of states at the Fermi level at tempera- 
ture T. Finally, one can show that the fluctuations SDa, and 
Sv(T) are independent. Indeed, consider the correlation 
function (Sv(T)6Ga,)defined by the diagram in Fig. 5. A 
calculation like the one in the preceding section shows that 

which together with (5 1 ) gives 

( 6 v  ( T )  6Da1> =0, (55) 

i.e., the state-density and diffusion-coefficient fluctuations 
are independent. 
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FIG. 5. Diagram for calculating the correlations between the state density 
and conductivity fluctuations. 

Equation (46) implies that the coefficients GD2 and 
Gv are identical when T(E,.  If on the other hand T% Ec 
and d = 3, we can replace the summation over q in (48) and 
(49) by an integral to obtain 

Here 
m 

and c ( x )  is the Riemann zeta-function. It follows readily 
from Eq. (53) and the preceding discussion that for T%E, 
and a sample of arbitrary dimension d 

G:= (ks2/i3) (e2/2nh) 'ad ( E J T )  ( 4 - d ) ' 8 .  (58 

The a, can be calculated from (49) : 

The relation GD z Gv breaks down for small d ,  because 
in contrast to (49) ,  the low-energy region E-  ( T  is impor- 
tant in the integration over&- in (48).  The result ford = 2 is 

where fi/r = y is the decay of the electron energy levels due 
to inelastic collisions. 

The difference between GD and Gv is even greater in the 
one-dimensional case: 

where 
cp ( x )  =x'" cth x-"-x. 

Equation (47) ,  (56) ,  (59) ,  and (60) lead to expressions for 

the conductance fluctuations as functions of T  ford = 1,2,3; 
these expressions were derived in Ref. 8. 

The amplitude of the periodic and aperiodic oscillations 
in the conductance of a thin metal sample observed in Ref. 2 
decreases as T  - ' I 2  with increasing temperature. Such a de- 
pendence SG( T )  also follows from (60) and (47) ,  since the 
experiments in Ref. 2 dealt with the situation d = 1 and 
E, r4 > fi. On the other hand, Eq. (49) predicts a T  -3 '4 de- 
pendence for the fluctuations SY ( T )  in the density of states 
under these conditions. 

The reason for this marked difference in the fluctuation 
magnitudes for the diffusion coefficient and state density is 
that the latter fluctuations are suppressed by the repulsion 
among the levels. We have already observed in discussing 
Eq. (33) that this repulsion causes the correlation function 
K(E,,E*) to change sign near the singularity at small E ,  - E,, 

so that these energies do not contribute to the integrals in 
(35) and (49) .  On the other hand, the low-energy region is 
important in the integral over E -  in (48)  for low dimensions 
d<2. This reflects the fact that unlike the state density corre- 
lation function, the correlation function for the diffusion co- 
efficients at unequal energies is always positive. 

We are grateful to A. G. Aronov, B. Z. Spivak, and D. 
E. Khmel'Nitskii for helpful discussions, and to L. N. Bu- 
laevskii and M. V. SadovskiT for providing us with a preprint 
of their results. 

"The diagrams in Fig. 4b were left out in Refs. 6, 8, and 9, and we are 
grateful to A. G. Aronovfor bringing them toour attention. We also note 
that if the Matsubara method is used to calculate the correlation func- 
tions, or if only results at T = 0 are needed,19 one need consider only 
those diagrams that have field vertices at which the sign of the electron 
energy changes (see the Appendix to Ref. 22). 
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