
Nonlinear electromagnetic excitation of ultrasound in metals 
A. N. Vasil'ev, M. A. Gulyanskii, and M. I. Kaganov 

M. V. Lomonosov Moscow State University 
(Submitted 24 December 1985) 
Zh. Eksp. Teor. Fiz. 91,202-212 (July 1986) 

Nonlinear electromagnetic generation of longitudinal ultrasound under anomalous skin effect 
conditions is theoretically investigated. It is shown that the deforming force is the main source 
of double-frequency acoustic vibrations in the weak nonlinearity regime. This sound- 
generation mechanism is connected, on the one hand, with the strong spatial dependence of the 
electron distribution function and, on the other, with the presence of a Lorentz force related to 
the wave magnetic field. The amplitude of the ultrasound excited under these conditions in a 
metal with a spherical Fermi surface is calculated. It is found that the nonlinear-ultrasound 
amplitude under these conditions is greater by a factor of (1 /612 than the corresponding 
amplitude under normal skin effect conditions. The possibility of an experimental observation 
of this effect is discussed. 

1. When an electromagnetic wave is incident at a metal 
boundary the electromagnetic energy is transformed into 
acoustic vibrations (contactless excitation of ultrasound). A 
detailed account of the experimental situation and the basic 
theoretical ideas about contactless excitation of ultrasound, 
as well as a fairly complete bibliography on this question can 
be found in Ref. 1. 

There are two fundamentally different ultrasound exci- 
tation mechanisms in normal (nonmagnetic) metals, the in- 
duction and deformation mechanisms. These mechanisms 
can be differentiated by virtue of the existence of two forces 
of different natures: the ponderomotive force with density 

and the deformation force 

We are using standard notation.' Let us only note that A, is 
a renormalized deformation potential, (af,/d&)x is a correc- 
tion to the local-equilibrium Fermi distribution function, 
and the angle brackets denote integration over the Fermi 
surface: 

The overwhelming majority of the investigations of the 
electromagnetic excitation of ultrasound have been per- 
formed in the linear regime, when, naturally, the frequency 
w of the generated acoustic vibrations coincides with the 
frequency of the incident elecromagnetic wave. As can be 
seen from ( 1 ), the induction mechanism then "operates" 
only if the conductor is located in a constant magnetic field 
H, or a direct current flows through it.'' An electromagnetic 
wave incident at the surface of a metal excites a variable 
current in the skin layer. In a field H, perpendicular to this 
current 

1 II,H 
F,tC - - -- 

'In 6 ' 
where H is the intensity of the wave magnetic field and S is 

the skin depth. The deformation mechanism of linear con- 
version operates in zero external magnetic field as well. The 
order of magnitude of the deformation-force density is given 

This formulation emphasizes the nonlocal character of the 
deformation excitation of ultrasound. The conversion mech- 
anism in this case consists in the following. Under the action 
of an alternating electric field E, the electrons and ions in the 
skin layer acquire different and oppositely directed addi- 
tions to their momenta. To the extent that the mean free path 
1 is finite, locally these effects do not cancel each other out in 
collisions, and this gives rise to the appearance of strains in 
the lattice. Comparison of the expressions (1)  and (2)  
shows that the induction and deformation forces are equal 
when 

where w, is the cyclotron frequency of the electrons in the 
field H, and 6, is the plasma penetration depth. It can be 
seen that, under normal skin effect conditions (i.e., for 
/<a ) ,  the induction force is significantly stronger than the 
deformation force even in weak magnetic fields (fields that 
do not modify the carrier dynamics). 

It follows from the expression ( 1 ) for the induction 
force that ultrasound with double frequency should also be 
excited in a metal as a result of the joint action on the lattice 
of the magnetic field of, and the current induced in the skin 
layer by, the wave. The amplitude of this force is proportion- 
al to the wave intensity, and has the form 

The principal source of nonlinearity in the deformation 
mechanism of energy conversion is the nonlinear correction 
x a EH to the distribution function. The deformation force 
due to it has, as will be seen below, the following order of 
magnitude: 
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Actually, this expression and all the subsequent ones are 
valid in the case of weak nonlinearity, the criterion for which 
is formulated in Sec. 2. Comparison of the last two expres- 
sions shows that, under anomalous skin effect conditions, 
the induction force is ( I  /6) times weaker than the deforma- 
tion force. 

The induction mechanism of nonlinear excitation of 
double-frequency ultrasound under normal skin effect con- 
ditions is considered in Refs. 2 and 3. 

In the present paper we construct a theory of contact- 
less excitation of double-frequency ultrasound in the case of 
normal incidence of electromagnetic waves at the boundary 
of an isotropic semi-infinite metal. The generation is investi- 
gated in the absence of a constant magnetic field in the case 
when wr< 1 ( T  = I /vF is the electron relaxation time). The 
entire calculation is carried out under the simplest assump- 
tions regarding the conduction electrons: isotropic disper- 
sion law, the r approximation for the collisiosn integral, 
specular reflection from the metal boundary. We have made 
this choice first, because, as far as we know, this is the first 
theoretical investigation of the nonlinear transformation of 
waves for an arbitrary relation between I and 6, and second, 
because the conversion factor is insensitive to both the elec- 
tron dispersion law and the nature of the electron scattering 
by the surface. The latter assertion is explained by the fact 
that, in the most interesting case of the anomalous skin effect 
(i.e., the case 1 4 6 )  the nonlinear response of the metal is 
found to be produced by the group of electrons grazing along 
the surface. 

2. At the boundary of a metallic half-space x > 0 an elec- 
tromagnetic wave whose electric E magnetic H components 
are aligned along they andz axes, respectively, is assumed to 
be normally indicent. The kinetic equation for the nonequi- 
librium correction to the electron distribution function can 
be written in the form 

where = vy d /dv, - v, d /dvy. The fields entering into this 
equation are determined by the Maxwell equations with the 
current density 

The weakness of the electromechanical interaction (in es- 
sence the smallness of the ratio m / M ,  where m is the electron 
mass and M is the ion mass) allows us to ignore the excited 
ultrasonic wave in the computation of the electronic and 
electromagnetic responses of the metal [Eqs. (6)  and (7) 1. 

A system of electrodynamic equations with nonlinear 
terms is solved by expanding all the quantities in terms of the 
harmonics of the fundamental frequency: 

E=E1 cos ( o t +  A E l )  +E2 cos ( 2 o t f  Am) . . . , 
H=fI l  COS ( o t + A H I )  +Hz cos ( 2 o t f  AH, )+  . . . (8) 

X = X ~ + X ,  cos ( o t + A , , )  + x z  cos ( 2 0 t + A x z )  + . . . , 

with E n ,  Hn , and X ,  a E (except the correction x,,, which 

is a E ). We must, in investigating the nonlinear electrody- 
namic effects in metals, distinguish between the cases of 
weak and strong n~nlinearities.~ In the present paper we 
consider the case of weak nonlinearity. In the case of the 
normal skin effect the condition for a weak nonlinearity is 
W ,  r< 1, where w, is the electron cyclotron frequency in a 
magnetic field equal to the amplitude of the wave field. In the 
case of the anomalous skin effect the condition for a weak 
nonlinearity is more rigid: 

i.e., the electron trajectories in the skin layer should be bent 
relatively litle by the alternating magnetic field, and their 
deviation along the normal to the surface should be substan- 
tially smaller than 6. It is found that in the case ,yo, ,y2 <x,, 
and the method of successive approximations can be used to 
solve the kineticequation (6).  Substituting (8)  into ( 6 ) ,  and 
equating the corresponding harmonics, we obtain to first or- 
der in the nonlinearity a chain of equations of which the first 
three have the form2' 

where 

i1,2=X1,2 exp ( iA, , , z ) ,  El=El exp 
B , = H ,  exp ( i A H l ) ,  lT18=H1 exp ( - i A H i ) .  

Since the magnetic component of the electromagnetic 
wave in the metal is appreciably stronger than the electric 
component, we have dropped the term - evE,,from the 
right side of Eq. (9" ). 

For the geometry specified, the ultrasound excited at 
the frequency w of the electromagnetic wave in the absence 
of an external magnetic field possesses only transverse polar- 
ization-along the alternating-electric-field vector. The ul- 
trasound of doubled frequency has only longitudinal polar- 
ization. Therefore, the elasticity equations for the first and 
second harmonics can be written as follows: 

dZul  1 1 d  
- + q , 2 u , = - - F 1 n = - -  dx" 

@s,2 d x  (AuXxl), 
Psi 

( 1 0 )  

d'u, Fz - + q12u2 = -- 7, 
dx2 P S l  

where q , ,  = w/s,,, , the s,,, are respectively the longitudinal 
and transverse ultrasound velocities, 

~1 ( x )  = ~ t r  (x), u ~ ( z )  =UZ= (x), j l=-e(usxl ) ,  

and 

Aih (P) = h i k  ( p )  - ( a i r  ( P )  1 ), 

A, (p) being the deformation potential tensor. 
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3. The ultrasound excitation problem is solved by the 
Fourier method. Continuing the functions u2(x) and F2(x)  
into the half-space x < 0 in such a way that the resulting 
functions are odd, and taking account of the boundary con- 
dition (du2/dx), =, = 0 at the free surface, we find from 
Eq. ( 10') that 

where u2(q) and E2(q) are the Fourier transforms of the 
functions u2(x) and F2(x). 

The formal solution to the problem is obtained with the 
aid of the inverse Fourier transformation: 

(11) 
The forceF;(x) acting on the lattice, and determined by the 
currents and fields excited in the metal can be divided into 
two parts6: the "hydrodynamic" part, which is damped over 
distances of the order of 8, and the "kinetic" part, due to the 
effect whereby the field is drawn into the metal directly by 
the conduction electrons, and damped over distances7.' -1. 

In the case wrg 1 under consideration the ultrasound 
attenuation distance is greater than both the skin depth S 
and the mean free path I. Therefore, the "acoustic" pole 
q = 29, determines the behavior of the first term in ( 11 ) at 
distances x )  max{S,I): 

where 
m 

Since Imq, is the smallest of the parameters of the same di- 
mensionality as q that enter into the problem, the amplitude 
u2, is, to a.. good approximation, the limit of (12) for 
Imq, -+ 0: 

We have taken account of the fact that F2 (q) is an odd func- 
t i ~ n . ~ '  To compute it, we first of all solve the linear electrody- 
namics problem: 

where H, (0) is the magnetic field of the wave at the metal 
boundary, 

300 1 1 If iql 1 
( q - [ (  4 qZLz zqL I-iql q2L2 (16) 

Here r(q)  is the Green function for the Maxwell equations 
and u(q)  is the conductivity of the unbounded metal, with 
allowance made for the spatial dispersion (in the w.rg 1 
case). 

Now solving Eq. ( 9 " ) ,  and using the definition of the 
force F2(x)  [see ( 10') 1, we find . 

or, substituting ( 14), 

where 

In the formula ( 17) and ( 17') the integrand consists of two 
terms: the first term corresponds to the induction force; the 
second, to the deformation force. In ( 18) the average is tak- 
en over that part of the Fermi surface where u, > 0 [let us 
recall that Aik ( - p) = Aik (p)  1. The oddness of the Four- 
ier transfirm of the force is guaranteed by the fact that 
a( - q, - 4') = a(q,qf). 

4. As noted in Sec. 1, different excitation mechanisms 
are responsible for the generation of double-frequency ultra- 
sound in the limiting cases I%S and 146: the induction 
mechanism under normal skin effect conditions and the de- 
formation mechanism under anomalous skin effect condi- 
tions. Indeed, from (17) and ( 18) we find that, in order of 
magnitude, 

This estimate is valid for wave vectors q- 1/S, which are the 
most important in the problem of the generation of the sec- 
ond harmonic of an ultrasonic wave. 

The nonlinear generation of ultrasound under normal 
skin effect conditions is considered in Ref. 2 and 3. Let us 
give the corresponding formulas as obtained from the gen- 
eral expression (17). In the limit of local conductivity 
(91-0) we have 

where S, = c[2ru0w] - ' I2 is the normal skin depth. Substi- 
tuting the expression ( 19) into the formula ( 13 ) , we obtain 

5. Let us now consider double-frequency-ultrasound 
generation under anomalous skin effect conditions. We 
shall, in accordance with the foregoing, consider only the 
deformation mechanism of generation. The fact that the cor- 
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rection X, to the electron distribution function for ql) 1 
differs appreciably from zero only in a band, i.e., in the nar- 
row interval of directions u, /vF 5 6/1, allows us to simplify 
the expression ( 18) for a(q,ql) by discarding the term u, d / 
au, the operator ?: 

In the case of an isotropic dispersion law the deforma- 
tion potential tensor can be characterized by one scalar 
quantity iii having the dimensions of mass9: 

Therefore, A,, = iiiui (v:/vi - 1/3). Taking account of 
the smallness of v, /v, in the effective-electron band, we ob- 
tain 

1 

Assuming 1 is the largest parameter having the dimensions of 
length, we can rewrite the expression (22) in the form 

cr(q, q ' )=  --- uoqz " I  

b (sign q - s i g n q l ) .  (23) 
m 4 (191+19'1)2 

Substituting (23) into (17), and going over to a new vari- 
able, we find 

~ e r e 6 ,  = (326;uF/3?rw) 'I' is the skin depth under anoma- 
lous skin effect conditions. 

Let us give the asymptotic expressions for the function 
f (7). To within logarithmic terms 

Substituting the expression (24) into the formula ( 13) 
allows us to express the amplitude of the second ultrasound 
harmonic at infinity in the following form: 

The constants Po, P I ,  and P, are computed in the Appen- 
dix. 

It can be seen from the last formula that, as was to be 
expected, the amplitude of the second harmonic has a maxi- 
mum at q, 6, - 1. Its value is 

6. In experiment the frequency of the incident electro- 
magnetic wave is normally fixed, and the wave amplitude 
and sample temperature are varied. Using the formulas ob- 
tained above (into which the temperature enters through the 
mean free path I), let us find how the amplitude lu,, I of the 
generated ultrasound depends on 1, assuming the wave am- 
plitude H, (0)  is a constant and satisfies the weak nonlinear- 
ity condition (see Sec. 2). 

Let us begin with the case of relatively low frequencies 

This inequality was obtained from the requirement that the 
maximum of the amplitude u,, as a function of the mean 
free path 1 fall within the domain of the normal skin effect. It 
is convenient for the purpose of deriving it to rewrite the 
formula (20) as follows: 

Under anomalous skin effect conditions, the amplitude 
Iu,, I increases like 1 as 1 increases [see (25) 1. The coeffi- 
cient of 1 ' increases in proportion to w2/', attaining its maxi- 
mum value at the boundary of the interval (27). Notice that 
the function p(q,S, ) has a maximum at w - (s/u, ) '/'(s/ 
C)W, [see (25)-(27)l. Figure 1 shows plots of 

as a function of 1 for two frequency values. Let us recall that 
these expressions are valid in the quasistatic case, i.e., up to 

5: 1 or I 5 uF /a. The value of [ for 1 - uF /w decreases in 
proportion to w-~/ ' ,  and at the boundary of the admissible 
interval (27) 

At higher frequencies 

the maximum in the normal-skin-effect region is not at- 
tained, and at 1-6, the dependence of[ on I changes from a 
linear [see (201)] to a quadratic (Fig. 2)  dependence. Ac- 
cording to (25), the coefficient of 1 increases in proportion 
to attaining saturation at q,6, - 1. Its maximum value 

FIG. 1. 
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FIG. 2 

in this case is of the order of sl/Si v,. The highest value, 
attained at I-v,/w, is significantly greater than the corre- 
sponding value in the region of low frequencies (27): 

f """- (vpls) 

7. In analysis carried out above the source of nonlinear- 
ity in the generation of double-frequency ultrasound is the 
action of the alternating magnetic field on the current it ex- 
cites in the skin layer. In principle, however, other sources of 
nonlinearity can manifest themselves. For example, 
allowance for the nonlinear term in the deformation tensor" 
also leads to the appearance of a term 

on the right-hand side of the elasticity equation. The ampli- 
tude u, of the first harmonic can easily be estimated, using 
the result obtained in the solution of the ultrasonic equation 
( 10) by the Green's functions method. Under anomalous 
skin effect conditions we can have 

Substitution of u,, into (28) and comparison with F f ,  as 
given by the formula ( 5 ) ,  yield 

It can be seen from this that it is not important to allow for 
the terms quadratic in u, in the deformation tensor here. 

The kinetic equation also contains sources of nonlinear- 
ity. Recently, Andreeve and Pushkarov" derived the exact 
nonlinear equations of the theory of elasticity of metals. 
They established that the field part of the kinetic equation 
contains terms quadratic in the lattice displacement and ve- 
locity. But in the problem of the electromagnetic generation 
of ultrasound these terms can be neglected on account of the 
weakness of the electromechanical interaction. Further- 
more, the collision integral taking account of the inelastic 
scattering of the electrons contains a nonlinear term." In a 
normal metal the source of the inelastic scattering of the 
electrons is their interaction with the phonons. But under 
anomalous skin effect conditions there is practically no scat- 
tering by phonons. 

Second-harmonic generation also occurs because of the 
momentum nonlinearity,"*14 which arises as a result of the 
distortion of the distribution function for the electrons effec- 
tively interacting with the acoustic first-harmonic wave, and 
manifests itself when the condition wOr k 1 is satisfied (0, is 

the characteristic oscillation frequency of the electrons 
trapped by the acoustic-wave field). In the case of the elec- 
tromagnetic generation of ultrasound the quantity war is 
small not only because it is proportional to the nonlinearity 
parameter w, TI /S, but also because the expression for it con- 
tains the additional factor ( m / M )  'I4: 

The diffuseness of the electron scattering at the metal 
boundary plays an important role in the linear-wave-trans- 
formation processes.I5 According to Ref. 15, the second har- 
monic of the surface force satisfies FY6- (p,x2)/T. We can, 
by comparing this expression with F :  in the formula ( 5 ) ,  
show that 

i.e., that the surface mechanism can be ignored in the prob- 
lem of the nonlinear generation of ultrasound under anoma- 
lous skin effect conditions. 

Although our entire analysis has been carried out under 
the assumption of an isotropic dispersion law, it is clear that 
allowance for the anisotropy of the Fermi surface will not 
change the results qualitatively if the normal to the surface 
of the metal coincides with a "good" direction in the crystal. 
The final formulas allowing for an aribtrary dispersion law 
should contain integrals over the band at the Fermi surface 
(cf., for example, Refs. 7 and 16). 

8. Let us now make a few comments about the limits of 
applicability of the results obtained. 

In computing u,, we assumed that ql 1 3  1. It should be 
noted that the interaction between the ultrasound and the 
electromagnetic wave field should be stronger in the region 
qll- 1 because of the "kinetic" part of the field. True, this 
spatial resonance should be weak compared to the q,S - 1 
resonance because of the fact that the amplitude of the kinet- 
ic part of the field contains an additional smaller parameter 
( I  2Si in the case of the normal skin effect and Si/1 in the 
case of the anomalous skin effect). 

In the "high-frequency" region T % w - ' (practically be- 
yond the limits of applicability of the formulas derived 
above) the mean free path I is replaced by I*  = I /  
( 1 + w2r2) 'I2, and then I * - u,/w, while 6 -8, .  Therefore, 
it is clear that, as I = v F r -  a, the quantity f tends to 
g, ( a ) ,  which is such that the higher the frequency w is, the 
smaller is its value. 

An important feature of our analysis is the assumption 
that the nonlinearity is weak. The electron dynamics in the 
skin layer is qualitatively different in the case ofa fully devel- 
oped nonlinearity, which results when the condition 
w, r 2 S, / I  is satisfied. There appear groups of so-called 
grazing trapped electrons4 effectively interacting with the 
wave, and causing an appreciable change in the linear re- 
sponse of the metal. The grazing electrons undergo multiple 
reflections from the surface in the course of their specular 
scattering, and the trajectories of the trapped electrons 
"wind" along the H ( x )  = 0 plane. It can be shown that, in 
the strong nonlinearity regime, the various harmonics of the 
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correction to the equilibrium distribution function are com- 
parable in order of magnitude: x,-X, -x2. In this case we 
cannot use the interative procedure employed in the present 
paper. This means that the growth of the amplitude of the 
electromagnetic wave incident on the metal surface results 
in the approximately uniform distribution of the wave ener- 
gy among all the frequencies that are multiples of o ,  i.e., the 
amplitudes of the second and higher harmonics are compar- 
able in order of magnitude to the amplitude of the first har- 
monic. 

Thus, we have shown in the present paper that the am- 
plitude of generated double-frequency ultrasound increases 
(as I increases) in proportion to (I/Sa )' when we go over 
from the normal to the anomalous skin effect. Upon the at- 
tainment of the critical value o ,~-6 , /1  the quadratic 
growth of the amplitude ceases. If we extrapolate the result 
(25) to values of o ,~ -So / / ,  then the limiting double-fre- 
quency ultrasound amplitude u y  attains the value u ,  , , the 
amplitude of the first ultrasound harmonic excited by the 
deformation force under anomalous skin effect conditions. 
The phenomenon of linear generation under these condi- 
tions has been experimentally observed by Maxfield and his 
c o - w o r k e r ~ l ~ ~ ~ ~  and Puskorius and Trivi~onno. '~ 

As the above-presented estimates show, even though 
the efficiency of the transformation processes considered is 
low, it is within the limits of present-day experimental possi- 
bilities. The formula (21) shows that the amplitude of the 
second ultrasound harmonic can serve as a source of infor- 
mation about the diagonal components of the deformation 
potential tensor. Of particular interest are the simultaneous 
measurements of both the diagonal and off-diagonal compo- 
nents of the tensor A,, ( p )  in terms of the second- and first- 
ultrasound-harmonic amplitudes, respectively. 

APPENDIX 

Substitution of the expression (24) into the formula 
( 13) leads to the result (25), where the function 

L% a 

From this it follows that, for a 1, 

where 
rn rn 

The expression for P,, can be reduced to the form 

In the inner integral the poles 6, have the arguments r/6,  
5r/6, and 3r/2 (77 > O), i.e., there are no poles inside the 
segment ( - ~ / 6 ,  0). Setting f = 6 'e - i"'6, we obtain 

The evaluation of the integrals yields 

Since Im flo > 0, it can be seen that, for a ( 1, the function 

I cp(a) I = [(Re P o )  % (Im po+'l,az In ( f l u )  )'I 'h 

increases with a in proportion to a21n ( l /a)  . 
For a 9 1, it is convenient to divide the range of integra- 

tion in (13) into two: from 0 to 1/S, and from l/Sa to 00. 
Replacing F 2 ( q )  in the formula (13) by its asymptotic ex- 
pressions, and using (24) and (24'), we obtain 

"The induction mechanism presupposes an inhomogeneous distribution 
of the current or field over the cross section of the conductor. 

2'That all the nonlinear terms discarded in the equations (9) are or order 
w, r1/6 and therefore small can be deomonstrated, using the ineffective- 
ness ~ o n c e p t , ~  i.e., the fact that X, is substantially different from zero 
only for the electrons in the narrow layer with u, /u, 5 6/1. 

"We have chosen the natural manner of continuing the fields, in the sense 
that it holds in general for the complete system of Maxwell, Boltzmann, 
and elasticity equations used. In such an approach the even continuation 
of the function u ,  (x) should be used in the solution of Eq. ( 10) by the 
Fourier method. Notice that we then have u ,  , = iF, (q, )/2pws,. 
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