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In hexagonal magnets, dipole interactions can lead to the appearance of incommensurate 
structures, whose existence is due to instability at conical points. The temperature behavior of 
the collective modes for such structures is studied: in triangular antiferromagnets, the 
spectrum of collective excitations is found for two intermediate phases, one of which has only 
longitudinal modulation waves while the other has a combination of longitudinal and 
transverse waves with different periods (i.e., incommensurate relative to one another). The 
dispersion curves for the first of these phases have a point of intersection if the momentum of 
the excitations coincides with the wave vector of the structure. Gaps in the spectral band arise 
only when the latter phase has a (doubly) sinusoidal structure; it also has two gapless 
branches. The frequencies of the collective modes of these states are investigated, taking into 
account the effects of mixing in of higher order harmonics, which leads to spatial variation 
both in the phase and amplitude of the nonlinear wave. The fluctuation spectrum is determined 
for a vortical incommensurate structure. 

1, INTRODUCTION 

In crystal without a center of inversion, an incommen- 
surate magnetic structure can occur which is related to the 
degeneracy of certain dispersion curves at symmetry points 
in the Brillouin zone. As we move away from such points, 
the degeneracy is lifted at a rate proportional to the slope of 
the wave vector, which is caused by the presence in the free 
energy of terms linear in the derivatives of Lifshitz invar- 
iants. Some incommensurate structures which arise in crys- 
tals can have a spiral configuration; these were first studied 
by Dzyaloshinskii.' In addition to these examples of struc- 
tural phase transitions, it was shown2 that in some com- 
pounds (among them crystals with the space groups 
C A, C A,, D kh - D 2, and others), the occurrence of the in- 
commensurate state is related to an instability at the conical 
points K, at which the degeneracy in the dispersion relations 
is lifted as we move away from the symmetry point Kin wave 
vector space in any direction in the plane. 

It is well known that in hexagonal magnets antiferro- 
magnetic interactions between the magnetic ions of various 
chains cannot give rise to antiparallel positioning of the spins 
on a triangular lattice: for the XY-like spins the minimum in 
the volume free energy is attained when a 120"-structure ap- 
pears consisting of three magnetic sublattices. In experi- 
ments on thermal and magnetic  variation^,^ and subsequent- 
ly in neutron diffraction  experiment^,^ it was observed that 
in several such materials (such as, e.g., compounds like 
RbFeCl,, which have been actively investigated recently) 
the transition from the paramagnetic phase to the 120" struc- 
ture occurs through two intermediate incommensurate 
phases, in which either one of the two spin components or 
both spin components simultaneously are ordered. In Refs. 5 
and 6 it was shown that the observed results can be well 
understood from the point of view of instabilities at the coni- 
cal point, whose existence is due to dipole interactions." As 

the energy J2 of the antiferromagnetic interaction decreases 
relative to the dipole energy yd , the character of the modula- 
tion structure changes; in the limit J2 4 y d  the intermediate 
phases have a vortex configuration due to the transverse po- 
larization of the eignevectors of the dipole tensor.' 

In the present work, the problem is to investigate the 
collective modes of the system in which the long-period 
modulation is caused by the dipole interactions. We will in- 
vestigate the frequency spectrum of the modes for two limit- 
ing cases: when the antiferromagnetic interaction in the 
triangular lattice is significantly larger than the dipole inter- 
action, and conversely when the antiferromagnetic interac- 
tion is negligible compared to it. The question of the excita- 
tion spectrum of a magnetic structure in which the 
homogeneous state is modulated because of competition 
between the exchange interactions of different signs was in- 
vestigated by Izyumov and Laptev9; we will base most of the 
work in the present paper on their results. The collective 
modes for a pure sinusoidal modulation of the original 120" 
structure are phase and amplitude modes (this is also found 
to be the case in investigations, e.g., of the excitation spec- 
trum above a state with a charge density wave"-12). In the 
intermediate state, when only one spin component is or- 
dered, the longitudinal modulation mode corresponding to 
it retains its sinusoidal form as the temperature is decreased. 
However, after the transition to the state in which both spins 
order, a transverse mode is present as well as a longitudinal 
one. The interaction of these two waves further lowers the 
free energy; as the induced harmonics grow in intensity, the 
resulting wave changes from a pure sinusoid to a train of 
solitons. The appearance of this doubly commensurate con- 
figuration will result in not only a spatial change of phase 
but, also, generally speaking, a spatial change of amplitude 
of the nonlinear waves. For such strongly deformed states, 
collective modes have also been (numerically) investigated. 
Finally, the question of the vortex fluctuation spectrum of an 
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incommensurate structure will be investigated; these fluctu- 
ations are generated as a result of modulation of the homo- 
geneous state in the basal plane. 

Below we wil investigate compounds with a hexagonal 
lattice, which are described by a Hamiltonian 

where 

is the ferromagnetic interaction between spins within a chain 
along a c-axis (thez-axis); the second term Z2 describes the 
antiferromagnetic interaction between nearest spin chains 
and the dipole-dipole interactions 

where R i j  is the spacing between spins Si and $. The or- 
dered state which arises as a result of instability of the para- 
magnetic phase is determined by the smallest eigenvalue of 
the Fourier component AaR (Q) of the Hamiltonian ( 1 ) : 

Here, 

J (Q) =-2.7, cos (Qc) 

+aJz[cos (Qa) +COS (Qb) +cos (Q (a-b) ) I ,  

where 

are elementary translation vectors of the hexagonal lattice. 
The expression for the free energy can be written down 

in the form of a Landau expansion correct to terms of fourth 
order in the average value of the spin component ( S  P) : 

Here the Fourier components 

a a ~  (Q)  =AaR (Q) + aT6,8 (a>0)  

are components of the inverse susceptibility tensor. The 
smallest eigenvalue of the inverse susceptibility 
a - (Q)  =A-(Q) + a T  [where il-(Q) is analogously the 
smallest eigenvalue of the matrix A (Q) 1 changes sign at 

PO the point TI = -A-(Q,)/a, which corresponds to the 
minimum value of the function il - (Q) for Q = Q,. 

Before we proceed to an investigation of the collective 
mode spectrum, in the following section we will investigate 
the thermodynamic equilibrium solution for a triangular an- 
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tiferromagnet, taking into account the possibility of defor- 
mation of the sinusoidal structure. 

2. DIPOLE ANISOTROPY. PHASE AND AMPLITUDE 
MODULATION 

When the dipole force is significantly smaller than the 
interchain exchange (antiferromagnetic) force, i.e., y, <J,, 
where y, = ( gpB ),/a" the wave vector of the ordered state 
is close to the point Qk = (4~/3a,0,0) for which the quanti- 
ty J ( Q )  in (4)  is a minimum. In this case it is conveneient to 
express the average value of the spin components by using a 
slowly-varying complex spatial amplitude 

(S,") =$,(Ri) e sp  (iQkRi) + c.c., 

(Si")=$,(ri) esp (iQ,Ri)+ c.C. . 
After substituting (6) into ( 5 ) ,  we can write the free energy 
in terms of the variables $, in the following fashion6: 

where the expression for the operator a,, (Qk - iV) 
=A,,(Qk -iV) + a T  is in the form [ p =  -iV, 

r = a ( T -  T I ) ]  

(v is a numerical constant depending on the lattice constants 
a and c ) ,  while a,, differs from a,, by changing the sign in 
front of the term in (8) linear inp, , i.e., 

and corresponds to the minimum of il - (Q, + q). The non- 
zero off-diagonal component ( 7 )  is due only to the dipole 
interaction 

The stable phases correspond to two inhomogeneous 
structures which exist within different temperature ranges 
and can be described in terms of functions of the spatial coor- 
dinate x. In the temperature interval T2<T< T, (T, is the 
point separating the two intermediate phases), there is only 
a single longitudinal wave $", (x)  [Ref. 51: 

$2 (I) =Ivol exp [i(qlox+fl) 1, 
(9, 12=-r/126 

(here 8 is an arbirary initial phase), which remains purely 
sinusoidal over this entire interval. However, below the 
point T,, along with the longitudinal modulation wave there 
is also a transverse wave $; (x) :  their mutual interaction 
induces higher harmonics which are due to the nonlinear 
coupling in the free energy [the cross-terms ($",$;*12 and 
($",*I/; in (7 )  I .  The growth in amplitude of the multiple 
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FIG. 1 .  Spatial dependence of the phase and amplitude of the longitudinal 
modulationwave@(: ( x )  =A(x)exp[iO(x)l fors,=q,/q: = 0.5 (A, isthe 
amplitude of the corresponding commensurate 120' state). 

harmonics leads in turn to a temperature variation in the 
wave vector. The higher harmonics of incommensurate 
magnetic structures generated by an external field or uniax- 
ial anisotropy were studied earlier. l 3 * l 4  A more general solu- 
tion to the equations which areobtained by variation o fF  has 
the following form in the temperature interval T, < T<T2 
(T ,  is the point of transition to the commensurate 120" 
state) : 

9.0 (I) =ei41*@,O (2) , 9yO (x) =e-iq+OyO (x) , 
N (11) 

where the harmonic amplitudes q, hm' and wave vectors q, 
and q2 are determined by minimizing the free energy (7): 

[here Q, = (Qk +ql,O,O), Q2 = (Qk --q2,0,0)l. Analo- 
gous expressions for p im' are obtained after replacing the 
indices x, y and 1,2 by y, x and 2,1., respectively: 

The first term in the expansion ( 11 ) was obtained in Ref. 6. 
If the dipole forces are increased, the values of the wave 

vectors q, and q, decrease more rapidly as the temperature is 
lowered. Mixing in the higher harmonics deforms the purely 
sinusoidal wave. Figure 1 shows the phase and amplitude of 

the longitudinal wave @: ( x )  for 6, = q,/qy = 0.5. It is quite 
clear that for this value the nonlinear wave already has a 
domain-like form. The dependence of the phase on the spa- 
tial coordinate x is characterized by a step function, and is 
analogous to the dependence obtained earlier by Dzyalo- 
shinskii in his investigation of phase transitions in spiral 
magnetic structures.' A similar step-function dependence 
also appears in other physical problems (see, e.g., Refs. 15- 
17). In our case, the domain walls (solitons) are due to both 
phase and amplitude variations. The latter decrease in the 
region of the domain wall after a small increase. In the region 
of the domains themselves, a practically commensurate 
structure is realized. The wave period which is determined 
by the spacing between domain walls equals T/( q,  + q,). 
An analogous soliton form obtains for the phase and ampli- 
tude of the transverse wave @: (x).  

3. COLLECTIVE MODES OF A TRIANGULAR 
ANTIFERROMAGNET 

Let us now investigate the temperature dependence of 
the collective modes for the various states which can occur in 
triangular antiferromagnets. We write the order parameter 
which describes fluctuations in the system in the form 

where $", (R)  is the equilibrium-state order parameter and 
la (R,t) is a small deviation which depends on both the 
space and time coordinates. Substituting (14) into (7)  and 
using the condition SF/S$,* ( R )  = 0 for $a = $:, we can 
write 6 F  = F - F,, to second order in la (where F, is the 
equilibrium-state free energy) and obtain 

The kinetic energy X for the magnetic system in the general 
case consists of vibrational and precessional parts, which are 
dscribed by quadratic and linear terms in the i a ,  respective- 
ly.l8 However, in the limit of strong anisotropy the preces- 
sional motion is suppre~sed.~ Thus it is clear that in our case 
this motion will be suppressed because of the planar charac- 
ter of the spins (XY spins) in triangular antiferromagnets, so 
that the behavior of the collective modes will be determined 
by the vibrational motion. The kinetic energy of this motion 
takes the form 

where p is the effective mass of an oscillating fluctuation. 
The dynamic behavior of the quantity 6, is determined by 
the complex-conjugate equations: 
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where L = X - 6F is the Lagrangian. 
Let us turn to a study of the spectrum of excitations 

above the state which occurs at the instability point 
( T = T, ) for the paramagnetic phase. In this case the in- 
commensurate structure has only one component 
[$: = pa exp(iqyx1 ] different from zero. Thus, wc obtain 
from the Lagrange equation ( 16) 

Equation ( 17) contains S; ,* multipled by a periodic coeffi- 
cient [this also holds for 6, in the second pair of equations 
complex-conjugate to ( 17) 1, which, however, disappears if 
we use the transformation {a -6, exp(iqyx). After going to 
Fourier components 

we can easily find an expression for the eigenfrequencies in 
equations (17) for k, = 0, which also corresponds to the 
vanishing of the nondiagonal component a, = A,; this is 
apparent from (9) upon substituting k, forp,,. In this case, 
the equations for 6, and 6, decouple, and as a result we have 
for the frequencies (k, = k, = 0):  

where l q O l 2  is determined from ( 10) while a,, (Q, + k, ) is 
given by expressions of the type (8 ) ,  if we putp, = p, = 0 in 
them and make the substitutionp, -q: f k, . 

FIG. 2. Spectrum ofcollective modes: a-for a purely sinu- 
soidal structure, when only one of the spin components is 
ordered (the continuous curves correspond to frequencies 
with different values of k, fork, = 0, the dotted curves are 
for k,, #O; b, c-for the doubly incommensurate structure 
with simultaneous ordering of both spin components for 
the values 6, -6, = 0.97 (b) and 8 ,  ~ 6 ,  = 0.65 (c ) ;  d- 
for the commensurate 120" structure. 
A = L ( Q , )  - L ( Q , )  = (ydq)'/3J2-the depth of the 
potential well. 

The collective mode spectrum is shown in Fig. 2a. As a 
consequence of invariance under arbitrary changes in the 
initial phase a in ( lo),  one of the excitation branches of the 
longitudinal components (mi _ ) in the vicinity ofk, = 0 is a 
phason branch: at the point k, = 0 the frequency of the w: - 
branch remains equal to zero (a Goldstone mode) for all 
temperature intervals in which the equilibrium state +: (x)  
is present. The frequency of the other branch (m:, ) in- 
creases as the temperture falls (it is an amplitude m ~ d e ~ . ' ~ ) .  
As k, increases both of these branches will intersect the 
phase (soft) mode w: - for the transverse components gY, 
<$. At the point k, = qy + q: (i.e., for Qx = Qk - qi  in the 
original system of coordinates) the soft mode becomes un- 
stable if Irl = a ( T ,  - T,), where5 

For this value of jrj ( T  = T,) a phase transition occurs to 
a state in which the y-spin component with a wave vector 
Q, = Qk - q2 (which differs from the relation 
Q, = Qk + q, satisfied by the x-component) also condenses 
out, so that as a result the intermediate state will be charac- 
terized by a doubly incommensurate structure, having an 
additional transverse component ( x )  along with the lon- 
gitudinal modulation component +", (x) .  In Fig. 2, the con- 
tinuous line represents the fluctuation spectrum for k,, #0: 
due to the mixing of the various oscillating components, hy- 
bridization of the branches occurs; repulsion of these 
branches leads ultimately to the appearance of a gap between 
them. 

Let us now study the frequencies of the collective modes 
for the case when both spin components are ordered, i.e., 
below T = T,. It is not hard to convince oneself that the 
Lagrange equations for fluctuations above the doubly in- 
commensurate structure described by expressions ( 11 ) con- 
tain two types of periodic coefficients. After the transforma- 
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these equations, for ky = 0 (a, = 0)  and k, = 0, have the 
following form 

Equation (20), along with its complex conjugate, now con- 
tains periodic coefficients which give rise to terms like 

all having the form exp[ * 2ni( q, + q,)x], which are non- 
vanishing under subsequent transformations. As a result, we 
find that the spectral band of the collective modes has breaks 
at the wave vectors k, = n( q, + q,). 

The picture of such a spectrum in the extended-zone 
scheme is given in Figs. 2b, 2c. The wave vector at the zone 
boundary is determined by the spacing between two solitons 
(Fig. 1).  As a consequence of the breaking of translational 
symmetry there are two modes with eigenvectors 

which for k, = 0 are Goldstone modes (the invariance is 
with respect to a change in the initial phase of both compo- 
nents of the order parameter); the wave vectors correspond- 
ing to them are Q, = Q, + q, and Q, = Qk - q, [after a 
transformation inverse to ( 19) I .  Numerical investigation of 
the spectrum of collective modes of Equation (2) based on 
finite-difference relations among the Bloch function coeffi- 
cients9 shows that when 6, = q,/qy and 6, = q,/q; decrease 
the gaps at the edges of the first Brillouin zone increase sig- 
nificantly. At the same time, a notably different behavior of 
the dispersion curves is observed at the limits of the first zone 
and outside of it. In the region k, >q, + q,, the frequency 
spectrum in Fig. 2c (6, ~ 6 ,  = 0.65) has a form close to the 
spectrum of modes for the commensurate state (which cor- 
responds to Fig. 2d, as will be shown below). Within the first 
zone, the frequencies of the two lower modes are close to 
zero for the whole interval 0 < k, < q, + q,. The weakly dis- 
persive dependences of these modes are caused by the in- 
crease in spacing between solitons (due to the decrease in 6, 
and 6,) which, in turn, reduces the interaction between 
them: these modes correspond to oscillations of the solitons. 
The upper modes of the first zone correspond to oscillation 
of the thickness of the domain walls (solitons). Thus, as 
must be the case, the distortion in the sinusoidal structure 
leads to a separation of the modes in the frequency spectrum: 
the presence of some of these is related to the solitons them- 
selves, while the others are related to the regions between 

them, where the commensurate structure is realized. As 6,  
and 6, decrease, the number of modes in the spectrum corre- 
sponding to domains increases, and conversely the number 
of modes due to domain walls decreases. Such variations in 
the band spectrum take place up to the point where the sys- 
tem reaches the point T = T3, at which it changes its spin 
configuration by a second-order phase transition from do- 
main-like to the commensurate 120" structure. 

In the new state, described by three magnetic sublat- 
tices, the components $: of the order parameter are coupled 
by the relation $; = 5 i$: [where I$: 1 2 =  l 2  
= - a,, (Q, )/16b) 1, which minimizes the free energy for 
T < T3. The eigenfrequencies are found from the equations of 
motion with constant coefficients obtained from ( 16), and 
for ky = k, = 0 have the following form: 

These expressions are determined by neglecting terms of 
third order in k, in the matrix elements a,, , ayy in (8), so 
that 

The spectrum of excited modes above the commensurate 
state is shown in Fig. 2d, from which it is clear that one of the 
phase branches with eigenvector 2, = 4C1/'( 1, - 1,1, - 1 ) 
in the vicinity of k, = 0 (i.e., for Q, = Q, ) is a Goldstone 
mode. The presence of Goldstone modes with wave vector 
Q, = (4~/3a,0,0) is caused by breaking of the continuous sym- 
metry of the ground state relative to rotations. The two other 
branches, corresponding to phase [H, = 4-'I2( 1, - 1, - 1,l) ] 
and amplitude [ E ,  = 4-'"( 1,1, - 1, - 1 ) ] modes, are de- 
generate at this value k, = 0, which in turn is related to the 
intersection of two eigenvalues (the energy surfaces) of the 
matrix asp (Q) at the conical point Q, . 

4. COLLECTIVE MODES WITH VORTEX STRUCTURE 

Let us now turn to an investigation of systems in which 
the dipole interactions between spins in a hexagonal lattice are 
significantly stronger than the exchange interaction J,. Then 
the equilibrium state, determined from the equation 

obtained by varying the free energy (5)  with respect to the 
variable (S P) ,  is described already by a function of two spa- 
tial coordinates xi and y, in the basal plane; the thermody- 
namically stable structures have a vortex configuration, 
whose states near the transition point from the paraphase are 
in the formX 

(S,O)=So sin q,", (S,O>=-So sin q lox ,  (23) 

where the index i on the spin and space variables x, y is omit- 
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a b / FIG. 3. Spectrum of collective modes of the vortex in- 

/ commensurate structure for various orientations of the 
wave vector in the basal plane: a-frequency depend- 
ence on k, with k,  = 0, b-dependence of p2 on 
k = sq,, where q, = 2 - ' I 2  (ql,q2). A is the potential 

A+O.Blrl well depth as before, but calculated for the case y, SJ,  

A+O.Y lr-I under investigation. 

/ y, 
0 4, 

ted, 

(S,>=(S,">, So= [a(T,-T)/5b]Ih, . , 

t~.'") = s:gn) sin[ (2rn+l) q,x+2ngyl, 
where q? corresponds to a minimum of the function a-  (Q) nt.n 

where Q = q?. As the temperature is lowered, the fundamen- where the amplitudes of the harmonics Shm*"' and projection 
tal wave (23) induces many new harmonics, so that the gen- of the wave vector q,, 9, are determined from the condition 
era1 solution to Equation (22) takes the following form that F in (5)  be a minimum: 

[ (S ;o'o' = s '0.0' =s - O, Q I  = ( q1yo)9 q2 = (0, 9211. The 
quantities SJmp"' and 9, are found from this by substituting y, 
x and 2, 1 for the subscripts x, y and 1, 2, for which q! = qy . 
As a result, we find that when higher harmonics are taken into 
account the amplitudes S:msn' and S:"'"', and also q, and q,, 
differ from one another due to the anisotropy of the smallest 
eigenvalue of the dipole tensor in Q-space [in expressions 
(25) this implies that a- [mq, + nq,) #a- (nq, + mq,)], 
and coincide only for the fundamental wave (23), when 
Q=4? .  

Let us investigate the behavior of collective modes for 
this case. The structure of the excitation spectrum generated 
by several wave-vector "stars" { q) (i.e., multiple-q struc- 
tures) was investigated earlier in Ref. 19, where it was shown 
that this case is characterized by the appearance of additional 
gaps. In the linear approximation the equations for the small 
deviation m from the equilibrium states (24) have the follow- 
ing form: 

E a m ( - i v ) m a  
a 

+ 4 b [  (3(S,0)z+(S,0>2) m,+2(S,0>(S,0>mu]=0, 
(26) 

+ z a v a  ( - i ~ )  ma 
a 

+4b[ (3<S,0>2+(Sx0>2) m,,+2(Sxo)(S~)m,] =O.  

Equations (26) contain two kinds of periodic coefficients 
( S t  ), (a = x,y)  and (S: ) (S;): in contrast to the case in- 
vestigated above, neither can be removed. Gaps in the spectral 
band will arise along lines in the k, ky plane perpendicular to 
the vectors k = mq,i + nq j (from the terms ( S t  )2, wherei, j 
are unit vectors along the x and y axes respectively) and 
k = (m + 1/2) q,i + (n + 1/2) q j  (from the terms 
(S: ) (S:) ) . The solution to equations (26) can be cast in the 
form of Bloch waves ma ( r ) = elkR Ua (x,y ) , where U, (x,y ) 
is a periodic function of the two spatial variables x, y. Fig. 3 
gives a picture of the spectral band for two orientations of the 
wave vector, namely when k is oriented along thex-axis (Fig. 
3a) and when k takes on values equal tos( q,i) + q j ), where 
s is a continuous variable (Fig. 3b); in both cases q, --q,zq?. 
The excitation spectrum of the vortex incommensurate stuc- 
ture contains two Goldstone modes with mutually orthogonal 
momenta k = q,i (Fig. 3a) and k = q j, caused by breakingof 
the translational symmetry along the x and y axes in the basal 
plane. For orientations k along the projections q, and 9, of the 
wave vector of the magnetic structure, the width of the breaks 
at the edges of the first zone is proportional to 
Irl = a ( T ,  - T);forvaluesofk=n(q, i+qj) /2  (Fig. 3b) 
the width of the breaks depends not only on the magnitude of 
the departure of the temperature from TI  but also on the non- 
diagonal components of the tensor a,@ (Q), and for n = 1 is 
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proportional to the quantity Irla, . As the temperature falls, 
there appears in the lower branch of the spectrum (Fig. 3b) a 
gap at k = q,  EZ [ ( q: + q: ) / 2 ]  'I2, whose magnitude grows 
linearly with the increase in Irl. 

5. CONCLUSION 

In this work the spectrum of collective modes has been 
studied for states in hexagonal magnets caused by dipole in- 
teractions. In triangular antiferromagnets, when the condi- 
tion yd (J2 is fulfilled, the dispersion curves have been ob- 
tained for excitation of the two incommensurate phases. For 
pure sinusoidal states with longitudinal wave modulation, the 
excitation spectrum, consisting of two phase and two ampli- 
tude modes, contains no breaks. If an excitation wave vector 
coincides with a wave vector of the structure, the equations 
for the longitudinal and transverse components of oscillating 
fluctuations become independent, and the dispersion curves 
in this case can intersect. As the temperature is decreased, the 
phase branch for transverse oscillations becomes unstable at 
the temperature point for which the transverse wave modula- 
tion also condenses. In the new state with two incommensu- 
rate structures, the mode spectrum is band-like, containing 
breaks as the momentum varies along spatial directions which 
depend on the magnetic structure; within the first zone of 
such a spectrum are two gapless (phason) branches. 

The interaction of the longitudinal and transverse wave 
modulations leads to a distortion of the purely sinusoidal 
structure, so that the nonlinear wave generated as a result of 
this is characterized by both a spatially dependent phase and a 
spatially dependent amplitude. When the nonlinearity in the 
system is large, the amplitude preserves its constant value, 
and only in regions of strong phase variations does it decrease 
(after a small increase). The amplitude modes of the first 
Brillouin zone in the excitation spectrum above such a soliton 
state correspond to oscillations in the thickness of domain 
walls. 

In the commensurate 120" state there remains only one 
gapless (Goldstone) mode, whose existence is due to break- 
ing of rotational symmetry. In addition, there is a degeneracy 
at the symmetry point Q, : the frequencies of one of the phase 
and one of the amplitude modes coincide in the presence of a 

conical point in the potential surface of the eigenvalues. 
In the other limiting case yd ) J2, the effect of mixing in 

higher harmonics leads to differentiation of the amplitudes of 
the transverse modes of the vortex structure and their periods 
2n-/ql and 2n-/q, (which correspond in the oscillation spec- 
trum to two Goldstone modes with mutually orthogonal wave 
vectors k = ql i  and k = q j). In contrast to the case yd (J,, 
the band spectrum has breaks as the wave vector varies in the 
basal plane; additional breaks arise due to the anisotropy of 
the dipole forces. 

The author expresses his gratitude to V. A. Ignatchenko 
and G. A. Petrakovskii for their interest in the work and criti- 
cal discussions. 

"By the terminology "instability at the conical point" we mean also to 
include the magnetic properties of the triangular antiferromagnet 
CsCuC1, which are observed in a magnetic field.7 
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