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The time evolution of a quantized anharmonic oscillator is investigated when the initial state of 
the oscillator is coherent. Averaging the Heisenberg equation of motion over such states leads 
to a closed equation for the average value of any operator which can represent a physical 
quantity. A distinguishing feature of the quantized system is the presence of terms containing 
higher-order derivatives in the coherent-state parameters, which are interpreted as quantum- 
mechanical generalizations of the Lagrangian coordinates in the evolution equation. We 
develop a perturbation theory in the weak anharmonicity based on these equations which does 
not require us to find either wave functions or energy levels. There are qualitative differences 
between the quantized and classical systems: for example, the "phase" trajectories of the 
former system in the space defined by the coordinate and momentum averages are open. The 
approach we propose allows us to study the dynamics of a single spin in a weak anisotropic 
field, again by using coherent (spin) states. In a reference system rotating at the precession 
frequency of the spin in a transverse magnetic field, the spin executes purely quantum- 
mechanical oscillations. The number of these oscillations within a corresponding period is 
determined only by the magnitude of the spin, and does not depend on the direction of the 
initial polarization. 

The anharmonic oscillator is the simplest nonlinear sys- 
tem, and finds a multitude of applications. A large number of 
papers have been devoted to studying its quantum-mechani- 
cal properties (see, e.g., the review in Ref. 1 ) . In this paper 
we will study the dynamics of such a quantum system (the 
oscillator is everywhere considerd to be one-dimensional, 
while the anharmonicity is assumed to be weak). Before we 
turn to a discussion of this problem let us recall briefly how 
things stand in classical mechanics. 

The solution to the classical equation of motion is a 
periodic function of time, and is found in the form of an 
expansion in powers of a small parameter; the value of the 
frequency (in any given approximation) is determined from 
the condition that secular terms be absenL2 As a result, the 
nonlinearity leads to renormalization of the "bare" frequen- 
cy and the appearance of higher harmonics; however, the 
solution remains periodic. 

An investigation of the time-dependent anharmonic os- 
cillator was undertaken in Ref. 3. A coherent state was cho- 
sen as an initial condition; as is well known, coherent states 
are the most "~ lass ica l . "~~~ This naturally made it possible to 
compare the temporal behavior of the classical and quantum 
systems. 

According to the results of Ref. 3, the evolution of the 
quantum system is in essence analogous to that of the classi- 
cal system: the average values of the dynamic variables are 
found to be periodic functions of time, while the "quantiza- 
tion" appears only in the fact that expressions for the fre- 
quencies and amplitudes of corresponding harmonics con- 
tain quantum corrections. Even at this level, it follows from 
the incommensurability of the transition frequencies for the 
anharmonic oscillator that the solution, generally speaking, 
need not be periodic. The method used in Ref. 3 consisted of 
operator generalizations of the classical procedure applied 

to the Heisenberg equation of motion for the Bose creation 
and annihilation operators. However, no allowance was 
made for the operator nature of what corresponds in the 
quantum system to the classical frequency. As we show be- 
low, the results given in Ref. 3 are correct only for sufficient- 
ly short times. 

On the other hand, in Refs. 6 and 7 it was emphasized 
that, with the passage of time, the nonlinearity leads to the 
appearance of the essential quantum behavior of the system. 
This circumstance was illustrated by the example of an ex- 
actly soluble model: it was shown that a quantum modula- 
tion appears in the harmonic time dependences which corre- 
spond to classical mechanics (an analogous result for spin 
systems was obtained in Refs. 8 and 9).  

However, the Hamiltonian corresponding to this model 
had a very special form: the anharmonic term in the Hamil- 
tonian was quadratic, i.e., the square of the harmonic term. 
The time evolution of this system could be studied because it 
was possible to solve the corresponding Heisenberg equation 
of motion exactly; thus, these results do not allow a direct 
generalization. At the same time, an investigation of the dy- 
namics of a more realistic system-the anharmonic oscilla- 
tor-is of interest in its own right. 

In this article we propose a quantum generalization of 
the Krylov-Bogolyubov method, whose applicability is not 
limited to a particular model. This allows us to study in de- 
tail the characteristic ways in which the evolution of the 
quantum system differs from that of the corresponding clas- 
sical system (which it approaches as fi+ 0). We note that in 
contrast to Refs. 6 and 7, where the time behavior of the 
classical system was determined by one frequency, in our 
case the modulation affects also the higher harmonics. 

In this paper the properties of coherent states are used 
in an essential way. These states make it possible for us to 
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pass directly from the operator Heisenberg equations of mo- 
tion to differential equations for the average value of any 
dynamic ~ariable. '~- '~ These equations are quantum gener- 
alizations of the corresponding classical evolution equa- 
tions. Perturbation theory in the weak anharmonicity can be 
constructed directly with their help. The important pecu- 
liarity of the quantum equations is the presence in them of 
higher derivatives which also give rise to the special behavior 
of the quantum system as compared to the classical system. 

The approach developed in this paper also allows us to 
investigate the dynamics of an anisotropic nonlinear spin 
system (by applyingcoherent spin statesI3), whosequantum 
properties are essentially manifested in the form of spin os- 
cillations. 

1. DYNAMIC EQUATIONS IN THE COHERENT-STATE 
REPRESENTATION 

Let us first examine a quantum system described by a 
time-independent Hamiltonian of general form 

a=% (a+, a )  ; (1) 

the creation and annihilation operators are linear combina- 
tions of the coordinate and momentum operators. 

Letf= f(a+, a )  be an operator for some physical quan- 
tity in the Heisenberg representation. The time evGution of 
this quantity averaged over a coherent state f = (zlflz) (the 
vector state lz) is an eigenvector of the operator a: 
a(z) = zlz), wherez is a complex number), is determined by 
the equation 

Using the relations4 

we obtain a closed dynamic equation for the average valuef: 

A 

where the operator K equals 

The notation (5 )  implies that in the Hamiltonian ( 1 ) we 
must substitutes+ -z*, a -d /dz* in the first term, anda +z, 
a +  -8 /dz in the second. It is important to note that the dy- 
namic equation (4) for f is linear, despite the fact that the 
original system is, generally speaking, nonlinear. 

Equation (4)  describes the time variation of any func- 
tion which characterizes the system. To obtain from the 
multitude of solutions to this equation that solution which 
corresponds to the physical quantity of interest to us, we 
must define its value as a function of the average values of 
position and momentum (or, what is the same thing, ofz and 
z*) at the initial time point. The problem of describing how 

the nonlinear quantum system behaves reduces to a Cauchy 
problem for Eq. ( 4 1. 

It must be noted that in the case of a Hamiltonian which 
does not depend explicitly on time, Eq. (4)  differs formally 
from the equation for the density matrix in this representa- 
tion only by the sign on the right side. However, for noncon- 
servative systems the differences are more significant: the 
equation for the density matrix in this case preserves the 
form (4)  (with a change of sign), while the exact closed 
equation for the dynamic variable can no longer be cast in 
this form. This difference is connected with the fact that the 
Hamiltonian which enter into the equation for the density 
matrix is in the Schrodinger representation, while in the 
equation for f it is in the Heisenberg representation. 

If the Hamiltonian of the system is represented in the 
form of a power series in a +  and a, one can verify easily with 
the help of (5) that terms will be introduced into (4)  which 
contain derivatives with respect to z* and z. The order of 
these derivatives is determined by the powers of a +  and a in 
the Hamiltonian. In the case of the normally-ordered nth 
power of a Bose operator, only nth derivatives are generated, 
without any lower-order derivatives. 

When we transform to the variablesx andp with formu- 
las such as 

powers of Planck's constant will appear as multipliers in 
front of d /ax. d /dp; the exponent of these powers will equal 
the order of the corresponding derivative. In this case, equa- 
tion (4) will appear as a series of powers of Planck's con- 
stant. Going to the limit fi-0, we obtain the classical equa- 
tion, which takes the form 

h 

where A? = (zJA?Jz) coincides with the classical Hamil- 
ton's function. The right side of (6) is a Poisson bracket 
written in Lagrangian coordinates. In the general case of a 
quantum system described by equation (4), the variables x 
andp (or z and z*) are quantum generalizations of the La- 
grangian coordinates. 

Thus, in the classical limit the system is described by a 
first-order partial differential equation, while the quantum 
properties manifest themselves in the higher order of the 
exact equation (for a power-law Hamiltonian the order is 
determined by the highest power of a +  and a appearing in 
the Hamiltonian). If A? is a transcendental function, equa- 
tion (4) is a functional equation. 

It follows from the above that the operatorAkcan be cast 
in the formr\of a sum of two terms: a classical ( K c  ) term and 
quantum (Kq ) term 

X= X,+ K,, ( 7 )  
A A 

where Kc -A0, Kq -F, a> 1. 
We note that the characteristics of the classical equa- 

tion (6) are given by Hamilton's equation. In the case of a 
harmonic oscillator, the classical and quantum equations co- 
incide. 
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Equation (4)  allows us to describe the quantum system 
with the help of an analogue of phase space, and in this sense 
can be compared with the Wigner-function method, since 
the Wigner function also obeys a linear equation.I4 We em- 
phasize, however, that in contrast to the Wigner method the 
approach developed in this paper makes it possible for us to 
investigate a dynamic equation which directly describes the 
averaged, i.e., physical quantities rather than a quasiproba- 
bility which has no direct physical meaning. In the formal- 
ism we describe below, the averaged operator can be arbi- 
trary but the choice of representation is specific. In the 
Wigner-function method, a definite representation is used to 
construct an operator which then can be averaged over an 
arbitrary state. 

Let us now proceed directly to the anharmonic oscilla- 
tor. In this case, the Hamiltonian takes the form 

(here, /3 differs from the corresponding coefficient in Ref. 3 
by a factor of 1/4). 

Let us introduce Bose operators as follows: 

a= ( m o o / 2 f i ) " ' ( ~ + i p / m w , ) ,  a+= (mo0/2h) '"  ( x - i p / m o o ) .  
(9)  

For further convenience we will make use of polar coordi- 
nates, in which equation (4)  for the system under investiga- 
tion takes the form 

where 

2. PERTURBATION THEORY FOR DYNAMIC VARIABLES: 
SPECIFICS OF THE BEHAVIOR OF A QUANTUM SYSTEM 

Equation ( 10) cannot be solved exactly. We construct a 
perturbation theory to investigate it, in powers of the weak 
anharmonicity. Let us emphasize at once that, generally 
speaking, we do not have at our disposal any systematic 
method of solving this equation approximately based on a 
direct transcription of the approach used in the classical 
case. In point of fact, if by analogy with Ref. 2 we seek a 
solution in the form 

f=f'"+j"' (11) 
7 

where f "' = r exp[i(q, - a t )  ] while f "'-8 (for simplicity, 
we assume for the present that y = O), then from the first- 
order equation we can determine both f "' and the correction 
to the oscillator frequency (from the condition that no secu- 
lar terms be present). The expressions obtained agree with 
the results of Ref. 3. 

However, an attempt to carry this same scheme one step 
further would lead to contradictions, since secular terms of 

several types would then appear, which, in contrast to the 
classical case, cannot all be reduced to zero at once by choos- 
ing one parameter-the frequency. In reality, already at the 
zero-order approximation, a function containing an infinite 
number of frequencies is superimposed on the harmonic de- 
pendence, and this circumstance must be taken into account 
at the outset where solving Eq. ( 10). 

Let us investigate Eq. ( 10) with an initial condition of 
general form, corresponding to an arbitrary function of the 
operator position and momentum: 

+- 

We will seek its solution in the form 
+ a, 

where?"'- y while f ' I '  contains terms of orderpand f (we 
neglect terms of higher order). This notation reflects the fact 
that the anharmonicity has an effect even in the zero-order 
(adiabatic) approximation, which leads to slowly-varying 
functions of time g, (compared to the rapid variation at a 
frequency a;''). In essence, the model we are developing is 
analogous to the Krylov-Bogolyubov methodI5 (let us re- 
call, however, that here we are dealing not with a nonlinear 
equation but with a linear partial differential equation). 

To first order in y the secular terms are absent, and the 
term?"' can be expressed directly in terms of the g, . The 
condition that secular terms be absent in the equation for f ' I '  

lets us obtain from ( 10) an equation for g, : 

infi 15 y2 
( )[ g.(1+2p')+p%].  (13) & = -  m o o  4 m2003 8 m o o  dp 

The equation can be solved exactly, and its solution with the 
initial condition g ,  I, = , = f, ( p )  takes the form 

g n = f n  (pe-trn'2) exp [p2  (e-irn- 1 )  -i.cn121 . (14) 

Here 

As a result, the expression for the adiabatic approximation 
becomes equal to 

+ m 

f(" = !,, (pe-"J2) e x p [ p 2 ( e - " 4 )  - ir,,/2] 
, ,=-m 

xcxp [ in (cp-oot) I .  (15) 

In particular, for the average values of position and momen- 
tum we obtain from this 

z ( t )  = ( n  ( t )  )=p exp[-2p2 s in2( .c /2)  ] 

x cxp[i(rp--ot-p2 sin 7 )  I ,  (16) 

<x>=2k Re z ( t ) ,  (p )=2Lmoo Im z ( t ) ,  o = o o + Q .  

From (15) and (16) evidently arises a modulation of the 
harmonic dependences of ( x )  and (p), having a quantum 
origin. As a result, the system dynamics differs significantly 
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FIG. 1 

at sufficiently long times from the results of Ref. 3. This 
difference appears particularly striking in the "phase trajec- 
tory" of the system in ( x ) - ( p )  space. In the classical case, 
the phase trajectory is a circle. Within the framework of the 
approach in Ref. 3, the curves remain circles (in the present 
approximation); only the frequency of uniform rotation of a 
point going around them changes. Including the quantum 
modulation significantly changes the character of the phase 
trajectory: the curve now has the form of a spiral, bounded 
by two circles of radius p and p exp ( - 2p2 ) (in dimension- 
less units)-see Fig. 1. Although in the special case of com- 
mensurability of the frequencies o and f i  the curves are 
closed, the corresponding "periodicity" has an approximate 
character and disappears when we include the time depen- 
dence due to higher approximations in the anharmonicity. 
For n -02/2?mfi,, the formulae obtained for the rotation 
are no longer applicable (see details below). 

The quantum properties of the system are apparent also 
in the fact that the product of the position and momentum 
uncertainties introduced by the Heisenberg relation be- 
comes significantly different from its initial minimum value 
with the passage of time 

Ax2Ap2='l~fi2 (ktZ-pZa), Ax2= ( X ~ ) - < X ) ~ ,  
~ p ~ = < p ~ > - < p ) ~ ,  (17) 

Il.i=1+2pi{1-exp[-4p2 sinZ(2/2) I), 
b2=p2 exp [2i (cp-at) ] {exp [pa (e-2i*-l) 

-is]-exp[2p2 (e"'-I)] ) + h.c. 

Let us now turn to evaluating the next term in the ex- 
pansion in the anharmonicity. In avoiding excessively te- 
dious calculations we limit ourselves to the case of a pure 
quartic anharmonicity ( y = 0) and calculate average values 
of position and momentum (since f = z(t) ,  f 1, =, =peiq ). 
The equation for f "', in which secular terms are now absent 
due to our choice ofg(p,t) according to ( 16), can be directly 
integrated. It must be noted that in the expressions so ob- 
tained terms proportional to exp [i(w,t - q,) 1, 
exp[ + 3i(p - w,t) ] are present. It is not hard to see by 
analogy with the previous discussion that elimination of the 
secular terms in the equation for f "' results in modulation 
of these terms corresponding to ( 15 ) , which also applies to 
the next approximation in which terms appear containing 
exp [in (e,  - o,t) 1 .  The requirement that secular terms of 
the type exp[i(p - o,t) ] be absent in the equation for f ''' 

makes it necessary to find the expression for f 'O' to higher 
accuracy than is given by ( 14) and ( 15). Thus, the corre- 
sponding equation analogous to ( 13 ) will have a more com- 
plicated form. We present here the explicit expression for the 
first correction: 

z(') (t) =(pp/rnoo2) ( t i  exp[i (3cp-mot) I 
+g, exp[i(o,t-cp)] +Es exp [3i(cp-o0t)l 

+g, exp[3i(oot-cp) l + E 5  exp [-i(cp+oot) 1 
+g, exp[-t(3cp+oot) ]+El expti(5cp-oat) 11, 

Formula (8) of Ref. 3 is obtained from ( 16) and ( 18) 
when at4 1, which implies that it is possible to neglect the 
variation of the modulating factor g (p,t) over the first of a 
hierarchy of time scales, over which this modulation does 
not appear. The region of applicability of results ( 15)-( 18) 
is wider, and encompasses the second time scale: 

where 
~ ~ = ~ ~ ? / r n ~ o ~ ~ ,  oe=i3f /moo. 

(In addition, in both cases-just as in classical mechanics- 
the conditions (us /o,)w"'t ( 1, (o,,/o0)o'"4 1, 
o"' = 3os/8 - 1 5h, /4) must be fulfilled. ) 

We now discuss passage to the classical limit (for 
y = 0) and trace how we obtain a harmonic dependence 
with renormalized frequency from the formulae given 
above. From the exact expression for the period of oscilla- 
tion of a classical anharmonic oscillator, using the initial 
conditions it is not hard to obtain an expansion of the fre- 
quency in powers of 8: 

where 

From ( 13) or ( 14) it is clear that as fi-+O the first-order 
correction too,  follows directly from the expression for the 
modulating factor. For the correction a"' things are some- 
what more complicated. The part of o"' which is indepen- 
dent of q, comes from the expression for g when the second 
time scale is taken into account (which corresponds to re- 
taining terms -B ' in the transition frequencies). As regards 
the part of ( 19) which depends on p ,  it can be derived using a 
rearrangement of the perturbation series in the classical lim- 
it. 

Let us keep in mind that the method we have adopted 
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does not require us to find either wave functions or energy 
levels, provided that we deal directly with averaged, i.e., in- 
tegrated, q~antities.'~' Thus, it allows us to obtain the aver- 
age of an arbitrary function of a and a+ in one operation 
(and, correspondingly, for any initial condition). 

3. SPIN DYNAMICS IN THE PRESENCE OF A WEAK 
ANISOTROPIC FIELD 

Up until now, the discussion has dealt with properties 
of the quantum anharmonic oscillator. Another nonlinear 
system, in which a modulation of the classical time depen- 
dence due to quantum corrections turns out to be significant, 
is a spin located in an anisotropic field (from here on we 
assume the anisotropy to be weak). The corresponding 
physical object is a paramagnetic ion in a nonmagnetic crys- 
tal" (analogous pseudo-spin models are systems of interact- 
ing fermions 1 8 ) .  

We limit ourselves for simplicity to the uniaxial case, 
and assume that the magnetic field is directed perpendicular 
to the axis we select. In this case the Hamiltonian has the 
form 

Here, H plays the role of the magnetic field and D is an 
anisotropy constant; S, is the operator for the ith projection 
( i  = x,y,z) of the spin, which equals S. 

We assume a spin-coherent ~ t a t e ' ~ . ' ~  as our initial con- 
dition, i.e., the average spin is assumed polarized along a 
direction n characterized in spherical polar coordinates by 
the angles 8 and p: 

Here, S- = S, - isy is a lowering operator and IS ) is the 
state with maximum possible S, projection. Rather than re- 
peat the discussion of the previous paragraphs, we present 
the results. 

The dynamics of this ~ystem'~' is described by the equa- 
tions 

f+o,af/arp= ( D l h )  ( 2 s  sin 0 cos rpft?) m f ,  
e^=cos cp cos Oa/a0- ( s in  cp/sin O)d /dq ,  (22) 

h=s in  cpa/dO+ cos cp ctg 0a/dcp, w,=H/h.  

We limit ourselves to determining the average value of the 
component S+ = S, + isy, so that f I, =, = Se? sin 0. To 
lowest order in D, including the quantum modulation, 

f(')=S sin 0 exp [i(cp-oot) ] (cos t S i  sin t cos 0 ) 2 S - 1 ,  

~ = D t / 2 f i .  (23) 

The first-order correction has the form 

jcl)= ( D / 4 h o o )  S ( 2 s - 1 )  sin 0 .  (C, ( t ,  0 )  exp [ i  (oat-cp) ] 
+C2 ( 7 ,  0 ) e x p  [ - i  (oot+cp) I +C3 ( 7 ,  0 )  exp[ i (3cp-o0t) I ) ,  

(24) 
C ,  ( T ,  0 )  = ( C O S  T cos 0-i sin T )  (cos t - i  sin T cos O ) 2 ( S - 1 ' ,  

C2(7, 0 )  -- (cos 0 - i s  sin t cos T sin") (cos T+ i sin T cos O)2S-3,  

C ,  ( t ,  0 )  = i  ( 8 - 1 )  sin2 0 cos t sin t (cos t f  i sin T cos 0 )2s -3 .  

We remark that for spins S = 1/2, 1, 3/2, formulae 
(23) and (24), in contrast to the anharmonic oscillator, al- 
low comparison with exact solutions. 

It is interesting that the modulation part of the time 
dependence of (23), describing the behavior of the spin in a 
strong (compared to the anisotropy field) magnetic field is 
analogous to the dynamics of a spin with the same initial 
conditions but in the absence of the As is clear from 
(23), in the lowest approximation in D the spin executes 
oscillations in the reference system rotating with frequency 
w, which are purely quantum-mechanical in origin (com- 
pare with Ref. 8).  Thus, in the interval O<T<T each of the 
transverse components of the spin in this system vanishes 
exactly 2S - 1 times, independent of the value of 8. In the 
limit e-, 1r/2, when thequantum properties of the system are 
especially striking, all of the zeroes condense down into one, 
which is (2S - 1 )-fold degenerate. 

We now turn to a generalization of (23) for arbitrary 
functions of the spin operator, one example of which is the 
case of biaxial anisotropy where the Hamiltonian differs 
from (20) by the addition of a term-ES :/2. Let us introduce 
the variable f corresponding to cos 8 = - th f .  Then, if the 
initial value of the quantity sought is 

+oo 

then for t > 0 the leading approximation for the amplitude 
yields 

n ( D - E )  t 
T ,  = 

2fi . 
From this, in particular, it is clear that there is no modula- 
tion in the longitudinal component (S, ). It is also absent (in 
this approximation) for equality of the anisotropy constants 
D = E. 

Thus, it follows from the analysis presented in Refs. 6-9 
and in the present article that even when the quantum sys- 
tem (both for the Hamiltonian and the spin) is as close as 
possible to classical (due to our choice of an initial coherent 
state), the presence of even a weak nonlinearity leads to 
qualitative differences in the behavior of the quantum and 
classical systems. Although in the present paper the time 
evolution was connected with the time-dependent character 
of the initial state, we can suppose that these methods and 
results may prove to be useful also in more complicated Ji- 
tuations-for example, in studying periodic excitation of a 
quantized nonlinear system. 

The authors are grateful to B. Fryz for help in computa- 
tions. We also acknowledge useful discussions with V. I. 
Man'ko. 

"'In the language of perturbation theory formula (12) corresponds to a 
zero-order approximation in the anharmonicity for the wave functions 
and first order in the energy levels. 

I2'In Ref. 16, pseudo-coherent states were used, and approximately closed 
equations were obtained for the characteristic of the "center of gravi- 
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ty," corresponding to a wave packet; these equations were used for 
numerical analysis. 
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