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The interaction of the conduction electrons in a metal with dislocations containing kinks in the 
Peierls potential contour is theoretically investigated. In the field of random stresses arising on 
plastic deformation of the sample, the kinks on a dislocation line, which are in thermodynamic 
nonequilibrium at low temperatures, form a set of oscillators in the potential wells of various 
shapes. In the low-temperature regime, when the concentration of other defects is low, 
inelastic scattering of electrons by kinks, anisotropic with respect to angle, leads to a quadratic 
temperature dependence of the thermal conductivity of a metallic sample along the favored 
direction of the dislocation axes. In the plane perpendicular to the dislocation axes, large-angle 
elastic scattering of electrons predominates. The relationship of the results to experimental 
data's2 is discussed. 

INTRODUCTION 

The production of single crystals of metals of high puri- 
ty and with a low concentration of lattice defects makes it 
possible in principle to investigate the interaction of conduc- 
tion electrons with defects introduced in a controlled man- 
ner. Experimental investigation in recent years'.2 has detect- 
ed anomalies in the low-temperature kinetic properties of 
refined metallic samples after a relatively low number of dis- 
locations ( 10'-108/cm2) has been introduced by means of 
plastic deformation. The behavior of the electronic thermal 
conductivity at helium temperatures indicates inelastic scat- 
tering of electrons by soft-mode vibrations, suppressed by 
subsequent annealing of the sample or by the additional in- 
troduction of a large number of dislocations ( 109/cm2).'.2 
The resistivity of the sample at these temperatures always 
has an extrinsic character and changes monotonically as the 
concentration of dislocations increases.'.' An explanation of 
this effect in terms of the scattering of electrons by quasiloca- 
lized vibrations connected with the dislocations requires the 
assumption of an anomalously small magnitude of the linear 
strain of the dislocation line.3 

In the present work another mechanism of inelastic 
scattering of electrons is proposed, due to the newly-intro- 
duced dislocations, in which the existence of the soft mode is 
unrelated to the smallness of the linear strain of the disloca- 
tion line. 

In a real crystal the energy contour for a dislocation in a 
glide plane is an undulating surface due to the presence of the 
Peierls potential, connected with the lattice periodicity.4 
This leads to the existence of kinks in the dislocation line 
when different parts of the dislocation lie in different parallel 
valleys of the Peierls potentiaL4 In metals such as copper in 
the absence of internal stresses isolated kinks may move 
along the dislocation line like particles with an effective mass 
determined by the height of the Peierls barrier, the linear 
density and the linear strain of the dislocation line.5 The 
elastic energy of an isolated kink in such crystals is hundreds 
of degrees K e l ~ i n . ~  Therefore, at helium temperatures kinks 
in thermodynamically equilibrium must be absent from a 

crystal without stresses. However, nonequilibrium kinks 
may exist, trapped in potential wells which are produced 
where the random stresses on the dislocation line change 
sign. At low temperatures the probability that a kink tunnel 
from such a well is exponentially small.6 

In the following section the oscillations of isolated 
kinks are examined, as well as kinks on the portions of the 
dislocation lines not parallel to the direction of the valleys of 
the Peierls potential. In such portions it may be energetically 
favorable to form a sequence of kinks of one sign with a 
linear density n,, making use of the condition4.' that 
an, ~ 8 ,  where a is the repeat interval of the valleys in the 
Peierls potential, and 8 is the angle between the direction 
along the valley and a given section of the dislocation line. 
Conduction electrons scatter inelastically on the deforma- 
tion potential created by the oscillating kinks. 

It is significant that, as shown in Section I, the kink 
oscillation frequencies w, (in temperature units) are at 
most on the order of a Kelvin. The oscillation frequency of a 
kink is determined by the absolute value of the gradient of 
the local stress. Closely situated kinks on oblique sections of 
dislocation lines have the highest frequencies. A frequency 
w,  - 1 K is attained for the densest "packet" of kinks when 
the stress field is of the order of the width 1, of an isolated 
kink along a dislocation line." 

In Section 11, we calculate the thermal conductivity of a 
metallic crystal with kinks on dislocation lines running 
along the preferred direction in the crystal in the tempera- 
ture regime T B w ,  where w is the upper limit of the kink 
oscillation frequency. In such conditions successive in- 
stances of inelastic scattering of an electron by kinks give rise 
to diffusion in energy. In the calculations the elastic scatter- 
ing of electrons by the deformation potential of the kinks and 
the linear portions of the dislocations is also considered. We 
take the temperature to be sufficiently low that electron- 
phonon scattering may be neglected. 

Comparison of the results with experimental data,'.* 
and an estimate of sample parameters for which the influ- 
ence of the kinks should be most pronounced are in the final 
section. 
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I. OSCILLATION OF KINKS ON A DISLOCATION LINE IN A 
CRYSTAL 

To describe kinks on a dislocation line we use the model 
of an elastic line in a periodic p~ten t ia l .~  For an (edge) dislo- 
cation along the z axis with the Burgers vector along the x 
axis (that is, the glide plane coincides with the xz plane) we 
have the following equation of motion: 

Eod2x/az2= (2na la)  sin (2nx la )  -bo,,(z) +m0d2x/at2, ( 1 ) 

where x(z,t) is the coordinate of the dislocation in the glide 
plane as a function of time and position along the z axis; E, is 
the dislocation energy per unit length (the "stiffness" of the 
dislocation line); m, is the linear density; axy (z) is the com- 
ponent of the random stress tensor in the neighborhood of 
the dislocation line (only its z-dependence is explicitly indi- 
cated); a is the height of the Peierls barrier (the dimension is 
energy per unit length); a is the repeat period of the valleys 
in the Peierls potential; and b is the modulus of the Burgers 
vector of the dislocation. In ( 1) the simplest approximation 
for the Peierls potential is used, valid for ~ o p p e r . ~  Under the 
condition axy = 0, the kink is described by the stationary 
solution of ( 1 ) : 

where v = aEg is a small quantity (for copper 
v- 10-4).4*5 The energy functional for a dislocation in the 
Peierls potential in the model used is5 

+ m 

where a term in the stress field axy (z) is introduced. Taking 
the field a,, (z) to be smoothly varying on scales of the order 
of the width I ,  - ~ / v " ~  of a kink, which is determined by 
expression (2 ), we get from (3)  the effective Hamiltonian 
for a kink in the stress field ax, (z) in the neighborhood of a 
point z, on the dislocation axis where uxy (z) changes sign: 

M= (4am0ln)v" ,  m ' = ~ b M - ~  I do,, (2,) ldz  I .  
Let us examine the situation in which dislocations are 

oriented predominantly along one of the directions of the 
valleys of the Peierls potential (taken to be the z axis of the 
system). In such a system a gradient in uxy (z) is created by 
dislocations going at an angle to the z axis (the concentra- 
tion of other defects in the crystal we assume to be small). If 
this angle is less than 8, then the minimum scale of variation 
in the field axy (z) (created by the other dislocations in the 
vicinity of the one under consideration) along the z axis has 
the order of magnitude I-n; '12/8, where n, is the disloca- 
tion density. The characteristic size of oxy is4 axy - Gbn;l2, 
where G is the elastic shear modulus of the crystal lattice. 
Therefore for the oscillation frequency of a single kink ac- 

cording to (4)  we find the value 

Stability of the dislocation line with kinks is achieved 
under the condition4 Gbn;l2 < rP , where rp is the Peierls 
stress (equal to 2 ~ a / a b  in the model (1)-(4), so that r P /  
G-v). Consequently, nd <v2b -'- 108/cm2, which coin- 
cides with the experimental situation.'v2 Now from ( 5 ) we 
find 

where OD is the Debye frequency of the crystal lattice. As is 
clear from the Introduction, in a system of dislocations close 
to equilibrium, where the inclination from the direction of 
the Peierls valleys is connected only with the presence of 
kinks on the dislocation line, 8 ~ 8 ,  -a/l, - v ' / ~ .  

Let us now examine the oscillation of a sequence of 
kinks of a given sign with a linear density n, on a given 
section of a dislocation. From Eq. (3) we find the expression 
for the force F, acting on a kink along the z axis in the region 
of a smooth change in the field ux, (z) : 

F,=rabo, ( z )  , (7)  

where the choice of sign depends on the sign of the exponent 
in Eq. (2). The repulsive force between kinks of the same 
sign on an edge dislocation is equal to4 

where a is the Poisson bracket. Using Eqs. (7)  and (8) ,  we 
obtain a system of equations for the equilibrium coordinates 
z, of a sequence of kinks of one sign on the portion of a 
dislocation line where the magnitude of the field axy (z) pro- 
duced by all the other dislocations in the neighborhood of 
the one under consideration passes through zero 
(axy (z) = a(,z/I): 

where a,- Gbny,  I-n; '12/8. In (9)  the equation for the 
end kinks in the sequence (n = - N,N) is not written since 
it is assumed that 1 <N<ln,. The solution of Eq. (9) has the 
form 

z,-z,-,=z0 [ l - ( ~ ~ ~ a ~ b / 2 S a l ) n ~ ] - ~ ,  l<n< ( S a l / ~ ~ ~ ~ b ) ' " ,  

where z, = limn,, lz, - z, - , I. To evaluate the maximum 
size of N we put in ( 10) z, k I,. Then we find 

where for nd the value n, < v2b -' found above is used. The 
maximum length of an isolated series of kinks of one sign is 
thus shown to be 

L- - N,,,,Z, - nJYa v'" 0:". (12) 

In the case that the maximum angle of inclination of the 
dislocation axes from the z axis is 8, -a/l,, we get from 
( l l ) a n d ( 1 2 )  
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We note that the relations ( 11 ) and ( 12) confirm the 
correctness of the inequality Ngln,,  and thus permit the 
linearization of uxy (z) on the left side of Eq. (9).  From 
(10)-(12) it also follows that over the larger part of the 
sequence of kinks the distance between neighboring kinks 
can be considered constant, 2,-n; '. 

Linearizing (9)  for small departures u, of the kinks 
from their equilibrium positions, we get the wave equation: 

where lo = n; I ,  and M is determined by (4). From this we 
find the spectrum of oscillations of a long array of kinks: 

From Eq. ( 14), with use of (8),  follows an estimate for the 
maximum kink oscillation frequency2' (n, -1, I ) :  

In Section I1 it is demonstrated that when the condition 
w 4 T holds for the oscillation frequencies of isolated kinks 
and arrays of kinks the contribution to the thermal conduc- 
tivity resulting from their scattering of electrons depends 
only on the overall average linear density of kinks E, on the 
dislocation line. This density is determined by the repeat 
frequency on the dislocation line of oblique sections of the 
dislocation, and so by the probability of appearance of an 
isolated kink. Furthermore Fi, figures in the present work as 
a phenomenological parameter, the magnitude of which de- 
pends, obviously, on the preparation process and treatment 
of the sample. 

II. THERMAL CONDUCTIVITY ALONG THE DISLOCATION 
AXIS AND IN THE TRANSVERSE PLANE 

The kinetic equation for the distribution function n, of 
the conduction electrons which scatter on the dislocations 
with kinks is, in the presence of a temperature gradient VT, 

K ( w ;  qx, q.)=L-I 1 d z d z ' d t  e r p [ i q , ( z f - z ) + i w t ]  
x ((exp (-iq.x ( z ,  O )  ) exp  (iq,x (z ' ,  t )  ) )). (18) 

In ( 16)-( 18) the following notation is used: E, is the 
electronic energy, measured from the chemical potential; 
a(p,q) is determined by the Fourier transform of the defor- 
mation potential created by dislocations in a metal,9 so that 
in the isotropic model for q g p  -p,, a (p,q) has the form 
F(p;q, ,qy )/q4, where P(p;qx ,qy ) is quadratic in q, and qy , 
the coefficients of which depend on the component of the 
unit vector p/p. L is the length of the dislocation. The sym- 
bol 4 . . . $ in ( 18) indicates an ensemble average and an 
average over the configurations of the kinks; the form of the 

dislocation line in the glide plane x(z,t) depends on time due 
to the kink oscillations. 

For an estimate of the electronic thermal conductivity 
of the crystal along the predominant direction of the disloca- 
tion lines,xll, and in the plane perpendicular to  them,^, , we 
linearize the right-hand side of ( 16) in the small correction 
of the electron distribution function no(&, ): 

Using the variational principle,1° we get 

ano ( e )  x {mJ  vPie~,-- 
ae 

2  d e  dp ,  dip} 

where x;' = X I i  l , x ~  I .  In the first case we select a trial 
function Y, -gPpz and change ud in (19) to v;; in the sec- 
ond case we use a trial function Y -&,pX and substitute 
vb = v i  . In ( 19) we also make the transformation from inte- 
gration over d 3pd 3p' to integration over dp,dq,, over the 
energies E,E' = E - W, prior to the collision and afterward, 
and over the polar angles e, and e, ' corresponding to the 
planes (pxpy ) and (pip; ); w = w ( p,p + q), and m is the 
effective mass of the electron on the Fermi surface in the 
isotropic model. 

The inelastic contribution to X; ' and Xli ' we get from 
the general expression ( 19) : 

xu-'={ m2J d o  d e  d q , d p ,  dip dip' w ( l - n 0 ( e ) ) a 0 ( e - W )  
a n O ( e )  x P . L ~ ~ K ( ~ ;  q ~ ,  (z) } { J p . ~ s ~ -  ae 2 d e  dp ,  dip ) -'. (20 

To compute (20) it is convenient to first compute 
R(w,sX 1: 

~ ( o , q ~ ) = J ~ ( o ;  q x , q Z ) d q z  

= ( 2 n / L )  1 dz  d t  exp ( i d )  

X (( exp (-iq,x ( z ,  0) ) exp (iq,x ( 2 ,  t )  ) )). (21) 

In (2 1 ) the definition ( 18) is used. The expression for x (z,t) 
under the condition n, (1; ' has the form 

where the nth kink is described at time t ,  depending on its 
orientation on the dislocation line, by one of the functions 
(2),  centered at the pointz, ( t )  = z,, + u, ( t ) ,  where u, ( t )  
is the deviation from the equilibrium position. To evaluate 
(2 1 ) we put the expression (22) in the form 

where 2, ( k )  is the Fourier transform of x,  (z). The equa- 
tions for u, ( t )  in the case of isolated kinks are derived from 
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(4), and for kinks in an array of a given sign are given by 
equations of the form ( 13 ). Below, K(w,q, ) is calculated for 
two possible ranges of w,, the upper limit of oscillation fre- 
quency of kinks in a specific configuration: a )  
w , 4 w T = ( T / ~ 1 ~ ) ' / 2 ( - 0 . 1  K for T-1 K)  and b) 
wT -&II,< T. In the range a )  a given kink scatters an electron 
like a "free particle" with mass M, maximum transferred 
momentum q, -I ; ', and transferred energy ISE~ -w,. 
Therefore in case a )  we obtain 

R (a,  4,) =2n"M/2v'"nfaq,ZT) '" 

where n",ignifies the average linear density of kinks on the 
dislocation line, the oscillation frequency of which does not 
exceed the value satisfying the inequality a )  (this accounts 
for both kinks in a series of one sign, and isolated kinks). 

In case b) we have 

(25) 
In the expression (25) Xi signifies the summation over the 
different sequences of kinks of one sign on the dislocation 
line; ni is the number of kinks in the ith sequence; w, is given 
by Eq. (14), where 1, is changed to li, the distance between 
neighboring kinks in the ith sequence; N,, = N(w, ) , where 

~ h e n R ( w , ~ ,  ) issubstitutedin the form (25) in Eq. (20) all 
the oscillation frequencies of the kinks enter in the result 
only in the combinations wik /sinh(wik /2T), so that under 
the condition w, 4 T, to leading order in w, / T  the terms in 
X; ' from electron scattering on links of different sequences 
and ofisolated kinks are distinguished only by the total num- 
ber of kinks of these two types. Thus, we get 

x , - ' = A , ~ ~ & T - ~ ,  A,-a2 ( v )  '"/M, (26) 

where Ek is the average linear density of kinks on the disloca- 
tion line. Besides (26), x;' contains one additional term, - 
X; I, which is derived directly from the general relation ( 19) 
and is a result of the large-angle scattering of electrons in the 
plane perpendicular to the dislocation axis: 

L-' = { m z J  iradsdq,dp,dcpdcpl w(1-rrY(e ) )n0(e - (0 )  

X p,'s2K(o; q,, q,) ) { j (p.'/rn) e . ' (8n0/d~,)  2  d'y I-' 
=BndT-'-Ao'ndii,T-", B-an,  (27) 

where A; -A,,A ;/A,,< 1. Expressions (24) and (25) for 
X(w,q, ) were again used in deriving the result (27). Com- 
bining (26) and (27), we find 

X ~ - ' = B ~ ~ T - ' + A ~ ~ E , T - ' ,  A=&-A,'. (28) 

At a temperature T- 1 K the ratio of the second term to the 
first in (28) is of the order aEk O;/E, T < v"*- 

In the direction along the dislocation large-angle scat- 
tering is absent. The maximum change in thez-component of 
the electron momentum q, is determined by the width of the 
kink along the dislocation line, q, -1, '. The correspond- 
ing term inx , r  ' also is derived from (19) and is equal to 

ill-'= {m2 I d a  de d y ,  dp, dcp dq' w [ l - n o  ( E )  ] n o  ((e-a) 
-2 

X q:s21((o; 9,. q,) ) { I  p Z 2 e 2 ( d n 0 / 8 e ) ~  de dp. dcp) . (29) 

For an estimate of i I r  ' we use the definition ( 18), in which 
we will consider the kinks motionless. Then we find 

1 
K.  ((0; q,, q,) =2n6 ( a ) -  h d z f  e x p [ i q i  (2'-z) I 

L 

Writing x(z,O) in the form (23) and carrying out the 
configurational average, we find 

=2nb ( w )  J exp[-q,'azz2(ri,'+2ii,v"/o) -iq,z]dz 
- m  

= 2x6 ( a )  (n/2a&q~\l"') " exp [-q,2/8v '"al~,~,2] .  (3  1 ) 

Putting (3  1 ) into (29), we determine 

The contribution AxIr l  to xlr1 due to elastic scattering on 
dislocations with the density fi,, going through an angle 8, 
where 8, < 84 1, can be estimated if we use the result (27): 

The additional factor 8 * originates from the small size of the 
change in thep, -component of the electron momentum in a 
single scattering event on an oblique dislocation: 
Ap, -pF 8 4pF, so that the process of changingp, has a dif- 
fusive character. We estimate the relation between the con- 
tributions to xlr ' found (herep,,&, are the Fermi momen- 
tum and Fermi energy) : 

From these relations it follows that in the low-temperature 
region T S  1 K, where the maximum angle f3 between the 
dislocation lines and the defined direction is small: 

the thermal conductivity along the dislocation line is deter- 
mined by the "diffusive" change in the electron's energy in a 
range of width - T, due to inelastic scattering on the defor- 
mation potential of the oscillating kinks: 
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Ill. DISCUSSION OF RESULTS 

From (28) and (34) it follows that inelastic scattering 
of electrons from kinks substantially influences the thermal 
conductivity of a sample when large-angle scattering is 
weak. The presence of impurities, as well as the dislocations, 
leads to electron scattering. Let us estimate the sample puri- 
ty necessary for (34) to hold. The inverse time for energetic 
relaxation of the electrons upon scattering on the deforma- 
tion potential of the kinks, T; I ,  can be derived from (26) or 
directly from ( 16) : 

The elastic relaxation time for electron scattering on impuri- 
ties is ri - ( n i a 3 ~ F  ) - I ,  where ni is the impurity concentra- 
tion. The requirement T; ' ( r ;  ' leads to the condition 

where we take T- 1 K, ii, < 1 ,  ' and n, < v2b -2. 

In Refs. 1 and 2 the observation of a dependence 
X( T) - T "  (n = 1.5-2.7) is reported for the thermal con- 
ductivity of pure crystals of copper and silver with recently 
introduced dislocations in the region of temperatures and 
values of dislocation density dealt with in the present work, 
T- 1-5 K,n, - lo4-10' ~ m - ~ .  However, for a comparison 
of the experimental sit~ation'~'  with the model calculation 
described above and to overcome the importantg discrepan- 
cies between the experimental and calculated values of the 
transport values due to electron scattering on dislocations, 
to which simple expressions such as (27) lead, we need in- 
formation on the angular distribution of dislocations intro- 
duced on bending-and-straightening plastic def~rmation,',~ 
and also information on the spectrum of low-energy excita- 
tions arising as a result. 

I am indebted to A. A. Abrikosov for the formulation of 
the problem and useful discussions, and also to L. P. Mez- 
hov-Deglin for an introduction to the experimental situation 
and a discussion of the work. 

I thank V. M. Pan for support in the completion of the 
work. 
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