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The effect of topological constraints on the dynamics of a long polymer macromolecule is 
analyzed. The slowest relaxation process results from the presence of local simple nodes and 
local entanglements. The corresponding relaxation time is significantly longer than the time 
for the diffusion of a macromolecule over a distance on the order of its own size. For a polymer 
solution at the O temperature, a critical concentration c* is predicted at which an infinite 
cluster of entangled macromolecules arises. The concentration c* is shown to separate two 
regions in which the viscosity depends in very different ways on the concentration. The 
theoretical predictions are compared with experimental data. 

I. INTRODUCTION 

The dynamic properties of polymer solutions are pres- 
ently being studied intensely by both theoreticians and ex- 
perimentalists.1-3 The classical theories based on the ap- 
proaches of Rouse4 and Zimm5 have proved incapable of 
describing the behavior of many important dynamic charac- 
teristics. According to the present ~nderstanding,~ the pri- 
mary deficiency of those theories is that they ignore the pro- 
hibition against mutual intersection of the polymer chains as 
they move. This prohibition, very important to the dynamics 
of polymer systems, has been termed the "entanglement ef- 
fect." In reptation the~ry ,"~  a comparatively recent devel- 
opment, an attempt has been made to incorporate entangle- 
ment phenomenologically on the basis of a "tube" model.9 
This theory successfully explains many dynamic properties 
of polymer systems, but many effects still remain unex- 
plained. Despite its successes, reptation theory is unsatisfac- 
tory from an internal standpoint, since it is based on an un- 
proved model. It is therefore a very important problem to 
derive a systematic dynamic theory incorporating entangle- 
ments (topological constraints). In the present paper we at- 
tempt to point out a way to derive such a theory. 

In Section 2 of this paper we analyze some known ap- 
proaches to the problem of the dynamics of an isolated poly- 
mer ball. In Section 3 we propose a new method for describ- 
ing the topological state of a polymer chain. Working from 
some intuitively obvious ideas which emerge from that de- 
scription, we draw a conclusion regarding how the maxi- 
mum relaxation time ?,,, depends on the number N of units 
in the polymer chain. Section 4 analyzes the dynamics of a 
semidilute polymer solution. The example of the dependence 
of the viscosity of a solution on the polymer concentration is 
used to determine the new consequences of the conclusions 
reached in the preceding section. The basic theoretical re- 
sults are compared with experimental data. 

2. BASIC THEORETICAL APPROACHES TO THE PROBLEM 
OF THE DYNAMICS OF A POLYMER BALL 

Historically the first dynamic model of a polymer chain 
was the Rouse model? in which the macromolecule is repre- 
sented by a sequence of N +  1 beads with coordinates 

r,, r,, ..., r,, connected by massless bonds. Each bond corre- 
sponds to a potential U(rj - rj- , ) of the form 

U ( r )  =Tr2/4a2, (1) 

where a is the scale length of one unit of the chain (Fig. 1 ). 
As a bead moves, the external medium (the solvent mole- 
cules) exerts a force on it, given by 

s 

where lo is the viscous friction coefficient, and $j is the ran- 
dom component of the force exerted on bead j (the e, are 
unit vectors); here 

<Ela(t) Ej,a, ( t ' )  )=2Tc,6aa,6j,,6 ( t- t ' ) .  (3) 

The equation of motion of the chain is1' 

Analyzing system (4) ,  we can easily find the maximum 
relaxation time of the internal modes of a "ball" lo: 

This time agrees in order of magnitude with the time for the 
diffusion of the ball over a distance on the order of its own 
size: 

R=N"ga. ( 6 )  
Actually, each bead will interact with the external medium 
in a manner independent of the other entanglements [see 
(2) and (3) ] ,  so that the translational diffusion coefficient 
of an entanglement is D = DdN, i.e., 

Rouse's theory has the serious deficiency that it ignores 
the hydrodynamic interaction caused by the motion of the 
solvent. This deficiency can be remedied by explicitly incor- 

FIG. 1. Rouse's model of a polymer 
ro 
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porating thermodynamic degrees of freedom in the theoreti- 
cal description, as in the ordinary quasisteady approach." 
As a result one can obtain Zimm's model.5 The translational 
diffusion coefficient D of a sufficiently long chain in this 
model agrees in order of magnitude with the diffusion coeffi- 
cient of a sphere of radius R (Ref. lo): 

D-T/Gnq.R, (8) 

where 7. is the viscosity of the solvent. The maximum relax- 
ation time of the internal modes of the ball can again be 
estimated from (7) : 

These theories ignore the exchange interactions of the 
beads, so that they can be used only under O conditions, 
when the effective second virial coefficient of the interaction 
of the beads is zero. In a good solvent, this coefficient is 
larger than zero, so that the ball will swell to a size'' 

If we generalize Zimm's model by incorporating the ex- 
change interaction, we find that expressions (8) and (9) 
remain valid, as is shown by the analysis of Ref. 10, if we use 
in them the value of R given in ( 11 1. In this case we thus 
have 

'~~~rnN~"mgrN"5. (12) 

A serious deficiency of all of these theories is that they 
ignore topological restrictions. Such restrictions should 
have a particularly strong effect on the dynamics of a ball 
under O conditions, with the concentration of chain units 
higher than in a swollen ball. 

Obviously, entanglements could not have a strong ef- 
fect just on the diffusion of a single ball as a whole, since the 
"topology" of the ball would remain constant in the course 
of such a motion. Consequently, Zimm's theory does yield 
correct values for the translational diffusion coefficient of a 
ball [see (8) 1. On the other hand, the topological restric- 
tions undoubtedly retard the relaxation of the internal 
modes of the ball, so we have 

'C,,,~>R~/D. 

3. DESCRIPTION OF THE DYNAMICS OF A POLYMER BALL 
IN TERMS OF TOPOLOGICAL VARIABLES 

The prohibition against self-intersection of parts of the 
chain imparts a new quality to the chain: a topology. This is 
strictly correct for a closed chain." An unclosed chain 
(which is what we will be talking about below) can be closed 
by connecting its ends with a straight line segment. The 
length of this segment is on the order of R = N "'a (under O 
conditions) and is much smaller than the total contour 
length of the chain, L - Nu. It is thus clear that the introduc- 
tion of a closing line segment of this sort will not change 
anything substantially (cf. Ref. 13). 

From the mathematical standpoint, it is a fairly simple 
matter to characterize a topology, i.e., the type of knot at 
which a chain is tied. We know1' that knots can be combined 
by tying one behind another and that an arbitrary knot Q can 
be represented unambiguously as a composition of simple 
nodes Pk : 

Q=N$Pi+NzPz+. . . , (13) 

where N, and N2 are the multiplicities of the simple knots; P, 
is the simplest of the simple knots ( a  trefoil); etc. 

The probability that some simple knot (e.g., a trefoil) is 
tied in a region of, e.g., ten units is some fixed numerical 
factor. Consequently, the average number of simple knots of 
a given type must be proportional to the number of units in 
the chain: 

Simple knots which are tied to a small part of the chain could 
naturally be called "local knots." In addition to these local 
knots, there can of course be knots which can be seen only 
over rather large parts of the chain, consisting ofg > 1 units. 
The number of such larger-scale simple knots, N;  , will evi- 
dently be considerably smaller than the number of simple 
knots, N;  -Nk/g, so that we can ignore the effect of the 
large-scale knots in the order-of-magnitude calculations be- 
low. 

For a local knot we introduce the coordinate n, the in- 
dex of the unit near which this knot is positioned. We can 
thus consider a gas of local knots which interact weakly with 
each other and which can, in particular, pass by each other. 
The diffusion coefficient of a local knot for diffusion along 
the chain must be on the order of the translational diffusion 
coefficient of a single unit, Do, regardless of whether the hy- 
drodynamic interaction is taken into account (i.e., regard- 
less of whether we are dealing with the Rouse model with 
topological restrictions or the Zimm model). We denote by 
f ( n )  the distribution function of the simple local knots of a 
definite type k along the polymer chain. The time evolution 
of this distribution function is described by the diffusion 
equation 

aflat=razf/an2, f (0) =f (N) =f,, (15) 

where fo = Nk/N is the equilibrium density of simple knots 
of type k, and r-DJa2 is the reciprocal of the time for 
diffusion over the scale size, a ,  of a single unit. It follows 
from Eq. (15) that the maximum relaxation time for the 
function f is 

tf=n2N:/F-a2NZ/D,. (16) 

The maximum relaxation time of the polymer ball as a whole 
must obviously exceed the relaxation time corresponding to 
any individual variables: r,,, >rf. Comparing ( 16) with 
( 10) and ( 12), we conclude that incorporating topological 
restrictions leads to a substantial change in the N depen- 
dence of r,,, for both a ball under O conditions and a swol- 
len ball. 

If we assume that the functional dependence r,,, (N) is 
a power law at N > 1, 
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z m a x ~ W ,  (17) 

we conclude from (16) that the exponent is 2>2. Let us at- 
tempt to amplify this estimate for the case of a ball under @ 
conditions. 

We assume that two regions of a macromolecule which 
contain, say, ten units each and which are far apart along the 
chain come spatially close together. If each of these regions 
is closed by a straight line segment between its ends, we ob- 
tain a local entanglement, which is analogous in meaning to 
the concept of a local knot. Entanglements, like knots [see 
(13)], can be divided into simple components.12 We select 
the two outer thirds of the macromolecule, and we examine 
their mutual topological state. The total number M of simple 
local entanglements between them must be proportional to 
the number N of contacts between small regions of these 
thirds and to the probabilityp, for the formation of an entan- 
glement at each contact: M - ~ , N .  The probability p, is a 
constant numerical factor which does not depend on the 
number of units in the chain (N). The average number of 
contacts of units which are far apart along the chain, for a 
ball under O conditions, is on the order of" N ' I 2 ,  so we can 
write 

( M > - ~ , N ' ~ ~ N ' " .  (18) 

The position of each local simple entanglement on the 
chain can be characterized by the two coordinates n and m: 
the indices of those units whose closing on each other results 
in the formation of the given entanglement (n and m are 
counted from the corresponding ends: 0 < n < N /3, 
0 < m < N/3). Local entanglements can move; i.e., their co- 
ordinates n and m can change. The corresponding diffusion 
coefficient is determined by friction between the solvent and 
a small number of close-lying units, so it is given in order of 
magnitude by r - D,,/a2 (the dimensionality of the diffusion 
coefficient is determined by the circumstance that the co- 
ordinates n and m are dimensionless). In contrast with the 
case of local knots, however, the diffusion of entanglements 
is not a free diffusion, since entanglements interact strongly 
with each other. To demonstrate this point, we consider two 
local entanglements which are close together along the 
chain: (n,m) and (n +x,m + y) .  Two regions of the 
chain-one between n and n + x and one between m and 
m + y-form a ring as a result of these entanglements (Fig. 
2). This ring makes a contribution to the configuration inte- 
gral of the chain which is determined by the factor 

P ( x ,  y) = [4naZ(x+y)] -'I-, (19) 

which corresponds to an interaction energy 

FIG. 2. A ring (n, n + x, m + y, m )  between two neighboring local en- 
tanglements. 

FIG. 3. Polymer chain in a state in which its end thirds are definitely not 
entangled (the central third is represented by the dashed line). 

U ( x ,  y) =-T In P="IZT In Ix+y Ifconst. (20) 

Expression (20) describes a long-range attraction between 
local entanglements. We can show that this attraction sub- 
stantially increases the relaxation times because of anoma- 
lous growth of fluctations. 

Despite the fact that the mean number of local entangle- 
ments between the thirds of the chain which we have select- 
ed, (M ), is large [see ( 18) ], the probability W  for the case 
M = 0 is some number of order unity. This assertion can be 
proved in the following way. We consider the units of indices 
N/3 and 2N/3, which we label A and B, respectively (Fig. 
3).  In the typical state, the distance r  between these units is, 
in order of magnitude, R  = N 'I2a. We focus on a plane 
which intersects the line segment AB at its midpoint and is 
oriented perpendicular to this line segment. By directly eval- 
uating the corresponding configuration integral we find the 
probability that all the units of the first third of the chain 
(with indices ranging from 0 to N / 3 )  are on the same side of 
this plane, while all the units of the last third (from 2N /3 to 
N) are on the other side. It is not difficult to show that this 
probability, @, is a function of exclusively the ratio r / R ,  
which is independent of N at N ,  1 : @ = f(r/R ) . We have 
@ - 1 at r - R .  To complete the proof we note that in the 
spatially separated state described here there are clearly no 
entanglements between the end thirds. 

The possible topological states of the end thirds can 
thus be described roughly as follows: There is a probability 
W -  1/2 that these thirds are not coupled at all, and there is a 
probability 1 - W -  1/2 that the number of local entangle- 
ments between them is large, in accordance with ( 18). If the 
end thirds are initially in a highly tangled state, during relax- 
ation to total equilibrium the free energy of a ball will de- 
crease by an amount 

AF=-  1' In (I- W )  -T ,  (21 

which must be exactly equal to the amount of energy which 
is dissipated in the course of the relaxation: 

AF = Ja df, (22) 

where 23 is the dissipation rate. We denote by 9, that part 
of the dissipation rate which is a consequence of the friction 
as local entanglements move along the chain (i.e., as the 
coordinates n and m change). We can find a lower estimate 
of 23, by considering only the local friction between units 
which are spatially close together: 
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am. '- a>.. 2 x; [(%)'+(x) I ,  
where n, and m, are the coordinates of the entanglement 
with index a, and the quantity r does not depend on M. 

The number of simple entanglements of one type or an- 
other is a topological invariant for closed chains, so that this 
number cannot change during "collisions" of local entangle- 
ments. If the end thirds which we are considering here are to 
be completely unentangled, each local entanglement must 
reach one of the ends of these thirds. One of the coordinates 
of each entanglement (e.g., n)  must change by an amount 
An, -N, since in the original state these coordinates have 
random values over the interval 0 < n < N /3. Denoting by 7, 

the relaxation time, we can estimate the integral of the right 
side of Eq. (3 )  over the time as follows: 

TN" 

This estimate uses the relation An, -N, and a number of 
entanglements a,,, - (M ). 

From (18) and (21)-(24) we find 

Using r,,, >T,, and comparing (25) with ( 17), we find that 
for a polymer ball under O conditions the dynamic index is 

The results on the index z are shown in Table I. 

4. DYNAMICS OF A SEMIDILUTE O SOLUTION OF 
FLEXIBLE-CHAIN POLYMERS 

We consider a solution of long polymer chains at the O 
temperature. We denote by c the number of chains per unit 
volume. Ifthe condition cR 5 1 holds, then the balls formed 
by the chains will essentially not overlap. We call such a 
solution "dilute." The viscosity of a dilute solution depends 
on the concentration c in accordance with2 

/ = ( c R )  /,(x) = I t a x +  . . . , (27) 

where f, is a function which is regular at the origin (a is a 
numerical coefficient). If the condition cR ' 4 1 holds, then 
we have 

A Aq=aq,cR3. (28) 

FIG. 4. Two polymer chains whose ends are separated by a distance r, 
while the minimum distance between the units of these chains is b. 

Expression (28) may be interpreted in the following 
way. We use the scaling1' 

Aq-Goz, (29) 

where Go is a typical dynamic shear modulus of the polymer 
component, and T is a typical relaxation time of the shear 
stress. We have1' 

Go-cT. (30) 

In the case of a shear strain, the "topology" of each ball 
remains the same, so that the topological restrictions have 
no effect on the relaxation. The relaxation time T can there- 
fore be calculated from (9); substituting the latter along 
with (30) into (29), we find 

in agreement with expression (28). 
We turn now to a study of the dynamics of a polymer 

solution at a higher concentration. We consider two polymer 
chains whose ends are separated by a distance r (Fig. 4). We 
denote by WN (r,b) the probability that no two units of these 
chains come closer to each other than a distance b: 

(n and n' are the indices of the units of the first and second 
chains, respectively). Using the standard scaling relations, 
we can easily show that WN (r,b) is a universal function of 
the reduced distance r/R, 

if the scale value b satisfies the inequalities 

The quantity b in (31 ) can thus be increased nearly up to the 
size of the ball, R, so that the quantity @(r/R) is the prob- 
ability for an unentangled state of the two chains. On the 
other hand, we could choose b-A and thereby interpret 
1 - @(r/R ) as the probability that at least two of the units 

TABLE I .  

Phantom chains 
Chains with topo- 
logical restrictions 

O conditions 

Good solvent 
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of the different chains will come within a distance on the 
order of a with each other. In other words, this is the prob- 
ability for a highly entangled state (since if two units come 
close together, an even greater number of additional con- 
tacts should arise, and the number of entanglements will be 
on the order ofp,N ' I2) .  The probability for a highly entan- 
gled state of two balls is thus a well-defined function 
a f ( r /R)  = 1 - @(r/R): 

Macromolecules which are entangled end-to-end in a 
solution can form clusters of various sizes. In a dilute solu- 
tion (cR 4 1 ) the average distance between neighboring 
balls will be r)R, so that the clusters must be small. As the 
concentration is increased, to cR - 1, the number and aver- 
age dimensions of the clusters should increase, with the re- 
sult that there will be a sharp increase in the viscosity of the 
solution. However, the particular way in which the viscosity 
q depends on c, as described by expression (27), does not 
itself change. The situation changes qualitatively at 
c = c* = x / R  3, where an infinite cluster forms (K is a nu- 
merical coefficient). If a shear deformation causes an infi- 
nite cluster to be in a stressed state, it will not be able to relax 
through an inverse deformation, in the way that an individ- 
ual ball could. For the relaxation of an infinite cluster, there 
would have to be a substantial change in its "topology": 
Some of the macromolecules would have to "get disentan- 
gled" and then "get entangled" again in a new way. It fol- 
lows that the relaxation time T must be on the order of the 
"topological" time T,,, >re [see ( 17) and (25) 1. 

At c > c* we should thus replace 7. in (29) by T,,, , and 
we should replace Go by the characteristic elastic modulus of 
an infinite cluster. We obviously have 

where f, is a universal function with the value f, ( 1 ) = 0. 
The viscosity of the solution at c > c* is therefore 

q=Aq.N'-"h(clc*), (34) 

where A is a nonuniversal constant, z is the dynamic index 
introduced in the preceding section of the paper, and h is a 
universal function which vanishes at c = c*. At c <c*, 
expression (27) holds and can be rewritten as 

We would expect that the universal function f would become 
infinite at c = c*. Expressions (34) and (35) of course can- 
not be used in a certain small neighborhood of c* in which 
there is a transition from one asymptotic behavior to an- 
other. The c dependence of 7 is shown schematically in Fig. 
5. In the interval between c*/2 and 2c* the viscosity of the 
solution increases by a large factor, proportional to 
N z - 3 / 2 )  1. 

The conclusions of this section of the paper can be com- 
pared with some experimental results. The universal depen- 
dence in (27) agrees well with experimental data at cR S 1; 

FIG. 5. Schematic plot ofthe viscosity 7 as afunction of the concentration 
c (dashed line) and universal curves for c <c* and c >  c*: 1-f(c,c*); 
2-N Z - 3" h (c/c* ). 

the functional dependence f, (cR 9 is indeed very sharp at 
cR - 1 (Ref. 2). At large values of cR 3, expression (27) is 
no longer valid; it has been found empirically that the maxi- 
mum concentration at which expression (27) still holds is 
determined by the condition2 

where [ v ]  is a characteristic viscosity, and @ = 0.47 (Ref. 
14). 

The behavior of 7 as a function of the reduced concen- 
tration c, [ T I  -cR 3, which has been found experimentally 
for c > c* turns out to be different for polymers with different 
molecular masses.15 The results found in Ref. 15 satisfy a 
generalizing expression of the type (34); the empirical index 
x = z - 3 / 2 i s  

in good agreement with the estimate found in the present 
paper, 

I wish to thank A. R. Khokhlov for useful discussions of 
these results. 
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