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It is shown that in an inhomogeneous plasma exponentially localized vortex tubes may form 
near intersections of AlfvCn and drift branches. Since the plasma is not in thermodynamic 
equilibrium, such objects have negative energy, i.e., their formation is energetically favorable. 
In the presence of dissipation, their size and rotation rate increases. They may be observed in 
laboratory and space plasmas, and give rise to convective mixing of the plasma and to an 
increase in its thermal conductivity. 

1. INTRODUCTION 

Lasting fluctuations of large amplitude are possible in 
media which are not in thermodynamic equilibrium. For ex- 
ample, in a supercooled vapor, moderately large drops of 
fluid persist indefinitely. An inhomogeneous plasma is like- 
wise a thermodynamically nonequilibrium system. It has 
been shown in Ref. 1 that a plasma can have waves with 
"negative energy," the amplitude of which grows in the pres- 
ence of dissipation. However, in packets of such waves, the 
rate of dispersive spreading may exceed the rate of growth of 
their amplitudes. Therefore packets of small dimensions 
with large dispersion do not develop in the linear approxima- 
tion. But large packets cannot arise because of magnetic 
shear and other stabilizing factors. Recently it has been 
shown that self-localization of wave packets is possible for 
sufficiently large amplitudes.2 Nonlinearity may delay dis- 
persive spreading as a result of which particle-like excita- 
tions like solitons, vortex tubes, etc., can form. 

The present paper shows that AlfvCn waves packets of 
finite amplitude may form solitary vortex tubes which van- 
ish exponentially at infinity. In an inhomogeneous plasma 
their energy may become negative. In other words, the for- 
mation of Alfvtn vortices is energetically favored. This ef- 
fect may be called condensation, in analogy with the forma- 
tion of fluid drops in a supercooled vapor. The formation of 
such vortices in a laboratory plasma causes convective mix- 
ing of particles across the magnetic field which may be the 
cause of anomalous thermal conductivity which has been 
ob~erved.~ The existence of such vortices in the magneto- 
sphere of the Earth is indicated by observations of electro- 
magnetic discontinuities registered at higher latitudes4 and 
experiments on artificial excitation of Alfvin waves of large 
amplitude with the aid of surface explosi~ns.~ Note that the 
exponential decay in the vortices arises from the dispersion 
of AlfvCn waves (analogous to solitons in dispersive media). 
Without inclusion of dispersion, the vortex vanishes accord- 
ing to a power law. In an inhomogeneous plasma, the vortex 
energy associated with a power-law decay diverges, and 
therefore such solutions are of no interest. Besides, vortices 
with power-law decay may erode under the influence of 
magnetic shear. It is also important to include dispersion, 

because it gives rise to coupling between AlfvCn modes and 
drift waves. 

2. MODEL EQUATIONS FOR DRIFT-ALFVEN WAVES 

We consider a low-beta plasma: m,/m, 4 0 4 1  
(P= 8.rrp/B :, where p is the plasma pressure and B :/877 is 
the pressure of the stationary magnetic field), in a magnetic 
field B,, directed along the z axis. We assume the plasma to 
vary as a function ofx. We are interested in the case of diffu- 
sion of a low-frequency wave packet w/w, 4 1 (a, is the ion 
gyrofrequency and w is the characteristic frequency close to 
the drift frequency) at a large angle to the magnetic field: 
kll /kl 4 1. The phase velocity of the disturbance along B, is 
taken to be larger than the ion thermal velocity and smaller 
than the electron thermal velocity. The characteristic di- 
mension 1, = 217/k, ofthe packet transverse to the magnet- 
ic field lies in the interval r, 41, 4%- ' (x-  ' is the character- 
istic dimension of the inhomogeneous plasma, r, = c,/w,, 
C: = T,/mi ) . In such perturbations, the oscillations in the 
magnetic field along thez axis may be neglected." The trans- 
verse perturbations of the magnetic field are manifested in 
the z-component of the vector potential: B, = [VA,,G], 
where is the unit vector along B,. The electric field parallel 
to the magnetic field B = B, + B,, yields the relation 

El=- (B Vcp) /B,-c-'aA,/at, (1)  

while the transverse component E may be assumed to be 
electrostatic and equal to E, = - V,p. In order to derive 
the nonlinear equations for AlfvCn waves in an inhomogen- 
eous plasma, we use the current continuity equation: 

div j=div j,+div jll=O. (2)  

In our approximation 

div j l l = -  ( c / 4 n )  (BV ) AAJB,. 

Only ions contribute to the divergence of the transverse 
flow."n contrast to what happens in ordinary waves, in the 
case of drift-AlfvCn waves the ion energy contains not only a 
contribution from the electric drift v, = c[EB]/Bi, but 
also a diamagnetic contribution v, = [ GVp, ] /nm,w, (pi is 
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the ion pressure and n is the number density of the plasma). 
Then we have 

a 
d iv  j, =%div  {(x + v E V )  [E, vE+vL]},  

0 s  

where - e is the charge of the electron, no the constant part 
of the density of the plasma. 

In the equation for the longitudinal motion of the elec- 
trons, one may neglect the inertia, whereupon it reduces to a 
balance between the longitudinal electric field and the pres- 
sure gradient of the electrons: 

Incorporating the electron pressure p, leads to disper- 
sion. The contribution of the density oscillations to (4) and 
(5) may be neglected, since it yields negligibly small correc- 
tions of order d m , ,  while in (4) and ( 5 ) there are nonlinear 
corrections which do not contain this parameter. This sys- 
tem of equations must be supplemented by the continuity 
equation for the electrons: 

(a la t+vEV)  n-div ( j , , / e )  =0, (6) 

and the equation for the ion pressure: 

It will be convenient to proceed to nondimensional vari- 
ables: 

(c, is the velocity of the AlfvCn waves). In these variables, 
the above equations assume the form7 

dA@/dt=-dJldz-div { P ,  V @  j, (9)  
dA/at-d ( N - @ )  ld z ,  J=AA, (10) 
dN/dt+dJ/dz=O, dP/dt=O, (11) 

where 

The system (9)-(11) describes a packet localized in the 
neighborhood of the x = 0 plane. Far from this plane we 
assume that 

In what follows, it will be assurned that x and x, are con- 
stant, while A, and p, are zero, which corresponds to the 
absence of magnetic shear and an ambipolar electric field. 
One may take into consideration the curvature of the steady 
magnetic field by adding a term of the form gd(N + P)/ay 
(g is the dimensionless effective force of gravity) on the left- 
hand side of Eq. (9) .  This effect has been taken into account 
in Refs. 8 and 9 for the case of flutelike perturbations. In the 
linear approximation, the system (9)-( 11 ) yields the dis- 
persion relation of drift-AlfvCn waves": 

It is clear that the effect of the ions on the dispersion is ne- 
glected in (9)-( 11 ). It will be convenient to introduce the 
perturbed part of the density N, = N - xx. Taking into con- 
sideration that 

it is readily verified that the system (9)-( 11 ) has the follow- 
ing energy integral: 

The last term in ( 12) describes "energy exchange" between 
the wave and the plasma. I t  exists only in an inhomogeneous 
plasma (x#O). It will be shown below that this term leads to 
negative vortex energy. 

3. VORTEX TUBES 

We will show that Eqs. (9)-( 1 1 ) have a steady, two- 
dimensional, exponentially localized solution. Let all quan- 
tities depend only on x and 77 = y + az - ut, where a is the 
angle of inclination of the vortex to the magnetic field, u its 
velocity of propagation. Then the system (9)-( 1 1 ) assumes 
the form 

where 6, is a constant, f an arbitrary function and the prime 
denotes differentiation with respect to the argument. Analo- 
gously to Refs. 7 and 11, we represent f i n  the form of 
piecewise linear functions: 

Then one has instead of ( 13 ) 

In polar coordinates r2 = x2 + v2, tan 8 = v/x, we in- 
troduce a circle of radius r,. In contrast to Ref. 7, we assume 
the coefficients 6, and b, to be constant everywhere, while 
be and b, assume different constant values inside and out- 
side the circle. Then, as will be shown below, one obtains a 
solution which decays exponentially to zero, while in Ref. 7 
the decay was according to a power law. 

Outside the circle r = r,, the solution has the form 

A=alKi ( S T )  cos 0 ,  r>rar 
where K, is the modified Bessel function of the second kind. 
Since P+x,x, N-xx at infinity, one obtains from ( 17) the 
values of the coefficients: 

It follows from the condition that @ and A be localized and 
from (15) and (16) that 
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FIG. 1. Dependence of the square of s, the coefficient of exponential decay 
in vortices, on the velocity u. The solid line corresponds to the case 
a2 > 2x2, the hatched line to a 2  < 2x2 ( x  = x ,  ). 

Substituting ( 18) into ( 15), ( 16) and taking into considera- 
tion ( 19) and (20), we obtain an algebraic system for deter- 
mining the coefficients e l  and a, .  The condition that this 
system be soluble is 

s2= ( x + u )  [ II (u-xp)  -uIa2] .  (21) 

The region of admissible values of u is determined from the 
condition that s2 be positive (cf. Fig. 1 ) . We look for solu- 
tions of the system (15), (16) in the region r<ro in the form 

where J, is the Bessel function of the first kind. Substituting 
(22) into ( 15) and ( 16), one arrives at a homogeneous sys- 
tem of equations the condition of solubility of which deter- 
mines the values of the coefficients b, and b, inside the circle 
in terms of the coefficients k,,, , b, and b,: 

bA=-k12-k,'-Bb,p, r<ro, (24) 
where 

The solutions ( 18) and (22) must be matched on the bound- 
ary r = r,. The expressions ( 18 ) and (22) may be assumed 
to be solutions, if on substitution into the system (9)-(11) 
or (15)-(17), all terms at every point are finite. Discontin- 
uities in the form of finite steps are admissible. For this pur- 
pose, it is sufficient, for a given choice of coefficients in the 
solutions of the equations ( 15 1-( 17), to demand continuity 
of @ and V,@. However, in view of the discontinuity of 6, 
and 6, , one must impose on A the more stringent condition 
2 = 0 at r = r, together with the requirement that VA be 
continuous. Then, as is readily seen from Eq. ( 15), A@ is 
continuous, and the longitudinal flow, which is proportional 
to AA, has a discontinuity at the boundary, which is admissi- 
ble. These conditions determine the coefficients in the solu- 
tions ( 18) and (22): 

k12+b, 
el = - k,2+ba 11 (11) e ---- a,, - a,, r<ro, 

be b e  11 (12) 
Jl(11) a2p2b. 

(26) 
a , = - - -  

Jl(l2) 
a2, a2 = ro(k12-kZ2) ( x + u )  J ,  ( 1 , )  ' r<ro, 

(27) 
where 

The quantities ro,u, a ,  and k,,, remain arbitrary for the time 
being. 

The conditions for matching VA and V@ and the condi- 
tion 2 = 0 on the inside of the boundary. Yield the disper- 
sion relations with for kit, which differ from the dispersion 
relations of geostrophic vortices1: 

where 

Taking into consideration the dispersion relations (28) and 
(29), only the parameters r,, u, and a remain undetermined. 
According to the initial approximations, one has the neces- 
sary conditions tr - x ,  - u -a 4 1. The case a = u corre- 
sponds to propagation of a vortex along B, with the AlfvCn 
velocity. From the condition that the dimension of the vor- 
tex be much larger than r,, we obtain the inequalities ro) 1, 
k,,, ,s( 1. We note that a (the propagation in the nondimen- 
sional space (8)  corresponds in dimensional space to the 
angle ac,/c, . 

We now prove that the dispersion relations (28 )-(30) 
have solutions. We note that when I, and I, lie near a zero of 
J , ,  these equations simplify greatly. It is known from the 
theory of Bessel functions that 

m 

where y, satisfies J l  ( y, ) = 0. With the aid of this formula 
and the expansion of K, for small values of its argument 
( p g 1 ), one easily obtains solutions of the dispersion rela- 
tions (28) and (29) in the vicinity of the poles 
11, - y,l4y,=:3.8, 1~2--~,l4~2--7.0, lu --u,l<Iu,l: 
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where (cf. Fig. 1 ) 

Ul,2=1/2 [xf  (xZ+4aZ) -~.<u<u1, 

with a2 > 21t2. This means that the vortices under considera- 
tion are Alfvknian (their propagation velocity along the z 
axis is less than the Alfvtn speed). The presence of roots 
establishes the existence of Alfven vortex tubes which decay 
exponentially. All parameters of the tubes are expressible in 
terms of a ,  u, and r,. The tube constitutes a dipole with 
positive and negative vorticities. 

With the aid of the relations derived above one can 
readily estimate that 

@-A-ulro, (33) 

whence we find that the characteristic rotation velocity v 
and the perturbation of the magnetic field in the vortex SB in 
dimensional quantities are of order 

where a is the length of the gradient dimensional quantities. 

4. ENERGY OF VORTEX TUBES 

We will now explain how the energy of the vortex tube 
( 12) depends on its parameters. Since the tube is infinite in 
length, it is natural to speak of energy per unit length. Ac- 
cording to Eq. ( 12), the energy per unit length of the tube 
has the form 

W = dxdq[-AAA-Q4@+Ni2+2r.xNl]. (35) 

Substituting the solution (18) and (22) into (35) and ex- 
ecuting the integration, one finds Was a function of the vor- 
tex parameters: 

where 

M ( I , ,  I,) =[I-g(l l)  I [a -u(122+rn2Bb~) lbcr ,21 ,  (38) 

In the case of the solution (32), i.e., near the zeros ofJ, ,  this 
expression may be expanded in powers of the quantity ,u 4 1. 

Then (36), with consideration of (2 1 ) and (32),  reduces to 
the form 

It is seen that in this case the vortex energy in an inhomogen- 
eous plasma ( x  # O )  is negative. Thus, if there exists dissipa- 
tion in the system, I W / will grow. Hence it follows that in an 
inhomogeneous plasma Alfvin waves are energetically fa- 
vored to condense in a structure of the form of a vortex tube. 

5. AMPLIFICATION OF VORTICES UNDER THE ACTION OF 
DISSIPATION 

We consider the behavior of vortex tubes under the in- 
fluence of dissipation. Magnetic viscosity is the simplest 
form of dissipation; it is caused by finite conductivity. In 
order to take this effect into account, Eq. ( 10) will be rewrit- 
ten in the form,' 

where v is the coefficient of magnetic viscosity (generally 
speaking, in v one must include the effect of electrons 
trapped in the vortex.I2 Then the energy E is no longer con- 
stant and varies with the time according to the formula 

In the dissipation approximation one may substitute in 
(42) the solution in the form of the vortex found above, 
assuming that its parameters r,, u and a are slowly varying 
functions of the time. It is seen from (42) that, because E is 
negative [cf. (39) and (40) 1, under the action of dissipation 
the vortex becomes stronger (its dimension and rate of rota- 
tion grow). 

6. CONCLUSION 

Alfven waves are the most widely occurring mode of 
oscillation in laboratory and space plasma with P> m,/m,. 
They play an important role in particle acceleration pro- 
cesses in the earth's magnetosphere, turbulent mixing of 
plasma, etc. When dispersion is taken into consideration, 
this mode couples to the drift mode, which, as a result of the 
inhomogeneity, leads to wave-plasma interaction. As a con- 
sequence, the free energy of the plasma associated with the 
inhomogeneity, changes under the influence of dissipation 
into vortex motion. In regions of where modes cross, finite 
ion Larmor radius effects may be neglected since they do not 
influence the coupling, and one must only take into account 
the influence of the finite longitudinal electric field. In Ref. 
7, equations are derived which make treat such effects. With 
the aid of these equations, it has been shown above that Alf- 
vCn waves become exponentially localized vortex tubes. The 
present study demonstrates that their energy may become 
negative in an inhomogeneous plasma. Therefore their for- 
mation is favored energetically, somewhat like condensa- 
tion. Such vortices may exist and grow in a plasma which is 
linearly stable. They may develop out of strong fluctuations. 
Such fluctuations arise during H F  heating, in explosive in- 
stability. during particle injection, etc. consequently, it 
must be expected that large accumulations of such tubes may 
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occur in a plasma. Their dimension is only restricted by mag  
netic shear. In view of their finite length, they may induce 
convective mixing of plasma. This may explain observed 
high thermal conductivity and diffusion in plasmas, signifi- 
cantly in excess of classical values. 

We note that solutions in the form of AlfvCn vortices 
have been studied previ~usly. '~- '~ However, in our view, 
these solutions are impermissible because they are not ade- 
quately matched to the boundaries. In view of this, the Jaco- 
bian {A,AA)  in these papers becomes infinite at the bound- 
ary, which is incompatible with the initial approximations. 
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