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We investigate a new type of radiation, produced when particles are accelerated in the field of a 
longitudinal wave in a transverse magnetic field. Equations are obtained for the intensity and 
frequency of the spontaneous emission, and it is shown that the relativistic Doppler effect can 
cause the emission frequency to exceed considerably the bounce frequency of the trapped 
particle oscillations. A dispersion equation that describes the instability of a relativistic 
electron beam accelerated along a longitudinal-wave front is derived and analyzed. The 
instability growth rate is found and the frequency and gain length of the stimulated coherent 
radiation are determined when the exciting waves interact coherently. 

1. INTRODUCTION 

Particles moving ahead of a wave front in a magnetic 
field become accelerated.' A potential wave 
p(x, t )  = p,, cos(k+ - mot) of sufficiently large amplitude 
traps particles whose velocities are close to the phase veloc- 
ity of the wave, and accelerates them in the wave-propaga- 
tion direction. If the magnetic field is parallel to the wave 
front (is directed along the z axis), it deflects the particles 
and causes them to collide repeatedly with the wave; each 
such collision is accompanied by an increase of the velocity 
vy . At large values of uy the Lorentz force euy Bo/c exceeds 
the electrostatic force - edq, /ax and, in the nonrelativistic 
case, the particle leaves the potential well of the wave. It is 
shown in Ref. 2 that this acceleration mechanism causes 
nonlinear damping of plasma waves in a transverse magnetic 
field. In Refs. 3 and 4 a relativistic modification was consid- 
ered for this acceleration mechanism that, if the field 
E, = kop, exceeds B ,  sufficiently, makes possible trapping 
of the particles in a potential well, accompanied by an unlim- 
ited acceleration along the axis. Particle acceleration along 
the wave front is accompanied by oscillations of the trapped 
particles in a direction perpendicular to the wave front. 
These oscillations give rise to radiation of a new type, briefly 
described in Ref. 5. 

This paper is devoted to a detailed analysis of this radi- 
ation. Equations are obtained for the intensity and frequency 
of the spontaneous emission and it is shown that its frequen- 
cy can greatly exceed the oscillation frequency of the parti- 
cles trapped in the potential well of the wave. The frequency 
multiplication is due to the relativistic Doppler effect. The 
influence of the collective effects on the emission is consid- 
ered for the case when the accelerated electron beam has a 
sufficiently high density and small spread in energy and an- 
gle. The collective effects are caused by the interaction 
between the radiation modes and the longitudinal vibrations 
of the relativistic electron beam, and increase the radiation 
power greatly through coherence. Expressions are obtained 
for the frequencies of the excited waves, and estimates are 
presented of the temporal growth rates for the case of emis- 
sion along the beam, when the wave vector of the excited 
electromagnetic wave is parallel to the beam velocity. 

2. DYNAMICS OF TRAPPED PARTICLES IN A TRANSVERSE 
MAGNETIC FIELD 

The Hamiltonian H describing the interaction of an 
electron with a traveling electrostatic wave in a transverse 
magnetic field with a vector potential A = B#ey is given by 

where P = p + eA/c is the generalized momentum of the 
particle. The system of canonical equations of motion is 

-eEo sin (k ,x -mo t ) ,  P,=O. 

Since the Hamiltonian (2.1 ) is independent of the coordi- 
nate y, the generalized-momentum component P, is an inte- 
gral of the motion. We therefore assume hereafter 

p,=-eBox/c.  (2.3) 

The canonical equations of motion can then be written in the 
form 

?=c2p, ( rn2cb+c2p~+eeBo2x2)  
(2.4) 

p,=-e2B,2x(m2~4+~2p12+e2B02x2) -Ib--eEo sin ( k o x - o o t )  . 
The motion along they axis is given by 

A particle trapped by an electrostatic-wave field moves 
along the x axis at an approximately constant velocity equal 
to the phase velocity of the wave 

xo ( t )  = ( o , l k o )  t ,  (2.6) 

and correspondingly x, = w,/ko. We use the first equation 
of (2.4) to express the momentump, in terms of the velocity 
x and of the coordinate x of the particle: 
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p,lmc= ( i l c )  ( 1 + o , Z x 2 / ~ 2 )  Ib ( 1- i2 /c2)  -'b, ( 2 . 7 )  where 0, = (eEok, /m)  ' I2  is the oscillation frequency of the 
particles trapped in the potential well of the wave (the 

where w ,  = eB,,/mc is the nonrelativistic cyclotron fre- 
bounce frequency). At Bph w ,  t  $ 1 the solution of ( 2 . 15 )  

quency. Substituting ( 2 . 6 )  in ( 2 . 7 )  we obtain the time de- can tend asymptotically to a stationary value g = f,, where 
pendence of the momentump:O': 

sin h.oEo= - Y,,~Bo/Eo - ( 2 . 16 )  
pZ '" ( ( t ) /m~=f lph~ph  ( 1  + m$Pph2f 2 ) 1 1 2  2 ( 2 . 8 )  

Clearly, the stationary phase shift corresponds to a fin- 
where Pph = w,/koc and yph = 1/( 1 - f l  :,) 'I2.  It follows ite displacement of the particle relative to the bottom of the 
from the integral ( 2 . 3 )  of the motion that potential well of the particle-trapping wave. In addition, the 

pu'O' ( t ) /mc=-oHPph t  . ( 2 . 9 )  . condition 

2 2 112 in- The total particle energy 8 = (m2c4 + c2p: + c  P, ) 

creases with time as 

a ~ ~ ~ ~ - ~  ( t )  = yph ( 1 + W ; P ~ ,  2t 2 ,  112 , 
(2.10)  

Relations ( 2 . 8 ) - ( 2 .  l o ) ,  which describes the averaging of 
the resonant particles in the transverse magnetic field, were 
derived earlier in Refs. 3 and 4. 

We seek the solution of the set ( 2 . 4 )  in the form 

where Sp, <pp'  and k<wo/ko  are small corrections to the 
nonstationary ground state ( 2 . 8 ) - (2 .10 ) .  We obtain from 
( 2 . 7 )  the connection between the momentum perturbation 
tip, and the perturbations of the velocity 8 and ofthe coordi- 

is necessary for realization of the asymptotic solution 
( 2 . 16 ) .  

This condition was obtained and discussed in Refer- 
ences 3  and 4.  Without dwelling in greater detail on the con- 
ditions for realizing this asymptotic acceleration regime un- 
der various initial conditions (see Ref. 4 ) ,  we consider small 
oscillations of the trapped particle about the position of its 
guiding center. Putting Sf &E in ( 2 . 1 4 ) ,  we obtain for small 
oscillations the equation 

nate f:  
The solution of Eq. ( 2 . 1 8 )  with initial conditions 

2 2 112 S p x / m c =  ( 8 / c ) y i h ( l  + a ~ ~ P ~ h  f ) 6g ( 0 )  =0,  fig ( 0 )  =a ( 0 )  =v ,  ( 2 . 19 )  

2 2 112. + ~ ~ ~ f i ~ ~ ~ ~ ~ ~ t f / ~ ( 1 +  a H 2 P p h  f ) (2 .12)  can be obtained by the WKB method: 

The second equation of the set (2 .12)  yields a relation u o y g  
& ( t )  = 

( y , ,  / y )  ' / 4  + I / ~ Y + .  

between the rate of change Sp, of the momentum perturba- 0, ~ o s ' / ~ k , g ( t )  
tion and the displacement 6 of the particle in the wave: 

6p,lmc=- (eE,/mc) sin k,g-Pph Y,,, W i t (  1 f m;Pph ' t  ' )  - If'. 0 , c o ~ " ~  k$(t  '1 
x sin I, dt  (2.20)  

y p h y ' / 2 ( t ' )  . 
( 2 . 13 )  

At Eo% yphBo the particles oscillate near the bottom 
from ( 2 . 1 3 )  with the aid of ( 2 ' 1 2 ) 2  we ob- koZ( t )  4 1 of the well; it follows then from ( 2 . 20 )  

tain the desired equation for the particle displacement ( t ) :  
that 

( 2 . 1 4 )  where the frequency f l  and the amplitude u  of the oscillation 
where the relativistic factor y ( t )  is determined by Eq. velocity decrease with time as 
( 2 . 10 ) .  

It follows from ( 2 . 14 )  that the particle acceleration &=Qb/yph y112, ~ = ~ i , ,  ( y p h  / Y )  3'4 + 1 / 2 y ~ h '  ( 2 . 22 )  
along the wave front is accompanied by a slow drift of the - 
particle along the x axis in a direction opposite to the wave It follows from ( 2 . 2 2 )  that the laboratory frequency f l  
motion, and by oscillations about the leading center. To ana- 

of the oscillations of the trapped particles decreases, 
lyze this motion we write the solution of ( 2 . 14 )  as a sum of 

f l - y - I t 2 ,  in view of the relativistic mass increase, as they 
lermS' '(') = '(') S'(t)' The first' ' ( t ) '  'Orre- are accelerated along the wave front. The respective oscilla- 

sponds to slow drift of the leading center, while the second 
tion amplitudes S l ( t )  and t i i ( t )  of the particle positions and 

to of y*l' The velocities decrease for the same reason. If the phase velocity 
location of the leading center is then determined from the 

of the potential wave is close to that of light, Pph =: 1 ,  which 
equation 

corresponds to yph $ 1 ,  the oscillation amplitude decreases 
- (2 .15)  as S f -  y-II4; for the oscillation velocity wave from ( 2 . 21 )  

sin koE(t) = - o , , 2 p p h Y i h ~ k o t / ~ b Z y  ( t ) ,  
and ( 2 . 22 )  respectively ~ 8 - y - ' / ~ .  In the opposite limit 

58 Sov. Phys. JETP 64 (I), July 1986 ZaslavskiI et a/. 58 



Pph 4 1 (or yph =: 1 ) the amplitude and velocity of the oscil- 
lations is more strongly dependent on the relativistic factor 
y, viz., ~5g-y-"~. 

We conclude this section by presenting in explicit form 
the conditions under which the solution (2.20) is valid; 

The last inequality corresponds to the adiabaticity condi- 
tion. 

3. SPONTANEOUS EMISSION 

An electron moving along a wave front with velocity 
u z c  and oscillating in a direction perpendicular to the wave 
front must radiate. If the electron moves towards the observ- 
er with ultrarelativistic velocity, the radiation frequency can 
be substantially higher than its bounce frequency. For sim- 
ple estimates we shall use the equation6 for the radiation 
power I of a relativistic particle moving along a curvilinear 
path 

where R is the path radius of curvature. The instantaneous 
value of the radius of curvature is 

where a = Sz is the transverse acceleration which can be 
determined from (2.2 1 ) : 

a=-Qij sin Qt. (3.3 

Averaging (3.1 ) over the period of the oscillations we obtain 

I = e Z Q 2 ~ 2 ~ ' / 3 ~ S .  (3.4) 

Substituting relations (2.22) in Eq. (3.4) we find that the 
intensity I radiated by one electron depends on its energy as 

Equation (3.5) is valid, generally speaking, for the time 
interval At  during which the frequency R and the energy of 
the particle change little, i.e., ?At( l,nAt% 1. 

The intensity of the radiation into a solid angle do in a 
direction n and in a frequency interval (w,w + dw) is given 
by (see, e.g., Ref. 6): 

where w' = w ( 1 - un/c) and a(wl) is the Fourier transform 
of the acceleration 

+ 00 

a(@' )  = dt a ( t )  eiW". 
- m 

In the derivation (3.6), the velocity u = (wo/ko)e, + u, e, 
was regarded as constant and the only variable was the accel- 
eration a( t ) .  It follows from (3.3) and (3.6) that the radi- 
ation frequency w is 

o=Q (I-un/c)-'.  (3.8) 

Clearly, the frequency w of the emitted waves depends 
on the angle B between the velocity and the wave vector of 
the wave. For emission strictly along the beam (0  = O), the 
wave frequency is a maximum, w = w, , where 

o,=2y", (3.9) 

and the frequency R in (3.9 depends, according to (2.2 1 ), 
on the particle energy. Substituting expression (2.22) for the 
oscillation frequency of the trapped particle in (3.9), we ob- 
tain the dependence of the radiation frequency on the rela- 
tivistic factor of the particle: 

0 ~ = 2 ~ " 5 2 a / ~ ~ h  (3.10) 

It is easily seen from (3.6) that the radiation intensity 
differs substantially from zero only in a narrow cone with 
angle AB- y - ' .  In this sense, the angular distribution of the 
radiation is perfectly analogous to the corresponding distri- 
bution of the radiation emitted by ultrarelativistic particles 
in arbitrary external electromagnetic fields." 

We estimate now the power radiated by one electron 
accelerated to an energy Z? - 1 GeV. Putting in (3.5) vo/ 
c-0.1, yph = 2, a, z lo t3  sec-'weobtain1-3. 108W. The 
characteristic radiated wavelength is in this case of the order 
of several tens ofangstroms. If a total number N- 10"-1012 
electrons are accelerated along the wave front, the total pow- 
er of the incoherent spontaneous emission can reach - 100 
W, a value comparable with the radiation power of other 
sources emitting in this wavelength band.' 

The equations obtained in this section for the intensity 
and for the frequency are similar to the corresponding equa- 
tions of the theory of undulator radiation except, however, 
that in our case the bounce frequency and the oscillation 
amplitude of the particles trapped by the potential wave de- 
pend on the relativistic factor y, i.e., on the particle energy. 
Another difference is due to the frequency range. The maxi- 
mum energy of the accelerated particles depends only on the 
size of the region in which the electrons interact with the 
external accelerating fields, and can be very high (a  variant 
in which the particles are accelerated to energies %' - 1 TeV 
is discussed, e.g., in Ref. 3). The frequency multiplication is 
due in our case, just as in the case of undulator radiation, to 
the relativistic Doppler effect, but the bounce frequency 0, 
can be several orders higher than the frequency of the trans- 
verse electrons in an undulator. In our situation the wave- 
length of the generated radiation can therefore be decrease 
both by accelerating the particles to higher energies and by 
increasing the bounce frequency, i.e., by going from the mac- 
roscopic spatial period used in undulators to the microscopic 
spatial period of the external electromagnetic field. 

4. STIMULATED EMISSION 

The foregoing analysis is valid only when the action of a 
photon emitted by one particle on the emission by another 
particle can be neglected. Obviously, this is not the case at 
high current densities. It is then necessary to consider the 
stimulaied emission. If the electron energy spread in a coor- 
dinate frame moving at the directional beam velocity is large 
enough, and the beam density is so low that the wavelength 
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of the scattered radiation is less than the Debye radius of the 
electrons, one can speak of induced incoherent scattering by 
individual electrons. In the opposite limit of a denser and 
colder beam, the emission is stimulated and coherent, and is 
caused by excitation of natural collective oscillations of the 
beam. We note in this connection that the solution (2.20) 
indicates that the beam is "cooled" by deceleration, i.e., that 
the velocity and beam-density spreads decrease, and thus the 
conditions under which the radiation becomes coherent be- 
come less stringent. 

We describe the stimulated coherent emission by using 
the equations of relativistic hydrodynamics with a self-con- 
sistent electromagnetic field, neglecting the thermal spread 
of the beam electrons: 

1 dB 
rotE=--- div E=4nen. 

c d t  ' 

As shown above, in a coordinate frame moving a the 
phase velocity of the wave the ground state v,(t) of the 
beam-electron motion is a superposition of relativistic mo- 
tion along the wave front (along they axis) and fast oscilla- 
tions of the electrons along the x axis with slowly decreasing 
amplitude: 

vo ( t )  =ue,+v" cos Qte,, (4.2) 

where u, fi, and R are slow functions of the time, i.e., vary 
little over the period of the oscillations (d lnu/dt), ( d  lnfi/ 
dt),  (d  lnR/dt) <R, and are determined by Eqs. (2.22). 

We linearize the system (4.1) with respect to the 
ground state (4.2), assuming that all the perturbed quanti- 
ties depend only on the coordinate y, i.e., we confine our- 
selves to one-dimensional interaction of the waves: 

We derived the system (4.3 under the assumption that 
the excited electromagnetic wave is so polarized that the vec- 
tor of the magnetic component of the wave field is directed 
along the z axis, and we designated by n, the unperturbed 
beam density. We take the Fourier transforms of the set 
(4.3), representing all the perturbed quantities in the form 

6s  (y, 1 )  = dk r7hy6b ( k ,  t ) .  

After this transformation we can express the set (4.3) 
in the form of two equations for parametrically coupled os- 
cillators: 

ikn, (& + iku ) y 3  ($ + iku ) 6n+oi6n = - 5 cos Qt6B,, 
rnc 

d2 o L2 (4.4) 
(- + c2k2 + -) 6B,=-4nickG cos Qt6n. 

dtZ Y 

where oi = 4rn,e2/m is the square of the electron Lang- 
muir frequency. The derivation of this set of equations took 
into account that the relation between the momentum per- 
turbation Sp and the velocity perturbation Sv is 

If there is no parametric relation (5 = O), the solution 
of the set (4.4) describes a linearly polarized transverse elec- 
tromagnetic wave with nonzero component SB, propagat- 
ing independently along they axis with a longitudinal beam 
wave due to the oscillations of the beam charge density. Let 
us examine the solution of the system (4.4) at fi#O. We 
neglect in first-order approximation the slow time depen- 
dences of the unperturbed quantities 8, u, and 51. It is then 
possible to take in (4.4) the Fourier transforms in frequen- 
cy: 

6n ( k ,  t )  = 1 d o  e-"% ( k ,  w)  , 

BB, ( k ,  t )  = 1 dw e-'.' 6B, ( k ,  o )  

and obtain in the three-wave approximation, taking into ac- 
count only the interaction between the density perturbations 
Sm ( w )  at the frequency w and the first-harmonic perturba- 
tions SB, (o - R )  of the magnetic field, the following dis- 
persio~i equation: 

The dispersion equation (4.6), which describes the co- 
herent interaction of the waves, has a counterpart in the the- 
ory of free-electron l a s e r ~ . ~  We seek the solution of the dis- 
persion equation (4.6) at 8/c < 1 near the solutions of the 
dispersion equations for waves produced as a result of the 
interaction 

where w ,  and k ,  are determined from the conditions 

If o, ,R>w, / y ' I 2 ,  Eqs. (4.7) lead to the following 
equation that relates the frequency of the generated electro- 
magnetic radiation to the frequency R: 

o,=2y2Q. (4.8) 

This equation is obviously in accord with Eq. (3 .9)  ob- 
tained in the preceding section for the maximum frequency 
of the spontaneous emission along the beam. The difference 
is that in the case of the induced process the frequency has a 
complex increment 6w, an equation for which follows from 
relations (4.6) and (4.7): 
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6a2(-2aL/y%+6a) = ~ k ~ a ~ ~ ~ ~ / 8 y ~ ~ ~ .  (4.9) 

Equation (4.9) was obtained under conditions such that a 
slow beam wave is excited, with a dispersion law 

o = ~ u - o ~ I ~ % .  (4.10) 

If the wave coupling is weak, JSwJ 42wL /?I2, Eq. (4.10) 
leads to an expression for the instability growth rate 

Substituting in (4.11 ) expression (4.8) for the frequency w, , 
we obtain at y,, =: 1, taking relations (2.22) into account, 

Let us estimate the growth rate (4.12) of radiation gen- 
erated by a beam of electrons of energy 8 = 10 MeV and 
density n, = 10" cmP3. Putting vdc-0.1 and fib = 1013 
sec- ', we get S - 1.5. lo9 sec- '. which corresponds to an e- 
folding length L = c/y - 10 cm. The radiation generated is 
then in the infrared, with frequency w ~ 2 .  loL5 sec-'. 

Thus, particle acceleration along a wave front to rela- 
tivistic velocities in a transverse magnetic field is accompa- 
nied by radiation whose frequency can exceed substantially 
the oscillation frequency of the particles trapped by the 
wave. 
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