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Soliton solutions are derived for the first time for the two-wave Maxwell-Bloch equations, 
which describe the coherent nonlinear interaction of light with a resonant medium under 
conditions of diffraction in a one-dimensional structure. We discuss the conditions for 
formation and the dynamic properties of a new type of localized excitation, the "two-wave" 
soliton. A stable time-dependent solution for the field and excitation of the medium, a two- 
wave breather, is found for the superradiance problem. We predict self-induced nonlinear 
suppression of diffractive reflection of the field at a boundary, and scattering in the medium, as 
well as the "retardation" of a field pulse reflection. 

1. INTRODUCTION 

Nonlinear coherent processes involving the interaction 
of radiation with matter have for many years greatly inter- 
ested researchers. This is primarily because qualitatively 
new physical effects appear which do not exist in the linear 
case, such as the spontaneous formation and coherent decay 
of a macroscopic collective state of a system of oscillators 
(superradiance, abbreviated SR) the appearance of a 
long-lived pseudospin system memory (light echo)*s4; and 
the formation of unattenuated field pulses and excitations of 
the medium, optical soliton (self-induced transparency 
(SIT) ) . ' s S  Until now, theoretical and experimental investi- 
gations of nonlinear effects have been carried out mainly 
using the weak-interaction approximation for the field 
modes (field in a continuous medium). References 6 and 7 
are exceptions, having considered the dynamics of SR under 
diffractive conditions in the quantum mode6 and semiclassi- 
cal' descriptions, for the special case of short systems. How- 
ever, as implied by a previous letter,' taking coherent nonlin- 
ear effects into account while investigating diffractive 
processes in extended resonant media leads to new physical 
behavior, in particular, to self-induced suppression of dif- 
fractive scattering of a field pulse, and to its localization in 
the medium. 

In the present paper, we derive the full system of two- 
wave Maxwell-Bloch equations to describe nonlinear dif- 
fraction in a one-dimensional resonant periodic medium. 
For the first time, the full multisoliton solution is derived for 
an infinite medium. Using numerical integration, we also 
make a detailed study of the one-soliton solution, describing 
the formation, propagation, and decay processes of two- 
wave solitons in an infinite medium. Retardation of the re- 
flected signal has been detected during modeling of the non- 
linear diffractive reflection of field pulses. We also show for 
the first time that the evolution of a superradiant extended 
system can lead to a nontrivial stable state of the excited 
medium and field. 

2. THE TWO-WAVE MAXWELL-BLOCH EQUATIONS 

We use the semiclassical picture to describe the interac- 
tion of the field with a resonant medium, wherein the classi- 

cal field interacts with a set of quantized oscillators.* A dis- 
crete one-dimensional periodic resonant medium consists of 
a set of periodically positioned thin layers of thickness a ( A  
( A  is the wavelength of the radiation) containing two-level 
atoms. To ensure discreteness, the period d of the structure 
should satisfy the condition d 2 A. A one-dimensional medi- 
um makes it possible to choose the simplest form of solution 
of the field equations for SR when the sources of emission lie 
within the medium. It is necessary first that the plane-wave 
approximation apply, and second, that there be as few waves 
as possible. One medium which satisfies these requirements 
is a bar of length Z and cross-sectional area s, for which the 
Fresnel number is F=s/ZA ,- 1. The resonant planes lie per- 
pendicular to the axis of the bar. In the SIT problem, where 
an external field interacts coherently with an unexcited me- 
dium, it is sufficient to require the plane-wave condition 
F >  1 (disk-shaped sample), and to limit the number of 
Bragg modes to two diametrically opposite points on the 
Ewald sphere). 

Thus, we seek a solution of Maxwell's wave equation 

4rrl 
VaA (r, t) - c-'A1t(r, t) = - - l ( r ,  t )  

C 

for the vector potential A and bound-charge current density 
J in the form of two plane waves with complex, slowly-vary- 
ing amplitudes, propagating in opposite directior- 

A(x, t)=Af (x, t)exp[i(kx-wt)] 

+A- (x, t) exp[-i (kx+ot) ]+c.c., (2)  

where k = w/c ,  and w is the resonant transition frequency. 
Let us convert to equations for the slow amplitudes. To 

do so, we substitute Eq. (2 )  into Eq. ( 1 ) and ignore second 
derivatives, assuming them to be small compared to first 
derivatives; we then average over a time At)w-'  (which is 
still less than the characteristic time of A and J )  using the 
temporal condition ( 3 ) ,  thereby extracting the equations for 
A * and (A * ) *. As a result, we obtain 
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where the angular brackets denote the averaging over At 
mentioned above. We have omitted vector symbols from Eq. 
(4),  since for simplicity we consider only a single field polar- 
ization and transition current. Exactly at resonance, the 
quantum mechanical mean current density for a dipole tran- 
sition may be expressed in the form9." 

U(t,  r) eiUt), = z a ;  (t, rj)al(t, r,)Jz8(r-r,), ( 5 )  
f 

where the slowly-varying functions a,( t, rj ) and a ,  (t, r, ) 
define the superposition state of the jth two-level atom, 
which is described by the wave function 

y j ( t )  =a, (t, rj) Yi+ao(t, rj)yo, 

where Y ,, Yo are the unperturbed wave functions of the up- 
per and lower atomic states; J, is the matrix element of the 
projection of the atomic dipole transition current in the di- 
rection of polarization of the vector potential A and S(r- ) 
is the Dirac delta function. 

To separate out the amplitudes A + and A -, we must 
multiply Eq. (4) by exp( f ikx) and average over a volume 
V,-A'. In the one-dimensional model, the atoms located at 
each resonant plane with surface density a must be assumed 
to be in identical states. Furthermore, the condition d 2R 
eliminates averaging over the polarization and the inversion 
of adjacent planes, and we take the system, as before, to be a 
discrete set of planes designated by i. After substituting ( 5 )  
into (4) and averaging with (3)  taken into account, we ob- 
tain 

f A,* (x, t) + c-'At* (x, 2) 

2ni o 
= --I, exp ( ~ i k x ~ )  a, (xi, t)at (xi, t)6 (x-xi). (6) o h  , 

The function 8 (x - x, ) = 1 for x E (xi f R /2), and is zero 
otherwise. 

It is not hard to derive the optical Bloch equations for 
an atom in the ith plane in the field (2) from the Schrodinger 
equation in the usual manner (see Ref. 11, for example): 

where P(x, , t )  = - 21 5, 1 - ' (a,+a, J,  ), is a dimensionless 
characteristic of the atomic "polarization"; n (xi, 
t = la, (xi, t )  I 2  - Jao(xi, t )  l 2  is the population inversion of 
the atoms; a = 2ilJ, I/& = 2iup,/&; p, is the matrix ele- 
ment of the transition dipole moment; T, and T2 are the 
longitudinal and transverse relaxation times of the Bloch 
vector R, = {Re Pi, Im P,, n i l .  Finally, multiplying Eq. 
(6) by a, we may rewrite the entire self-consistent system of 
two-wave Maxwell-Bloch equations (6), (7) in a form 
which is convenient for further analysis (neglecting sponta- 
neous incoherent relaxation of the Bloch vector): 

cBz+ (x, t) -I- Qt+ (x, t) = T ~ - ~  x e x p  (-ikxi) P (xi, t) 8 (x-xi) , 

P, (xi, t) = n  (xi, t) [ Q+ (xi, t) exp (ikxi) 

+Q- (si, t) exp (-ikxi) I, ( 8 ~ )  

wherefl* (x , t )=aAk  (x , t )  =2(p,/fi)E$,E: arethe 
complex amplitudes of the electromagnetic field, ~ = 8rT1/3cpR (for d = A ), and p is the density of the 
resonant atoms. The cooperative time T, is an important 
parameter of coherent interaction, characterizing the mean 
photon lifetime in the medium preceding resonant absorp- 
tion,12 and must be distinguished from the reciprocal of the 
Rabi freq~ency,~ which corresponds to the mean excitation 
time of an atom in a resonant field. The Rabi frequency is 
independent of p. 

3. SELF-INDUCED TRANSPARENCY IN THE PRESENCE OF 
TWO-WAVE DlFFRACTlON 

Self-induced transparency of a continuous medium oc- 
curs when there is coherent interaction of a light pulse with a 
resonant medium. A strong pulse of area 277 propagating 
along a sample expends a portion of its energy exciting reso- 
nant atoms, and is then responsible for their induced decay, 
where because there is only one mode the problem (propa- 
gating coherently as it pumps the continuous medium), the 
energy is returned to the exciting pulse. As a result, the ener- 
gy and area of the pulse remain unchanged, and the medium 
becomes transparent. Such a situation cannot occur in the 
Bragg case, where the energy reradiated by the atoms is in 
fact not returned to the single field mode, but is divided 
beween two counterpropagating, strongly interacting travel- 
ing Bragg waves. At first glance, this inevitably leads to 
spreading of the pulse within the medium. It is shown below 
that for a sufficiently strong incident pulse, the Bragg reflec- 
tion at the boundary is selectively (for a portion of the pulse) 
suppressed, while stable field pulse and excitation of the me- 
dium, differing from the ordinary 277 pulse, propagate in the 
sample. 

Let us first consider the interaction between a coherent 
resonant field and an infinite discrete periodic medium. The 
two-wave equations (8) are considerably simplified when 
the Bragg condition is fulfilled exactly, and allow for an ana- 
lytic solution. After we average over a region A V B d  ' when 
rp )d /c, where rp is the characteristic time of a field pulse, 
Eq. (8) takes the form 

P, (x, t )  =n(x, t) (Q++Q-1, (9b) 

This set of equations can be reduced to a single equation 
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in the quantity 

where f l  = fl' + fl-. To do so, we successively add and 
subtract the two forms of Eq. (9a), yielding the equivalent 
equations for the function f l  and fl' = fl+ - $2-. We then 
differentiate the first of these with respect t o t  and the second 
with respect to x, add, and expressing fl: in terms of fl, we 
obtain an equation in f l  and P: 

Integrating Eq. (1 1) with respect to time, and taking into 
account both (10) and the solution of the Bloch equations 
(9b) and (9c), 

we obtain an equation for 8(x, t): 

=2r,-'sin 0. (13) 

The unperturbed sine-Gordon equation (13) has a 
complete set of loqalized solutions in an infinite medium. 
Each new solution is obtained from the previous one by ap- 
plication of a Bbklund transformation,13 and describes the 
interaction dynamics of a different number of stable solu- 
t i09  (solitons and breathers). Let 8 '"'(x, t)  
- - B (n)$(o) ( , t )  be a solution of Eq. ( 13) obtained by n-fold 

application of the Backlund transformation operator. Then 
from (9a), we obtain for the wave amplitudes 

Q* (x, t) = (13,'""rcel"') /2. (14) 

Let us examine the single-soliton solution 8 ' I ) ,  the most 
physically interesting of the simple solutions to the sine- 
Gordon equation. It is just this solution for a single wave in 
the case of a continuous medium that describes the SIT phe- 
nomenon. The soliton 

0 (g) =4 arctg exp (g/z) (15) 

is a stationary solution which depends only on g = t - x/v 
(U is the constant displacement speed in the x-direction), 
and satisfies the following boundary conditions at infinity: 
$(c = - UJ ) = 0,8({ = UJ ) = 277. The soliton halfwidth is 

where u = v/c.  Substituting ( 15) into ( 12), we can show 
without difficulty that the excitation pulse is localized and 
stationary, while the state of the medium remains un- 
changed after the pulse passes. P ( g  = f oc ) = 0, 
n ( c =  f UJ)  = - 1. 

In the problem under discussion, the quantity 
a({) = 8, has the sense of a total rotation rate of a Bloch 
vector at the point x and t subject to the fields R +  and fl-, 
but the function a- ' f l  is not the complete field amplitude, in 
contrast to the traditional single-wave case. To find the actu- 
al amplitudes of both modes 0 * , we substitute Eq. ( 15) into 
( 14), obtaining 

FIG. 1. Dynamics of a 2a pulse in a continuous medium (dashed curves) 
and a T-soliton in a discrete medium with the same mean density of reso- 
nant atoms. The speed v = 2u2,, corresponds to the values x = x,, = 2.5, 
7 = Tza 

Qt(g)=*[ (l*u)/2ulQ(x,, t ) ,  

where 

Q (x, t )  =2r-' sech[ (t-xlv) lr 1. (18) 

The field puise ( 17) and the excitation of the medium as well 
are both localized and move along the medium at the con- 
stant speed 

The pulse halfwidth T is given by Eq. ( 16) (see Fig. 1 ). 
Thus, solutions ( 15) and ( 17) describe the SIT of a 

resonant Bragg structure. Note that this phenomenon differs 
fundamentally from the illumination effect on a Bragg mir- 
ror predicted previously in Refs. 14 and 15, in which weak 
Bragg modulation of the medium's dielectric constant is 
cancelled by modulation induced by the field of a Bragg 
standing wave because of the quadratic nonlinear interac- 
tion between the field and the medium. 

4. PROPERTIES OF A "TWO-WAVE" SOLITON 

The main feature of the solitary pulse in a Bragg medi- 
um is the two-wave character of the field (17), and it is 
therefore appropriate to refer to it for the sake of brevity as a 
"two-wave" soliton, or T-soliton. 

The absolute area under the rightward-propagating 
wave 119 + I > 272, which is easy to verify by direct substitution 
of the expression ( 17) for f l+  into ( 10) at t = CO. The net 
effect of the T-soliton is the same as that of the 277 pulse ( 18). 
This is formally due to the opposite signs on the angular rates 
of O* in (17), which leads to a reduction in the overall 
rotation rate of the Bloch vector, < (a+(. The physical 
mechanism for "excluding" part of the field of a T-soliton 
from the interaction process with the medium, as well as the 
explanation of the oppositely-directed velocities of the pulse 
and the wave vector of one of the components of this Bragg 
wave (fl- in the present instance), become perfectly clear if 
we consider the total field in the medium: 
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ft -- - [ P  (x, t) cos (kx-at) - 28- (x, t) sin(kx) sin (at) 1. 
CL 

(20) 

The field of the ( - k)-mode is associated in the "standing" 
wave of amplitude 2Q- (20) with a part of the field of the 
forward wave (shaded region in Fig. 1). The nodes of the 
"standing" wave are located at the resonant planes of the 
structure, so this part of the field effectively fails to interact 
with the medium. Interaction only occurs between the "trav- 
eling" component of the field (20) and the amplitude Q 
(18). 

The physical properties of a T-soliton in a continuous 
medium differ considerably from those of an ordinary 277 
pulse. Formally, the latter is described by ( 15) and ( 18), 
allowing for a pulsewidth which differs from ( 16) (Ref. 2) : 

Making use of Eqs. ( 16) and (21), we can write the ratio of 
the velocities of the T- and 27 pulses when all other param- 
eters are equal: 

where KT/T,. Thus, when the temporal widths of the 
pulses are equal (r = T,, ), the T-soliton speed is higher, and 
its spatial dimensions therefore exceed the width of the 2n 
pulse by a factor of x/2'I2 (at optical wavelengths, we can 
have2 x > 10). To make comparison more convenient, we 
have shown both types of soliton in Fig. 1. Note also that in 
the present paper, we do not consider the effects of inhomo- 
geneous broadening on the dynamics of the process. Taking 
it into account does not lead to any fundamental qualitative 
differences, just as in the case of a continuous medium. 

One characteristic feature of a T-soliton is a captive part 
of the field which effectively fails to interact with the medi- 
um, and which obviously possesses a certain additional ener- 
gy over and above that of the 277 pulse. Let us estimate its 
magnitude. The excitation energy of the medium may be 
expressed in terms of the inversion function n(x, t )  in the 
following manner: 

Then taking the solution of ( 12) n = - cos 8 = 2 sech2(l / 
r )  - 1 into account we obtain 

Making use of (20), we find the field energy of the T-soliton, 
averaged over the periods of the rapidly varying functions. 
The total average energy of the T-soliton may be written in 
the form 

Analogously, we obtain for the 277 pulse 

where x,, = r2,/7,. The first terms on the right-hand sides 
of Eqs. (23), (24) account for the field energy, and the sec- 
ond terms describe the excitation energy of the medium for 
the corresponding pulses. Comparing (23) and (24), we 
come to the following basic conclusions: 1 ) the field energy 
of the standing wave of a T-soliton equals the excitation en- 
ergy #, of the medium, so the total field energy is always 
greater than 8, ; 2) when the basic pulse and medium pa- 
rameters (7, x , ~ )  are the same, a discrete Bragg medium can 
produce and transmit stationary pulses without attenuation 
at higher energies than a continuous medium: 

the field energy of the T-soliton being x3& 1 times greater 
than the field energy of the 2n pulse. 

Using Eqs. ( 16), ( 19), and (23), we can write the speed 
of the pulse in the form c/v = ( 1 + @ / $ I )  'I2, where 

= 2x2$' is the mean energy in the captive field of the 
"standing"wave and excitation of the medium, and 8' is the 
mean energy of the effective field of the T-soliton. For a 277- 
pulse,I3 c/v,, = 1 +- %', /%". 

It is interesting to consider the relativistic properties of 
theT-soliton treated as a particle. Its spatial size 1, = r u  can 
be expressed in terms of the Fitzgerald-contracted charac- 
teristic interaction length 1, = T , c / ~ ' / ~ :  

and the total energy can be represented by the Einstein for- 
mula 

where the "rest mass" is mo = 41,sph/c2. The energy of a 
277 pulse cannot be represented in the form (26), as it is equal 
to 

2"l,spha u" 
8 z n  =; cZ (1 -~ )% cZ. 

5. PRODUCTION AND DECAY OF A T-SOLITON IN A FINITE 
MEDIUM: THE AREA THEOREM 

The properties of a T-soliton considered above relate to 
stationary pulses in which the area under the "traveling" 
component of the field is 27~. An area theorem has been prov- 
en2 which provides a description of the evolution of the area 
of a pulse 8(x)  in the single-wave case, stating that the 
change in 8(x)  is governed by the equation of the damped 
pend,ulum 

@(x) =1/2ao sin 0 (x) , 

with a, the resonant damping coefficient. The quantity B(x) 
always tends to the nearest stable multiple of 2n. The pulse 
spreads if the initial area is 18(0) I < n. How does the pulse 
area evolve in the two-wave case? 

Let the fields f l+(x,  t )  and W ( x ,  t )  be localized in 
space and time. Then there is always a to such that when t>t, 
at any point x, the fields satisfy Q * (x, t )  = 0, and the pulse 
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area 
L 

is time-independent. Therefore, for any t>t,, Eq. (13) is 
transformed into 

d20, (z) / d ~ ~ = l , - ~  sin ( x )  . (28) 

This is the equation for the behavior of the pulse area as it 
propagates along a Bragg medium. It has the form of an 
undamped pendulum equation in the area 0,, with a stable 
equilibrium at 0, = T. In the event of a small initial displace- 
ment A < 1 from a position of unstable equilibrium, 
0,(x0) = 2i7n - A, the solution is of the form 

0 ,  ( 2 )  =2nn+4 arctg exp[ (-x+1,)  /LC] (29) 

in the range 4mlD <x<2(2m + 1 )ID, and 

0 ,  ( x )  =2nn+4 arctg exp[ (x -Zo) / l , ]  (30) 

intherange2(2m + 1)1, < x < 4 ( m  + l ) lD;n ,m =0,  1, ... 
In Fig. 2, we have plotted curves of solutions of (29) 

(solid curves) and (30) (dashed curves) for n = 0, 1 and 
m = 0, 1. These are the curves which formally correspond to 
the case ( 2 ~ n  + A) ,  but with the initial value of x, shifted to 
21,. For n = 0, the solution describes a two-wave pulse mov- 
ing with an active component of the field having area 
Bo(x = x,) = 2~7 - A. If we translate along the x-axis away 
from the point x,, the pulse maintains its area over a segment 
of length Ax 4 1, , and then spreads as it approaches the point 
x = 1, = 1, In 14/A I. By definition (27), Eq. (28) does not 
describe the dynamics of pulse spreading, since this process 
is nonstationary, and the concept of area in the sense of ( 17) 
becomes undefined due to the appearance of nonlocalized 
fields fl* . However, Eq. (28) and its solutions (29) and 
(30) can therefore describe the asymptotic dynamics of 
8,(x) in the region Ix - 1, I 2 1, , where the area of the pulse 
is relatively stable. 

In order to treat the actual pulse dynamics and verify 
Eqs. (29) and (30), we performed a numerical integration 
of the system of equation (9) with boundary conditions 

corresponding to an external pulse R$ ( t )  incident on the 
boundary x = 0 of an unexcited medium of length 1. Solving 
this problem also enables us to answer another important 

FIG. 2. Evolution of the area of two-wave pulses. 

FIG. 3. Time dependence of the amplitude envelope of the reflected field 
R -  ( X  = 0, t )  arising upon incidence upon the medium of a pulse a,+ ( t )  
of area 6': = 4i7 and width T,, = 1 . 5 ~ ~  (upper curves), and T,,=:T, (lower 
curves). 

question having to do with the possibility of exciting a T- 
soliton in a bounded medium by means of an external field. 

The upper curves of Fig. 3 show the amplitude of an 
incident pulse a,+ ( t )  = R, sech [ ( t  - t ,)/~,] of area 
8 $ = 4i7 and halfwidth 7, = 1.57,, and the reflected field 
R- (0, t). Total Bragg reflection is observed, as in the linear 
interaction case. After the interaction, the medium remains 
completely unexcited. Reducing the duration of the incident 
pulse to -r, = rc leads to a sharp reduction in the reflected 
signal, that is, suppression of the Bragg reflection (lower 
curves in Fig. 3). A T-soliton is produced in the medium. 
Numerical modeling of nonlinear Bragg reflection for pulses 
a,+ ( t )  with various values of 8 ,f and r0 enables us to con- 
clude that to produce a T-soliton, it is sufficient that the 
pulse parameters satisfy 

We make two remarks regarding the conditions (32), First, 
we note that for transillumination of a resonantly absorbing 
Bragg medium, it is not enough to have a pulse with a certain 
area (as in the case of a continuous medium for 0 > T); it 

FIG. 4. Dependence of the T-soliton "production function" on the width 
rO of the incident pulse a,+ for constant area 92 = 4i7. The function 
f = 1 if a T-soliton is produced, and f = 0 if there is just reflection of the 
field. 
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FIG. 5. Generation of a T-soliton by a wide pulse (are 0 2  = 1 0 ~ )  of 
relatively low amplitude (7, = 3.77, ). 

is also necessary that the pulsewidth satisfy (32). This is 
related to the requirement that the Bloch vector rotate rapid- 
ly through - 2~ and that a T-soliton develop while the field 
has not yet managed to leave the medium as a result of Bragg 
reflection. Thus, a resonant Bragg medium selects pulses not 
only on the basis of area, but intensity as well (Fig. 4). The 
second important feature of the Bragg-reflection suppres- 
sion process is the possibility that it may even occur when 
(32) is satisfied for only part of a pulse (Fig. 5) .  

Let us return to the area theorem. By varying the pa- 
rameters of the external field pulses during numerical mod- 
eling, we can trace the evolution of two-wave pulses in the 
medium for a variety of initial areas. Analysis of these results 
brings us to the following conclusion, which reflects the con- 
tent of the area theorem in the two-wave case: pulses of area 
8, = 5 2n-n f A (0  < A < 2n, n = 2,3, ... ) propagating in a 
resonant Bragg medium evolve to stable two-wave localized 
pulses with a total area 8,(x = f co ) = 2n( f n f 1 ), 
where for A & 1, the pulse dynamics in the range x(1, and 
x % I, are governed by Eq. (29) (do  > 0). The pulse spread- 
ing, ( 2 m  - A) - 2r (n  - 1 ) is accompanied by energy loss 
through two channels, Bragg scattering and residual excita- 
tion of the medium. The process becomes irreversible, and 
Eq. (3) implies that an "inverse" rotation of the Bloch pen- 
dulum, i.e., reversion to the original pulse areas, does not 
occur. 

There is an interesting phenomenon which occurs when 
the external field R,f produces a two-wave pulse of area 
8, = 2~ - A in the medium. The latter propagates through 
the sample, undergoing an inversion in shape and direction 
of motion (Fig. 6a). As a result, most of the external field of 
the pulse is radiated after some delay which depends on the 
magnitude of the area decrease and reflection is also delayed 
(Fig. 6b). 

The T-soliton field also shows a nontrivial infrastruc- 
ture in its interaction with inhomogeneities of the medium. 
The most important of these is the medium-vacuum bound- 
ary. We have also investigated T-soliton behavior upon leav- 
ing the medium by numerically integrating ( 9 )  with the 
boundary conditions (31). It is intuitively clear that in- 
homogeneity of the medium at the edge of the sample must 
lead to a breakdown of the steady -state collective interaction 
of the field and medium, and as a result, liberate the "cap- 
tive" mode R-. In fact, this actually occurs. Upon reaching 
the boundary x = I, the T-soliton dissociates, the direct wave 

FIG. 6. a )  Evolution of a pulse of area 0, = ( 2 r  - 0.6) propagating along 
a Bragg medium; b) amplitude envelope of an incident external pulse 
R,+ ( t )  and the radiation field a- (x = 0, t )  at the entrance boundary. 

leaves the medium, and the liberated field a- propagates in 
the opposite direction (along the intrinsic wave vector); in 
the case of a short medium, after a time delay equal to the 
photon time-of-flight through the medium, it is radiated in 
the form of low-intensity damped oscillations at the bound- 
ary x = 0. In an extended medium (1% 1, ,), the R- mode is 
attenuated. 

6. SUPERRADIANCE AND THE DISCRETE BRAGG MEDIUM 

The adequacy of modeling of the SR process, or more 
precisely, of the initial stage of spontaneous decay, is gov- 
erned in the semiclassical description by the choice of initial 
conditions. The method we have used to numerically inte- 
grate the system (8 )  makes it possible to follow the dynam- 
ics of SR more completely when we have stochastic initial 
conditions: 

P (xi, 0) =sin 8, exp (icpi) , n (xi, 0) =COS 80, 
(33) 

Q* (x, 0) =Q' (0, t )  =9- (1,  t )  =O. 

The initial Bloch angle is 8, = 2/N ' I 2  (Nis the total number 
of radiators in the sy~tem), '~ ."  while the stochastic initial 
polarization P(xi,  0 )  is specified independently at each 
point i by a random phase pi in the closed interval [O,2n]. 
There is no mean atomic polarization of the system at the 
initial instant of time ( ( Pi ) = O), and the atoms radiate 
independently. Furthermore, all the dipoles are in phase in 
the collective radiation field (when the Bragg condition is 
met precisely). The system shows a macroscopic mean po- 
larization at some random phase which is unpredictable for 
any given realization of the initial conditions {pi). Evolu- 
tion of the collective pseudospin leads the system to a coher- 
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FIG. 7. Probability density function for the SR time-delay distribution 
@(rD/rR ) obtained by numerical modeling of SR for one hundred differ- 
ent realizations of the stochastic initial conditions {O,, pi}. The pararn- 
eters are Oo=10-2, /=I,. The SR characteristic time is 
7, =7f/rp, TP =I/c.  

ent SR state, and it radiates strongly. Repeating the numeri- 
cal experiment with various {p, ) enables us to conclude that 
the stochastic specification of the initial polarization in a 
Bragg system only has the effect of making the distribution 
of SR delays r, random, and increasing them relative to the 
time delays observed for coherent initial conditions 
p, = const (rD,, , Fig. 7 ) .  Moreover, the shape and maxi- 
mum intensity of SR pulses is practically the same (the 
changes are no more than 4%).  SR pulses resulting from 
coherent and stochastic initial conditions are practically in- 
distinguishable. 

As is well known, the SR pulse forms at the nonlinear 
stage of the radiation process, when the angle B ( t )  is varying 
r a ~ i d l y . ~  For this reason, the constancy of the pulse shape 
suggests perfect phasing of all x-radiators i, and formation of 
a coherent collective state at the linear stage of field-medium 
interaction, a result which holds only for a Bragg system. 
The breakdown of spatial coherence ( d  # A  ) under random 
initial conditions induces a significant unpredictable change 
in the shape of the SR pulses, as well as a lack of correlation 
of the radiation propagating in opposite directions. Similar 
shape fluctuations are seen in SR modeling in continuous 
media,18919 where there is also only weak interaction between 
oppositely propagating waves, and perfect phasing of all the 
dipoles with the fields of both waves is not possible. 

In numerical modeling of SR in an extended Bragg sys- 
tem of length l$ I,, we have detected localized stable nonsta- 
tionary excitations of the field and the medium. Figure 8 
depicts the dynamics of the inversion n (x, t )  = cos e(x,  t )  
corresponding to such an excitation, obtained by integrating 
the equations (8)  with boundary conditions (33) for the 
following process parameters: rp E I /C = lor,, d = A, 

= 0, e,, = 1 0 4 .  
With random initial conditions (p,}, the form of the 

solution obtained is similar, but with a narrower excitation 
region which is stochastically shifted relative to the center of 
the medium. 

The possibility of localized excitations in a Bragg sys- 
tem has been investigated in detail in the previous sections, 
although the solution discussed there (the T-soliton) clearly 
differs from that obtained in the SR problem. It is necessary 
to study the non-soliton stable solutions of the sine-Gordon 
solution ( 13) and find analogs among these of the solution 
shown in Fig. 8. The simplest stable nonstationary solution 

FIG. 8. Evolution of inversion for superradiance of an extended medium 
in the two-wave case. 

of Eq. ( 13) is the breather 

0 ( f ,  f )  =4 arctg{tgv sin(f cos v)sech(Z sin Y) }, (34) 

where the parameter 0 < Y < 2~ determines the characteris- 
tic breather width and amplitude, 4=x/l,, 2-t / ( 7 , / 2 ' 1 2 ) .  
A direct comparison which we performed of the plots of the 
function cos 8(f, i) computed from (34) and the solution of 
the SR problem in Fig. 8 enables us to say that the localized 
nonstationary excitation appearing as a result of evolution of 
a superradiant Bragg system is described by the breather 
solution (34) of Eq. ( 13), and by the corresponding expres- 
sions for the fields R * of ( 14). The time-narrowing of the 
excitation region observed in Fig 8 is related to energy dissi- 
pation due to field radiation at the same extremities. 

7. CONCLUSION 

The experimental detection of a two-wave soliton, as 
well as the observation of delay and the suppression of coher- 
ent-field pulse reflection under conditions of nonlinear two- 
wave diffraction in a one-dimensional resonant medium do 
not require, in our view, any fundamental changes in the 
customary experimental procedures presently used in coher- 
ent nonlinear o p t i ~ s . * - ~ . ~ ~  Any resonant medium in which 
SIT or SR is observed is a potential candidate for study. It is 
only necessary to produce a Bragg structure in which the 
atoms of the active material are concentrated periodically in 
narrow planes separated by a nonabsorbent transparent me- 
dium. Simple estimates indicate that the formation of a T- 
soliton at optical wavelengths requires a structure with a 
large number of layers (N2 100). The pulses should not ex- 
ceed 10-100 nsec in duration. 

The authors thank A. V. Andreev, V. A. Bushuev, and 
A. M. Leontovich for useful discussions and remarks. 
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