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The first correct calculation is reported of the third-harmonic generation coefficients /3 and of 
the hyperpolarizabilities y of the ground and excited states of hydrogen atoms in alkali metals 
at above-threshold frequencies. The physical interpretation of the susceptibility due to atomic 
ionization in an optical field is discussed. A rapid decrease of fl and y at high frequencies is 
noted. The corrections that must be introduced in the strong-field photoeffect to account for 
the imaginary part of y are analyzed. It is shown that an approximate calculation method 
based on discarding the contribution of the intermediate continuum states to the composite 
matrix elements of perturbation theory is inadequate even for estimating the nonlinear 
susceptibilities. 

$1. INTRODUCTION 

Nonlinear susceptibilities are defined as the coefficients 
of the expansion of a dipole moment P ( t )  in powers of the 
external fields that induce this moment in an atom. They are 
very important microscopic properties of the atom, and their 
values determine the feasibility of observing in practice var- 
ious nonlinear optical phenomena in an atomic gas. We cal- 
culate here the simplest nonlinear susceptibilities that deter- 
mine the dipole interaction of an atom with the electric field 
of a monochromatic light wave: 

The expansion of P ( t )  in such a field is of the form (summa- 
tion over repeated indices is implied) 

P j ( t )  =Re {ajk ( o ) F ~ ~ - ~ ~ ' + ~ ~ ~ ~ ~ ( w ) F ~ F ~ F ~ ~ - ~ ~ ~ '  
+yjk lm(~)~k*F1~,e- iu t+O (F5)), j,k,l,m=x,y,z. (2) 

For an isolated atom, the individual terms in (2)  determine 
the elementary processes that occur when a quantum system 
interacts with radiation: a (w)  (dynamic polarization) de- 
termines the Rayleigh scattering of the light, P(w) deter- 
mines third-harmonic scattering of the incident radiation 
(three-photon coalescence), and y(w ) determines the cor- 
rections, linear in intensity, to the cross section for Rayleigh 
scattering, particularly to the degree of polarization and to 
the angular distribution of the scattered radiation (see $3). 
In addition, P and y determine (accurate to F2 and F4 ,  re- 
spectively) the shift, splitting, and ionization broadening in 
a field F(t)  (at frequencies exceeding the one-photon ioniza- 
tion threshold (it will be shown in $3 that it is incorrect to 
retain the term with y in the expansion (2),  for in this case y 
describes only a property of the atomic level and is not a 
correction to the dipole moment of the atom). For an atomic 
gas, the nonlinear susceptibilities P and y determine coher- 
ent nonlinear optical phenomena due to specific elementary 
processes. Namely, P yields the third-harmonic-generation 
amplitude and y the corrections, linear in the light-wave in- 
tensity, to the refractive index of the medium. These correc- 
tions lead, in particular, to self-focusing and to self-induced 

rotation of the polarization ellipse of the propagating wave 
(see Ref. 1). 

It should also be noted that y is in fact a perturbative 
correction one order higher than the polarizability a. Com- 
parison of a and y permits therefore a definite estimate of the 
field intensities that limits the use of perturbation theory to 
describe nonlinear optical phenomena or to calculate the 
restructuring of atomic levels in a laser field. 

In practice computations of nonlinear susceptibilities 
entail calculation of composite matrix elements of higher- 
order perturbation theory. Thus, the tensors Pjkrm, */iklm for 
an atom in a state In) and having an energy En are expressed 
in terms of linear combinations of matrix elements such as 

where d, is the atom-dipole-moment projection operator, 
and 

is a Green's function. S denotes here summation over the 
discrete spectram (En. < 0) and integration over the contin- 
uum (En. > 0) of the atomic states In'). Note that the choice 
(discussed below) of the imaginary increment in the de- 
nominator of (4)  is significant only for E > 0, when the inte- 
gral over the continuum has a pole in terms of the variable 
Em, which must be enclosed in a specified manner. 

In calculations of composite matrix elements it is cus- 
tomary to use only the one-electron approximation, in which 
the operators d and Gin (3) pertain only to the optical elec- 
tron of the atom. Even in this approximation, however, well- 
developed calculation methods exist only for the case when 
all E, E n  + +b, (,u = 1,2,3) in (3) are negative. (This 
means physically that the frequency w and its harmonics, 
which are accounted for in this process, are below the ioniza- 
tion threshold (En ( / h .  ). One of the most effective calcula- 
tion methods is to use in (3)  for the one-electron Green's 
function 
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the Sturm expansion of the radial parts of g, (E;r,rl)., This 
reduces the calculation of the composite matrix elements to 
a numerical summation of rapidly converging series of hy- 
pergeometric polynomials (which we call Sturm series). 
This was precisely the method used in the first correct calcu- 
lation of the nonlinear susceptibilities for hydrogen3v4 and to 
obtain extensive information on the character of the disper- 
sion relation and on the nonlinear susceptibilities of various 
atoms.? 

Data for the E, < 0 region alone, however, are insuffi- 
cient for many vital problems. The study of nonlinear sus- 
ceptibilities at frequencies above threshold, when w or its 
harmonics exceed the ionization threshold, is of interest, 
particularly when gaseous media are used to generate ultra- 
violet or soft x rays,596 in planning of experiments on above- 
threshold ionization of atoms,'*' and also in investigations of 
excited atoms by methods of nonlinear laser spectros~opy.~ 
In the latter case the energy of even one optical photon can 
exceed the binding energy of the state in question. 

The Sturm-expansion technique is not directly transfer- 
able to the E, > 0 region, where the Sturm series diverge. At 
present, therefore, there are no correct calculations of the 
nonlinear susceptibilities at frequencies above threshold 
even in the simplest case of the hydrogen atom. (An attempt 
to calculate the hyperpolarizability of hydrogenf0 by using 
directly the spectral expansion (4) did not yield correct re- 
sults because of the technical difficulty of carrying out multi- 
ple integration over continuum states; a recent paper1' re- 
ports calculations, by the Pade-approximant method, of 
sums of divergent Sturm series, but no results are cited for 
frequencies above threshold.) 

It is important to note that the estimates frequently em- 
ployed for the susceptibility, with only a small number of 
discrete-spectrum states taken into account in the spectral 
expansion (4), are also valid only at E, < 0 in quasiresonant 
situation, when the E, are close to the energies of certain 
bound states. Attempts to refine these estimates, however, 
which require allowance for a large number of discrete states 
and discarding the continuum contribution (see, e.g., Refs. 
12-14), are utterly unfounded. We show in the Appendix 
that the separate contributions of the matrix elements (3)  by 
the discrete and continuous spectrum states diverge,'' and 
only the sum is finite. It is clear therefore that at E, > 0 one 
can use only methods that permit account to be taken of the 
entire intermediate-states spectrum. 

We have previously obtainedI5 for the Green's func- 
tionsg, a Sturm-expansion generalization applicable, in the 
model-potential approximation, both to a Coulomb poten- 
tial and to a non-hydrogenic atom., A feature of this expan- 
sion is the presence in it of a free parameter a. A suitable 
choice of a ensures convergence of the Sturm series even at 
E, > 0 (with a dependent on E, ). The new expansion thus 
permits extension of the Sturm technique of calculating non- 
linear susceptibilities to include the case E, <O. This ap- 
proach is used in the present paper to calculate the tensorsB 
(92) and y (93) in the hydrogen atom and in alkali atoms. In 

$4 we discuss nonlinear corrections, determined by the hy- 
perpolarizability y (w ) , to the level shift and to the photoef- 
fect. 

52. THIRD-HARMONIC GENERATION 

Expressions for the nonlinear susceptibilities are de- 
rived (in the form of expansions in powers of F) by calculat- 
ing the mean value ($Idj I$) of the dipole moment in the 
state I$) obtained from the initial state In) under the action 
of the field F(t) .  The choice between the Green's functions 
G'+'and G'-' [see Eq. (4) ] is determined by the fact that at 
frequencies above threshold the function I $) describes a de- 
cay state (called quasistationary quasienergy state).1°'16 
The perturbation-theory expansion of I$) then contains 
only the Green's functions G'+' having a divergent-wave as- 
ymptote corresponding to decay, while the expansion of ($1 
contains the functions G'-'. If, however, the frequency w is 
regarded as positive, the use of G '-' in the expressions for the 
susceptibilities is frequently unnecessary. Thus, the expres- 
sion for the tensors,,, in terms of the matrix elements (3) is 

hlrn='/J'~rn {Tih~rn (301 20, W )  
+Tkllm (-0, 201 W )  +Tk~,rn (-01 -20, 0) 

+Tkrmj(-o, -20, - 3 ~ ) ) ~  ( 6 )  
where Sk, denotes symmetrization of the expression in the 
curly brackets with respect t~ the indices k, I ,  and m. The 
Green's functions to the left of the operator d, in each matrix 
element must formally be G '-'. Just these Green's functions, 
however, definitely have a negative energy E at w > 0. G'-' 
and G '+' are then equal, so that Eq. (6) can be expressed in 
terms of the matrix elements (3)  that contain only G '+' (cf. 
the analogous discussion of the polarizability tensor aJk in 
$59 of Ref. 17). 

For a nondegenerate initial state In), the tensor PJk, is 
expressed in terms of only one atomic parameter 
P(w) = P,, (w 1, and the polarization vector (2 )  at the fre- 
quency 3w is" 

where I = I F2 I /  I F1 is the degree of linear polarization of the 
wave. 

Following integration over the angular and radial vari- 
ables and the use of expansion (5) and the Sturm expansion 
ofg, (Ref. 15), the calculation of the matrix elements Tin 
Eq. (6) reduces to summation of series made up of polyno- 
mials that can be conveniently expressed in terms of the Ap- 
pel hypergeometric function F2. The values of the complex 
parameters a for each of the three Green's functions in T 
depend on o and are chosen by the procedures indicated in 
Ref. 15. The calculations are more complicated for E, > 0 
than for E, < 0. To obtain a result with three of four signifi- 
cant figures it is necessary to take into account several dozen 
terms in each series made up of the polynomials F,. The 
accuracy required in the calculation of high-power polyno- 
mials is ensured by using a set of recurrence relations for the 
function F,, and the appropriate relations for the various 
parameter values are chosen by using an asymptotic expres- 
sion for F, (Ref. 15). 
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FIG. 1. Dispersion dependences of real (solid line) and imagi- 
nary (dashed) parts of the third-harmonic-generation coeffi- 
cient /3 for the Is level of hydrogen. The solid and dash-dot 
vertical lines denote respectively the threshold and resonance 
frequencies. The near-threshold frequency regions where f l  has 
condensing resonances are shaded. The scale along the paxis for 
different regions of o are shown in the figure. The w-axis scale 
(uniform in each interval) changes on going through the thresh- 
old frequencies. 

The calculated susceptibility PI, (w) for the 1s state of 
hydrogen is shown in Fig. 1. The dispersion relation has a 
large number of singularities, viz, one-, two-, and three-pho- 
ton resonances, as well as thresholds of one-, two-, and three- 
photon ionization. So complicated a dependence prevents 
the characteristic values of fi from being specified by only 
one or two parameters in a wide frequency range. At 
%I > I El, I the dependence of Dl, on w becomes continuous. 
In the limit %I) IE,, I it is possible to obtain the asymptotic 
expression (in atomic units) 

fil.(o) [(1-i)/450'9~ ][ (Z/s)'"+2'"-2]. (8)  

We note that the numerical coefficient in (8) is small and the 
asymptotic value is reached at very high frequencies. There- 
fore, in particular, Fig. 1 should show one more reversal of 
the sign of Re 0 ,, at w > 1 a.u. Test calculations have shown 
that Re P,, does indeed reverse sign at fioz6I E,, I .  At 
f b  = 201 El, / Re PI, and Im PI, reach respectively 30% and 
85% of their asymptotic value (8).  

With increasing principal quantum number n, the 
asymptotic value of P(o) decreases: 

pn, (o) =n-*Bls (0), o + ~ .  

At the same time, the static susceptibilities are known to 
increase rapidly with increasing n. This dependence on n is 
preserved also at not-too-high frequencies. Thus, typical val- 
ues of pa(@) at frequencies up to the first threshold 
(&I < I E, 1/3 = 0.042 a.u.) are lo6-lo7 a.u. The values of 
p2 for certain frequencies above threshold are given in Table 
I. 

It is also of interest to compare PI, (w) with the third- 
harmonic-generation coefficient fl '" (w) for a particle in a 
short-range potential (6-well) with binding energy I El, I .  
The calculation for a S potential is similar to the calculation 
of y in Ref. 10. /3 "'(w) has square-root singularities at the 
ionization thresholds o = 4, 2w = 4, 3w = 1. In the atom, 
however, P(w) tends to a finite limit when w approaches the 
threshold frequency from above, and has an infinite number 
of poles is the threshold is approached from below. This be- 
havior accords with the general theory of threshold singular- 
ities for Coulomb and short-range potentials.I9 

The static susceptibilities in a short-range potential are 

TABLE I. Nonlinear susceptibilities of the 2s level of hydrogen at neodymium (o, = 9440 cm-' = 0.043 a.u.) and ruby (w, = 14400 
cm- ' = 0.066 a. u. ) lasers, at their harmonics h,, h,, and 30, and at the frequency of the leading line of the Lyman series (a,, = 0.375 a. u. ) 
(for a: 1 a.u. = a3 = 1.2. CGS, forfland y: 1 a.u. 7 07/e2 = 5.9. lo-" CGS). 
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TABLE 11. Nonlinear susceptibilities of 6 level of cesium. 

always smaller than in the "looser" Coulomb p~tential. '~ 
Thus, as w +O the polarizability ratio is 

The difference increases for susceptibilities of higher order: 

In the high-frequency region, however, the situation 
changes radically. Whereas the polarizability a (w -. co ) 
= - e2/mw2 does not depend at all on the form of the po- 
tential and is determined by the free-electron oscillations in 
the wave field, the susceptibility P '" (w - co ) -w-'.~ de- 
creases with increasing w much more slowly than PI, in (8).  
The slow decrease of fl '6' arises because the &-potential is 
more singular than a Coulomb potential as r-.O 
( /3(w - co ) -w-R for a particle with a smooth potential). 

In non-hydrogenic atoms the qualitative singularities of 
the dispersion dependence of j?(w) are the same as those of 
PI, (Fig. 1). By way of example, Table I1 lists the values ofp  
calculated for the ground state of the Cs atom in the model- 
potential approximation. Just as in the case of hydrogen, the 
value offl decreases abruptly beyond the ionization thresh- 
old ( IELC"'( = 0.143 a.u.). Thus, the quantity I P 12, which 
determines the cross section for third-harmonic generation 
at the neodymium-laser frequency w,, exceeds by almost 10 
orders of magnitude the value of I j? 1' at the frequency 5w, 
(150% of the ionization potential of Cs). At frequencies 
above threshold, the generation efficiency is decreased not 
only by the competing ionization, but also by the appreciable 
decrease offl itself. This can decrease substantially the yield 
of the harmonics of hard ultraviolet radiation in atomic gas- 
es compared with those of optical frequencies. 

53. DYNAMIC HYPERPOLARIZABILITY 

The expression for y (see, e.g., Ref. 2) contains, besides 
the composite matrix elements (3 ), also "non-diagrammat- 
ic" terms such as 

T ~ ~ ~ )  ( o ) = < n l d j ~ ~ ~ : h w ] N d r n l n ) ,  N=l, 2. (10) 

For thes state, the dependence of y on the tensor indices 
is determined by two atomic parameters, viz, the hyperpo- 
larizabilities y = y ,,,, and y, = 2yzx, (Ref. 1 ): 

Yirim= ( 7 , - y e )  6~6mrn+'/z~c(6ji6krn+6jm6ki) . (11) 

According to (2 1, the polarization vector at the frequency o 
takes the form 

(where n is the unit vector in the wave-propagation direc- 
tion, A = in[FF*]/IF12 is the degree of circular polarization 
of the field, and A + 1 = 1). It is recognized here that 
ajk = asjk, while the phase of the complex vector F is chosen 
such that F2 = IF2[. 

Let us examine the physical meaning and the validity of 
the expansion (12) in various frequency intervals. At fre- 
quencies below threshold, 4m < 3 1 En 1, the susceptibilities a, 
y,, and y, are real and the vectors P ( t )  and F (  t )  oscillate in 
phase. On going through the two-photon ionization thresh- 
old (4 (En ) < & < (En I ), Eqs. ( 12) describe the dipole-mo- 
ment oscillations of an atom no longer in a bound but in a 
quasistationary state (see 2). The imaginary parts of the hy- 
perpolarizabilities y, and y, determine the lag of the P ( t )  
oscillations behind those of F( t ) ,  a lag due to light-energy 
absorption caused by the two-photon ionization. At 
fiw > 1 En I ,  an imaginary part is acquired also by a and yields 
the one-photon ionization cross section. It can be shown in 
this case that allowance for perturbation-theory terms a F3, 
besides yielding more accurate values of the cross section, 
leads to a new effect, whereby the ionization-photocurrent 
density acquires an oscillatory component of frequency w. 
Examining the variation of the ionization with time, we see 
that with increasing "size" R z v t  of the photoelectron wave 
function ( v  = [2(En + h ) / m  ] ' I2 )  the dipole-moment 
component at the frequency w also increases: P(w) a R 2. 

Thus, at 4m > !En 1, the electric properties of an atom in an 
strong field are qualitatively altered at the frequency w: the 
amplitude of the P(t)  oscillations remains constant only to 
first order in F, while the terms containing y in ( 12) are no 
longer correct. This is formally manifested in the fact that in 
some of the composite matrix elements the susceptibility y 
acquires Green's functions G k; ) with positive energy 
E = W, + & (we note for the sake of comparison that no 
such Green's functions occur in expression (6)  for 0 at any 
w > 0). The matrix elements 

which contain G ip+ :lf and G k,; ) of like energy E,, > 0, simui- 
taneously then diverge, meaning that P(w) a R increases 
without limit. 

It is easy to verify that divergences of the same type 
appear in the calculation of the corrections to susceptibilities 
X(  - WN, ON- ,  ,..., 0 , )  of general form, if the expression 
forx contains Green's functions G,,, with E, > 0. For exam- 
ple, allowance for the terms - F s exp( - 3iwt) in the expan- 
sion (2),  which give the corrections to the third-harmonic- 
generation coefficient p, is no longer valid (leads to 
divergences) at h> +JEn I, whereas the terms -F5 
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FIG. 2. Real (solid line) and imaginary (dashed) parts of 
the polarizability y, for the 1s level of hydrogen in a lin- 
eariy polarized field (in atomic units). The real part of the 
polarizability a (o) (thin line) and the hyperpolarizabi- 
lity y, in a circulaffield at below-threshold energies are 
shown for comparison. At o < 0.25 the difference between 
y,  and y, is negligible. The contribution of the two-pho- 
ton ionization r,, to Im y, is also shown. 

exp( - Siwt) which determine P(5w) in the first nonvanish- threshold). The presence of "anisotropy" in ( 12), however, 
ing order, are valid for all w. also gives rise to new effects. Rewriting the expression for 

We assume hereafter [in accord with ( 3  1 that y  in all P(w ) in the form 
the matrix elements contain only the Green's functions G '+'. 
The tensor y remains therefore finite also at &I > IE, I .  Al- P(o) =(a+y,lFIZ)F+(yl-~c)llFIZ~, 
though it does not describe the atom's dipole moment in this we see that the diaerence between y, and yc leads to a differ- 
case, it is only when so defined that this tensor retains the ence between the polarizations of the vector and the pump 
meaning a quasistationary-level property (see P4)' The F (these two coincide, however, in the important cases of 
numerical values of y were calculated by the procedure used linear and circular wave polarization). The degree of ellipti- 
forb in $2. Figure 2 shows experimental plots of the real and 

city (&,( + = A ) of the scattered radiation is also 
imaginary parts of y, for the 1s state of hydrogen. Just asp, 

changed. For forward scattering, the polarization change 
the hyperpolarizability contains pole and threshold singu- AE = E,,, - E takes the simple form 
larities, and only one- and two-photon resonances are possi- 
ble (on thep- ands-, d-levels, respectively). The hyperpolar- 
izability decreases rapidly in the frequency region 
fiu > 1 E,,  I. The asymptotic behavior of y, ,  at &I) I En I 

is similar to (8),  i.e., the real and imaginary parts of y are of 
equal magnitude and decrease in proportion to o - '.'.Just as 
in the case of p, the asymptote is reached quite far beyond 
the threshold. Results similar to those of $2 are also obtained 
by comparison of the hyperpolarizability of the 1s state with 
the hyperpolarizability y investigated in Ref. 10 for the case 
of a S potential. The behavior of the hyperpolarizabilities of 
the excited states in nonhydrogenic atoms is illustrated by 
the data of Table I and 11. We present also the values ofa  and 
y for the excited 7s state of cesium at the second neodymium- 
laser harmonic 2w, > I E :?' I : 

In most cases, the parameters y , ,  contribute correc- 
tions a F2 to effects, determined by the polarizability a ,  of 
first order in perturbation theory. Thus, for the cross section 
of Rayleigh scattering of light we get from ( 12) 

The very same combination I ' y ,  + A ' y ,  determines also the 
corrections to the s-level shift (see 54). Of primary interest 
in such cases is a comparison of a and y, from which we can 
assess the extent to which perturbation theory is valid for the 
description of an atom in an intense field (most instructive in 
this respect is Fig. 2, which shows that IRe y l s  la[,  if 
h < (En ( and that [Re y 1 4 /Re a1 at frequencies above 

For intense light propagating in the medium, this effect leads 
to self-induced light-polarization-ellipse rotation through 
an angle proportional to the difference y, - y, (Ref. 1 ). It 
can be seen from the data of Table I1 that the polarization of 
the scattered light can change noticeably in alkali-metal la- 
ser fields. The difference y, - y, is largest in the vicinity of 
two-photon resonances of on s levels, since y, has no such 
resonances in view of the dipole selection rules. Linear and 
circular light propagates through the medium without 
change of polarization. In this case the parameter y, or y, 
determines the self-focusing of a spatially confined beam." 
An interesting effect can be observed if y, and y, are of oppo- 
site sign (see Fig. 2), so that the beam becomes focused or 
defocused, depending on the polarization of the light. 

We consider now the hyperpolarizabilities of degener- 
ate states. In our case, the calculation of y calls for prior 
diagonalization of the polarizability matrix of the sublevels 
J n L M )  of the nL level, something impossible in general 
form.' The situation is simplified in the case of linear and 
circular polarizations of F( t ) .  In these cases, the moment 
induced in the atom at the frequency w is 

We assume that the linear and circular fields are polarized 
along the z axis (atomic quantization axis) and in the xy 
plane, respectively. It is then convenient to represent the 
dependence of y on the magnetic quantum number of p- 
states in a form similar to the expression of a,, in terms of 
the scalar (as),  vector (a"), and tensor (a') components of 
the polarizability tensor ajk (Ref. 22): 
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TABLE 111. Nonlinear susceptibilities of 2p level of hydrogen. The parameters r:;:$i', which 
give the dependence of r, on the magnetic quantum number, were determined in analogy 
with Eq. (14). 

I I I I 

(at L > 1 the expansion of y also contains terms with M and 
M 4, SO that the number of independent atomic parameters is 
increased). In nonlinear-optics applications, principal inter- 
est attaches to the scalar parts a'"' and y:",', that determine 
the value of the vector P(w) averaged over the magnetic 
sublevels (as well as the shift of the "centroid" of the nL 
level in the optical field). 

The dispersion relations for the quantities y::"." are 
similar to those shown in Fig. 2. In view of the large number 
of the parameters y for excited levels Table I11 lists the val- 
ues of y::"." for the hydrogen 2p-level only for a few selected 
characteristic frequencies (near the midpoints of the princi- 
pal intervals between resonances and thresholds). Inasmuch 
as in the case of excited states there is insufficient informa- 
tion even on the polarizabilities, Table I11 also includes the 
values of a's3u"'. The limited set of frequencies notwithstand- 
ing, Table I11 indicates order-of-magnitude values o f a  and y 
for excited states. At frequencies up to the first threshold 
(two-photon ionization), the parameters y increase rapidly 
with increasing level number n ( y a n L 4  in the static case). At 
frequencies above threshold, this difference vanishes. The 
values of y are considerably smaller at fio > lE, I that at 
fio < (En  1 ,  and decrease rapidly ( a w -') with increasing w. 

$4. LEVEL SHIFT AND PHOTOEFFECT IN A STRONG LIGHT 
FIELD 

The connection 

dEMF*=-P (a) / 4  (15) 

between the dipole-moment component at the frequency of 
the external field P(w)  and the quasilevels E of the atomic 
level is a generalization of the existing relations for a system 
in a static field. Using ( 12), we have hence for the shift of the 
s level in a light field 

For degenerate states in a linear or circular field we obtain 
from ( 13) a similar relation 

AEl, c = - i l h ~ l ,  c ~ F ~ 2 - ' / n ~ ~ ,  c l F l b 3  (17) 

that describes not only the shift but also the splitting of the 
level (as a result of the dependences of a and y on M). 

From thenumerical results of 93 it follows that the level 
splitting and shift are of the same order of magnitude and 
depend substantially on the radiation frequency. At frequen- 
cies near resonances we have 1 y 1 $ la 1 ,  so that the correc- 
tions a F4 are significant in fields F that are much weaker 
than the atomic field Fo = 5.10' V/cm. At > IE, / these 
corrections are unimportant and the level position is deter- 
mined with good accuracy by the quadratic Stark effect. At 
frequencies above threshold, however, interest attaches to 
the imaginary parts of a and y, which determine the ioniza- 
tion broadening r of the InLM ) level: 

I?=-:! Im A15 
[it is important that expressions (16) and (17) are valid at 
all frequencies, including at %J > (En  ( ( Ref. lo ) ,  when it is 
no longer correct to allow for the term with y in the expan- 
sion (2)  o fP(w)] .  At i / E ,  / <%J < IE, / the polarizability a 
is real, and Im AE is determined only by the imaginary part 
of y, which yields in this frequency interval simply the two- 
photon ionization probability W, = T/fi of the atomic state 
considered. For degenerate states, the total probability of the 
nL-level ionization is determined only by the scalar part of 
the hyperpolarizability. The values of W, for atoms have 
been calculated by many authors (see Ref. 2 ) .  Some idea of 
polarization and dispersion dependences of W2 for hydrogen 
and cesium atoms can be gained from the data of Tables I- 
I11 and of Fig. 2. 

At fiw > IE, / the dominant atom-decay channel in a 
field is the photoeffect, and its total probability for the nL 
level is 
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In this case Im y introduces in W, corrections proportional 
to the wave intensity and dependent on both the frequency 
and the polarization of the light ( W, does not depend on the 
type of polarization). Actually 4 Im ylF12 is the "induced" 
radiative correction to the photoeffect cross section and 
stems, in contrast to the usual radiative corrections, from 
interaction with real photons. Analysis'' shows that Im y is 
a sum of two parts: Im y = r, + r,-,. One of them, r , ,  
yields the probability of the two-photon above-threshold 
ionization that alters the energy spectrum of the photoelec- 
trons (Ef =En + 2 k ) .  This part (which is by its very 
meaning positive at all k > IE, I ) is given in Tables I and I11 
and in Fig. 2. The other part, T,-,, is determined by the 
interference between the amplitudes of the ordinary pho- 
toeffect and of the three-photon process of one-photon ioni- 
zation with photon re-emission (in accordance with the 
scheme E,, + 263 - k = En + k ) ,  and includes also the 
"nondiagrammatic" components that stem from the terms 
T'"" of Eq. ( 10). In contrast to r z ,  the corrections connect- 
ed with re-emission can be positive as well as negative, de- 
pending on w. The total correction to the photoeffect, as can 
be seen from the numerical data, has a rather complicated 
behavior. 

Thus, fourth-order effects can either increase or de- 
crease the ionization width of a level. For degenerate states, 
the signs of the corrections are found in a number of cases to 
be different for different sublevels. Effects of this kind may 
turn out to be substantial in resonant ionization of atoms, 
when one-photon ionization from a resonant level is possi- 
ble. At frequencies not much higher than the ionization 
threshold, the ratio IIm y/Im a1 for excited states reaches 
quite high values / Im y/Im a /  - lo4 for the 3p state of hy- 
drogen), so that fourth-order effects become significant even 
in laser fields of strength F- 10' V/cm. In the IE, I 
region, however, the photoeffect probability 
W, - w - ' L  + 4 3 5 '  decreases more slowly (for states with 
small L )  than Im y, and the corrections a F4 become insig- 
nificant. 

APPENDIX 

Contribution of intermediate states of the discrete atomic 
spectrum to the composite perturbation-theory matrix 
elements 

To calculate composite matrix elements it is necessary 
to determine correction functions of the form 

IF (r) = 3 drl GE(r, r r )  V (r') (D ( r r ) ,  (-4.1) 

where @(r)  is a function that attenuates exponentially at 
infinity (e.g., the bound-state function). Note that at E <O 
the function Y ( r )  also decreases exponentially with increas- 
ing r. If the spectral expansion (4)  is used for the Green's 
function G,, the function Y ( r )  breaks up naturally into two 
components, one belonging to the subspace of the discrete- 
spectrum functions, and the other to the continuum: 
Y (r) = l ( r ) + ' 2 ( r ) ,  = P 1 ,  Yz=P2Y,  

, - = I  P,P2=0. 
(A.2) 

This is followed by considering, for simplicity, func- 
tions Y(r )  of a single variable, which $escribpdial motion 
with a definite angular momentum L. P, and P, are then the 
operators for projection on the subspace of the radial func- 
tions: - 

@,, and @, are the Coulomb radial functions of the dis- 
crete and continuous spectra. Let us find the asymptotic 
form of Y,(r) and r- CC. From (A.2) and (A.3) we have 

As r- 03,  QEL ( r )  is a rapidly oscillating function of the en- 
ergy E, and the main contribution to the integral is made by 
the vicinity of the point E = 0. Substituting the integral rep- 
resentationZ3 of @, in (A.4) and an estimate by the station- 
ary-phase method yield (in atomic units) 

We see that the behavior of Y,(r) as r -  co is similar to the 
behavior of a Coulomb wave function with zero energy. In 
particular, Yz(r) falls off at infinity according to a power 
law, not exponentially. Obviously, the asymptote of Y, ( r )  
differs from (A.5) only in sign, since the sum 
Y, + Y2 = Y ( r )  is a rapidly decreasing function. 

This yields a somewhat unexpected result. The func- 
tions Y, and Y, have a finite norm and, as is clear from 
(A.21, 

The functions rY, and rY2, however, are already unnormali- 
zable, i.e., the integrals 

diverge, as follows from (A.5). At the same time, the sum 
rY, + rY2 = rY remains normalizable in view of the rapid 
decrease of Y ( r )  . 

h 

The functions Y, = P,Y always appear (explicitly or 
implicitly) in the calculations of expressions such as (A. I ) ,  
when only the sum over the discrete spectrum is retained in 
the spectral expansion. Calculation of matrix elements with 
several Green's functions is then equivalent to calculation of 
integrals of slowly decreasing or even increasing functions, 
and, generally speaking, leads to divergences. 

Thus, in the case of the dipole interaction V = - F.r, 
divergences appear in the composite matrix element starting 
with fdurth order, and in the presence ofmultipole perturba- 
tions V a  rk with k >  1 they appear also in third-order ele- 
ments. In these cases the calculations of the nonlinear sus- 
ceptibilities, with allowance for a large number of discrete 
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levels in the expansion of G and with the contribution of the 
continuum discarded, can yield results with arbitrarily large 
deviations from the correct ones. 
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