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The response of an oscillator moving in a medium to that radiation-force component which 
does no work but induces rotation is considered. The radiation torque is shown to rotate the 
dipole towards the direction of its motion. The dipole executes small oscillations about this 
direction. The frequency of these oscillations is determined. The effect leads to spontaneous 
alignment of the dipole moments as they pass through the medium. The feasibility of observing 
the effect in experiment is discussed. 

The well-known reaction force exerted by radiation on 
its source was initially discussed for motion in vacu~m, ' .~  
and later also for emitters moving in a The over- 
whelming majority of papers deal with that reaction-force 
component which performs work and determines thereby 
the radiation power. 

Yet the reaction-force component perpendicular to the 
source velocity, while performing no work, does induce rota- 
tion. It will be shown here that the reaction-force torque 
causes spontaneous alignment of radiating oscillators in the 
direction of their motion, oscillating about this direction." 

The initial analysis deals by way of example with an 
oscillator moving at nonrelativistic velocity in a medium 
having a dielectric constant ~ ( w )  = 1 - mi/m(o + iv,) (o, 
is the plasma frequency and vo is the collision frequency). 
This model of the medium is quite general, since it describes 
a collisionless plasma and a weakly ionized collisional gas 
(W 4 vo) . Also discussed is spontaneous self-polarization in a 
gas of unperturbed two-level molecules, where 
E ( W )  = 1 - fif /(m2 - fi: ) (ac is known as the cooperative 
frequency of the gas6 and 0, is the transition frequency in a 
two-level system). In the latter case the polarization is due to 
the action exerted on the oscillator by the polariton modes it 
excites. The effect we are describing differs in this respect 
from the alignment of fast molecules by pair  collision^,^ 
since the alignment is caused here by collisions with collec- 
tive excitations of the medium (plasmons, polaritons, and 
others). 

To investigate the effect in question, the Poisson equa- 
tion for the electric-field potential is used to determine the 
total force acting on the oscillator in the medium. This force 
has two components, one collinear with the oscillations 
plane, and the other perpendicular to this plane. The collin- 
ear component of the total force gives rise to a change in the 
vibrational energy of the oscillator (particularly to excita- 
tion if wave radiation in the region of the anomalous 
Doppler effect predominates2.8.9). Excitation of an oscilla- 
tor by its own field has been the subject of many investiga- 
tions (see Ref. 2 and the reference therein), and will not be 
discussed here. At the same time, the orthogonal reaction- 
force component rotates the oscillator and causes it to nutate 

about its motion axis. Thus, both the oscillator excitation 
and the alignment effects have a common cause, viz., action 
produced by dipole-excited natural waves of the medium. 

Since the radiation force is weak under ordinary condi- 
tions2 (in the present formulation, the sufficient condition 
for its weakness is the inequality SL, (SL, where SL, is the 
frequency of the field-induced nutation), the excitation and 
alignment effects can be treated in first-order approximation 
independently, with the radiation force determined under 
the assumption that the oscillator motion is given. We note 
here that this procedure is not merely permissible but is nec- 
essary in the solution of problems involved the action of radi- 
ation force (lest paradoxes be encountered, such as charges 
that are accelerated under the influence of the self-field 
charges; see Ref. 2 for details). Expressions are obtained in 
this approximation for the nutation frequencies and damp- 
ing rate. The paper concludes with estimates that point to 
the feasibility of observing the effect. 

We proceed now to formulate the problem. Assume an 
oscillator moving with velocity v t zo in a medium and oscil- 
lating simultaneously at a frequency f i  in the xz plane, so 
that the oscillation plane makes an angle x with the z axis. 
Assuming nonrelativistic motion, we begin with the Poisson 
equation for the potential of an electric field: 

~ A ( p = - 4 n p , , ~ ,  (1)  

where p,,, = eS(y)S(x - b sin Rt)S(z - vt - a sin a t )  is 
the imposed charge density, E the dielectric constant of the 
medium, tanx = b /a, and the oscillator peak-to-peak swing 
is d = (a2 + b ') 'I2. The source is assumed to move in a nar- 
row channel located between the planes y = f S. If the 
channel half-width S is much smaller than all the character- 
istic wavelengths of the system considered, the field in the 
vacuum gap is uniform in y (Ref. 2). Using these conditions, 
taking the Fourier transform with respect tor  and t (see Ref. 
6),  we obtain an expression for the electric field produced by 
the oscillator in the channel: 

i kp (a ,  k )  e x p [ - i a t + i k , z f  i k , ~ - 6 ( k , Z + k , ~ ) ' ~ ]  E=--J. 
4n' E ( a )  ( k,2+kV2) ''I 
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Here 
cz 

p ( w ,  k )  =2ne z J. (k,a+k,b)6 (a -k ,v -nQ)  

is the Fourier transform of the imposed charge density and 
J,  is a Bessel function. To obtain the force acting on the 
oscillating charge, we must put z = vt + a sinat, 
x = b sinat in Eq. (2)  and multiply the result b,y the charge 
e; this yields 

x exp {i ( m - n )  Q t ) e s p  {- (k,Z+kZz) '126)do dk, dk,. (3)  

The nonzero averaged moment M = [rx F] produces a 
force component proportional to sin To separate com- 
ponents of this type we must put m = n + 1 in (3)  and use 
for the Bessel function the recurrence formula 

In- ,  ( x )  ( x )  =2dJn ( x )  ldx.  

As a result of these transformations, the expression for 
the force takes the form 

eZ sin Qt F --- 0 -  2n z j 6 (a -k ,v -nQ)exp[ -6  (k , '+k, ' )"]dJn2(z) /dz ,  - 
n=-ll E ( a )  (k,'+kZ2) 

X k dk,  dk ,  d o ,  

z=bk,+ak,. 

The moment of the force Fo is designated M = (O,M,O) and 
is equal to 

M =  -- e2 s i n q t  
2n 

5 (ak , -bkz ) ) rp [ -6  (k2+k,")"]dJ.'(z)ldz 
dk, dk,.  

,,=-- 6 (k,v+nS2) (kZ2+kx" 'Y, 

(5) 
With new integration variables z = ak, + bk, and 
T = ak, - bk, , Eq. ( 5 ) takes the simpler form 

M = - -  e2 ' I ( z ,  n ) T  J,;' ( z )  ciz, 
4,d n=-m dz 

az -bz  a*=-  6 
u+nQ, v = -  a'" d 

It can be seen from (6)  that the moment of the force is 
determined by the Hermitian part of the dielectric constant, 
whereas the radiation force and the polarization loss are de- 
termined by the anti-Hermitian part  of^.^.^ The difference is 

due essentially to the fact that the torque-producing compo- 
nent of Fperforms no work and does not affect the radiation- 
loss power. This makes the analysis somewhat more difficult 
since, for example in a transparent medium, the radiation- 
force torque is determined by principal-value integrals of the 
form jdof (@)/do). 

It can also be seen from (6) that if the oscillator oscil- 
lates along (b = 0) or across (a  = 0) its motion, the mo- 
ment M vanishes. Thus, an oscillator with orientation angles 
,y = 0 or rr/2 is in equilibrium. 

Let us test the stability of these equilibrium states. To 
this end we transform the integral I into 

m m 

where K,  is a modified Bessel function. To derive (7) we 
have used the formula 

- 
exp [ - v  (T'+ zZ)  '"1 2 J K . [ ~ z ~  ( t 2 + v 2 ) ~ ] c o s t ~ d t =  

0 ( t 2 + z 2 ) ' h  - 
Relations (6) and (7)  can be further simplied by speci- 

fying an actual model of the medium. We consider for the 
sake of argument a collision-dominated plasma with 
E = 1 - W$/W(W + ivo) (oo  is the plasma frequency and vo 
the frequency of the collisions between the electrons and the 
heavy particles). This choice of the dielectric constant is 
general enough, since it describes collisionless plasma as well 
as an absorbing medium (ao 4 v,), when E = 1 + iu/ 
o ( u  = mi /vo). After simple calculations in (7)  we arrive at 
the relation 

m 

where L = az/b,fi = a d  '/bv, V,, = v(,d 2 / b ~ ,  Go = w(,d 2/bv. 

Substitution of (8)  in (6)  leads to a rather unwieldy 
equation that can, however, be further simplified. The sim- 
plification is made possible by the fact that the series 

rn m 

S =  x J ~ ( z ) e x p ( i n Q t ) - J ~ ( z ) + 2 ~ ~ ~ ' ( z ) c o s n ~ t  
?)=-la ) I =  1 

can be summed. Indeed, using the relation 
n/: 

we rewrite S i n  the form 
1/2 m 

2 Sl t  Q t  
= - drp cos ( 2 z  cos rp sin -) = 1. ( 2 1  sin -) 

0 2 2 .  
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As a result, Eq. (6)  takes the form 

t exp ( - ~ , t / 2 )  sin (Sl t /2)  sin[ ( a o Z - ~ 0 2 / 4 )  ' 't] 
x s -  : dt 

0 ( tZ+vZ) % 

x 5 ZK,  ( y z )  1, (pn)  sin i t  dz,  (9)  

where 

The integral with respect t o t  is expressed in terms of the 
spherical harmonic Q, ,, ( u  ). When the dipole approxima- 
tion is applicable (Rd /v( I),  however, or when either T%P 
or at /b)p, it suffices to calculate this integral approximate- 
ly, with only the first term of the series expansion of the 
Bessel function. Using the tabulated integral 

nut  j K ,  (ya)  sin i t  dn = .- 
o 2b (a2tZ/b'+yz) '"y 

we rewrite (9) in the form 

- 
..I t2 exp (-g0t/2) sinZ (Sl t /2)  sin [ (a o z - ~ 0 2 / 4 )  

D [ ( l + a z / b 2 )  t2+vz]'/2 
at. (10) 

In the case of a collisionless plasma, the expression for 
the torque becomes 

00 

3e2a ,,a t2 sinz (S l t /2 )  sin a ,t M,=--j dt, 
bd , [ ( l+a2/b ' )  t2+vz]"2 

(11) 

while for a weakly ionized collisional (v,)o,) we have 

od2 
dt ,  o=-. 

bv  
(12) 

Equation (1 1) remains finite also as v-0. In this approxi- 
mation we have 

Equation (12) can be readily simplified if the inequalities 
a<R,v/SR ) 1 hold. Then 

Similar results are obtained for the torque of the radi- 
ation force also if the oscillator moves in a gas of unexcited 
two-level molecules. Neglecting collisions, such a medium is 
described by a dielectric constant E = 1 - Rf/(w2 - R: ), 
where f2f = 8?re2d 2NRl/3fi, N is the density of the mole- 
cules, and 0, is the transition frequency. Omitting the inter- 
mediate calculations (which are similar to those given 
above), we write only the final result: 

Relations (13) and (14) show that the equilibrium 
statex = n-/2 is unstable, but the equilibrium state x = 0 is 
stable. Oscillators with initial random orientation become 
therefore aligned in the direction of their motion, oscillating 
about the equilibrium position x = 0. Let us estimate the 
frequency of this oscillatory motion. Starting from the 
torque equation J d  2 ~ / d t  = M, we obtain for motion in a 
collisionless plasma 

and for a weakly ionized gas with collisions 

o,Z= (3eZaQz/2mv3)ln  (~1652) .  (17) 

It is interesting to note that the nutation frequencies w, 
and w2 do not depend on the dipole moment, but are deter- 
mined by the parameters w, and a of the medium, by the 
natural frequency R, and by the particle velocity. 

The nutating dipole emits electromagnetic waves at fre- 
quencies R + 0, or R + w,. Emission of the electromagnetic 
waves leads to damping of the oscillations. To estimate the 
damping rate, the torque of the radiation force3' fp = (2e2/ 
3c3)r, must be taken into account in the torque equation. 
Simple transformation recast the nutation equation in the 
form 

from which we see that the radiative damping rate of these 
oscillations is 

We now estimate the characteristic frequencies of the 
nutation produced when fast ions move in a metal. Let an 
N '+ ion be channeled in a gold film along the [ 1001 axis with 
velocity v = 2.4. lo9 cm/sec (E-44 MeV) and let a transi- 
tion from level n = 1 to level n = 2 take place in the course of 
the motion. l o  Such transitions are due to resonant excitation 
of the electron spectrum by the crystal field." The transition 
is then accompanied by torque-producing plasmon radi- 
ation. This radiation causes nutation at a relative frequency 
[see (16) 1 

ol/Q= (3nezoo /4mv3)  ' k 2  

It seems likely that the effect considered in this paper can 
explain the experimentally observed splitting of the energy 
levels of ions traveling in metal films." The experimentally 
obtained relative splittings Aw/w - (Ref. 1 ) agree well 
with those calculated from Eq. ( 16). 

The ions or atoms leaving the layer of matter become 
aligned, as already noted, predominantly in the direction of 
their motion. The self-polarization time is determined by Eq. 
( 19). To estimate the polarization time we consider the tran- 
sition n = 1 - n = 2 in the nitrogen ion N 6 f  (the frequency 
ofthis transition is R-5-10'' set-I). Using (19), we obtain 
yo-0.2. 1013 sec-I, a polarization time T, -2. 10-l3 sec, 
and a self-polarization length L, z 5 .  cm. 

Self-polarization can be detected by measuring the ab- 
sorption of polarized radiation that passes through a layer of 
ions. If the absorption increases when the polarization vec- 
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tor coincides with the direction of motion, this attests to 
spontaneous alignment of the dipole moments. 

In conclusions, I wish to thank V. V. Kocharovskii and 
V. V1. Kocharovskii for a helpful discussion of the results. 

"This effect is similar in some respects to radiative self-polarization of 
spins.' An essential difference, however, is the presence, in the case of 
radiative self-polarization of spins, of a longitudinal magnetic field along 
which the magnetic moments become aligned, whereas in our case there 
is no such field. 

"This is precisely why the presence of charges moving with constant ve- 
locity (e.g., ofa nucleus with a nearby oscillator) does not alter the value 
of M, since the field produced by these charges is time-invariant in the 
moving reference frame. 

j'We use here the expression for the radiation force in vacuum. This is 
permissible if the inequalities n)u,o, hold. In this case the dielectric 
constant E tends to unity. 

(Theoretical Physics and Astrophysics, Pergamon, Oxford, 1979). 
jL. D. Landua and E. M. Lifshitz, Electrodynamics ofcontinuous Media, 
Pergamon, 1959. 
4V. L. Ginzburg and V. Ya. Eidman, Zh. Eksp. Teor. Fiz. 36, 1823 
(1959) [Sov. Phys. JETP 9, 1300 (1959)l. 

'A. A. Sokolov and I. M. Ternov, Dokl. Akad. Nauk SSSR 153, 1052 
(1963) [Sov. Phys. Doklady 8, 1203 (1964)l. 

6V. M. Agranovich and V. L. Ginzburg, Spatial Dispersion in Crystal 
Optics and the Theory of Excitons, Springer, 1984, §§ 1-7, 14, 15. 

'A. P. Kazantsev, Zh. Eksp. Teor. Fiz. 51,1751 ( 1966) [Sov. Phys. JETP 
24, 1183 (196711. 

'L. G. Naryshkina, ibid. 43,953 (1962) [16,675 (1963)l. 
9B. E. Nemtsov and V. Ya. Eidman, ibid. 87, 1192 (1984) [60, 682 
(1984)l. 

I0Z. S. Dat, C. D. Monk, 0 .  H. Crawford, et al., Phys. Rev. Lett. 40, 843 
(1978). 

"V. V. Okorokov, Pisma Zh. Eksp. Teor. Fiz. 2, 175 ( 1965) [JETP Lett. 
2, 111 (1965)l. 

'J. D. Jackson, Classical Electrodynamics, Wiley, 1962. 
'V. L. Ginzburg, Teoreticheskaya Fizika i Astrofizika Nauka, 1981. Translated by J. G. Adashko 

Sov. Phys. JETP 64 (I), July 1986 0.  E. Nemtsov 28 


