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A general quantum-mechanical approach is adopted to investigate how the interaction of a 
relativistic electron with the phonon and electron subsystems of a crystal affects the stability of 
motion in axial and planar channels. It is shown that the generally-adopted interpretation of 
channeling of electrons in terms of quasiperiodic motion accompanied by relatively slow 
particle "diffusion" in the space of transverse energy and angular momentum is invalid. For 
electron energies exceeding a few tens or a few hundred of MeV (for axial and planar cases, 
respectively), there is no channeling in this interpretation. The relevant quantum-mechanical 
and classical expressions for quantities characterizing the dechanneling process are obtained 
for electrons of lower energy and for heavy negatively-charged particles of energy exceeding a 
few hundred GeV. 

It is well-known that the Born approximation is invalid 
for a fast charged particle moving at a sufficiently small an- 
gle 8 to a crystal axis or plane. This is because higher-order 
corrections increase rapidly as 8-0 (Ref. 1 ). The basic idea 
that simplifies the theoretical analysis of the motion of parti- 
cles at these small angles is that the true interaction potential 
between particle and crystal can be replaced by a "contin- 
uous potential" of the axes and planes along which the parti- 
cle motion takes place.2 From the formal point of view, the 
"continuous potential" is the zeroth component of the Four- 
ier expansion of the crystal potential in terms of the longitu- 
dinal coordinate z measured along the family of axes under 
consideration, or along the two directions ( y,z) in the 
planar case.3 

The continuous-potential approximation can be used to 
demonstrate qualitatively new features of the motion of fast 
charged particles in an oriented crystal. In particular, the set 
of eigenfunctions of a particle in a crystal includes states 
associated with an atomic string or plane. These states have a 
discrete "transversew-energy spectrum, i.e., a new integral of 
motion that arises naturally in the continuous-potential ap- 
pro~imation.~.~ 

Allowance for the discrete nature of the atomic planes 
and strings, and for the presence of phonon and electron 
excitations in the crystal, leads to the broadening of the ener- 
gy levels associated with transverse motion and to radiation- 
less transitions between them. Further development of the 
idea of a continuous potential provides a description of the 
kinetics of charged particles in oriented crystals in terms of a 
rigorous perturbation theory that is free from the 0- 0 diver- 
gences. 

It has been that the motion of heavy positive- 
ly-charged particles (protons or ions) under channeling 
conditions is relatively stable. The problem is then essential- 
ly quasiclassical and perturbations are small because the po- 
sitively-charged particles travel mostly at large distances 
from the atomic planes and strings, so that their interaction 
with the electron and phonon subsystems in the crystal is 
appreciably weaker than in the amorphous medium. 

For light relativistic particles (electrons or positrons), 
the situation is different for two basic reasons. First, for en- 
ergies between 1 MeV and a few tens of MeV, the number of 
levels in the channel is large,' so that it is essential to use a 
quantum-mechanical analysis and the attendant concepts of 
energy levels, level width, and transition probabilities. Sec- 
ond, we expect that the channeled motion of negatively- 
charged particles, will be less stable than that of positively- 
charged particles. Actually, in the case of electrons, the 
continuous-potential minima lie on the atomic strings and 
planes of the crystal, so that particles in bound state experi- 
ence maximum perturbation because they move in regions of 
higher electron and nuclear density. On the other hand, for 
states whose wave function is localized well away from the 
nuclei (for example, the high angular-momentum states in 
axial channeling when the electron winds itself on the axis in 
the form of a helix with a relatively large radius), even a 
weak perturbation due to valence electrons in the crystal 
may produce a very significant change in the nature of the 
motion because the binding energy is low. 

A detailed analysis of these questions began in Refs. 8- 
10 in which we were concerned only with the interaction of 
fast particles with the phonon subsystem of the crystal" 
(scattering by the thermal oscillations of nuclei). In the 
present paper, we examine processes accompanied by the 
excitation of the electron shells of crystal atoms. These must 
be taken into account, since the elastic scattering cross sec- 
tion in the crystal is lower than in the amorphous medium 
because the collisions between a fast particle and the regular- 
ly distributed scattering centers are correlated.' We shall 
concentrate our attention on negatively-charged particles. 

A further aim of this paper is to analyze the transport 
equations describing the passage of electrons through orient- 
ed crystals in both the quantum-mechanical and quasiclassi- 
cal limits. The results obtained in section 2 shows that, con- 
trary to the generally held view, stable quasiperiodic 
trajectories coupled to a string or plane exist in a broad range 
of energy. The only meaning that can be given to the well- 
established phrase "electron channeling" is that the electron 
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trajectories become highly curved when the electrons travel 
at a small angle to a crystal string (plane) and there is an 
attendant redistribution of the particle flux over the cross 
section of the channel. 

1. INELASTIC SCATTERING OF A CHANNELED PARTICLE 
BY ELECTRONS IN A CRYSTAL 

To calculate the transition probability for a fast particle 
between transverse-energy levels i andf, due to inelastic in- 
teractions with the electron subsystem of the crystal, we 
shall use essentially the same devices and methods that were 
used for elastic scattering.*-lo The difference between the 
exact Hamiltonian for the interaction between a particle and 
the crystal and the approximate Hamiltonian that includes 
only the continuous potential of the atomic strings and 
planes can be looked upon as a perturbation which, in gen- 
eral, produces a change in the state of both particle and crys- 
tal. Since the state of the crystal is not fixed in advance, the 
final expressions must include summation over the "extra" 
variables describing phonon and electron excitations in the 
crystal. Summation over the phonon excitations can be car- 
ried out analytically, as in Ref. 8, because their energies are 
low. 

Two features of inelastic processes must be taken into 
account when the sum over electron excitations is evaluated. 
First, since the excitation of different atoms in the crystal 
occurs incoherently, it is sufficient to consider scattering by 
one atom. Second, for large momentum transfers, the veloc- 
ity of the recoiling electron is close to that of light, so that 
retarded effects and the relativistic energy-momentum rela- 
tion for the electron must be taken into account. However, it 
is possible to show rigorously" that, to within2' O ( l / m  ) 
(where I is the ionization potential and m the electron 
mass), the scattering probability can be calculated for tran- 
sitions with relatively low transferred energy AE (m, and 
this can be followed by summation over all the final states. 

Taking all the above points into account, we obtain the 
following expression for the i- f transition probability due 
to inelastic particle crystal interaction in the planar case: 

+m 

2e4n dh d x  d y  exp [ -u2  ( x -  y )  ' / 2 ]  
~ , : ; ~ l  = - J 

- m  (h2+x2)  (hZ+ y 2 )  

Xh, ( X I  0 t t ( - p )  

x [  ( l l ( x , h ) B ' ( & l ,  h ) )OO-- (B(x ,  h ) ) O O ( ~ ' ( y , h ) ) n O l .  (1 

As in Ref. 8, n is the density of atoms in the plane, e is the 
electron charge, and u is the amplitude of thermal vibra- 
tions. Indexed expressions such as A 0°, a,f represent the fol- 
lowing matrix elements: 

where f ,  (x )  is the wave function describing the trans- 
verse motion of a channeled electron, p,(r,, ..., r , )  is the 
wave function describing the ground state of an atom, 
r,, ..., r, are the coordinates of atomic electrons (measured 

from the nucleus), and Z is the atomic number of the crystal. 
The functions b and B in ( 1 ) are respectively given by 

b  ( x )  = exp ( - i x x )  , B ( x .  h )  = oxp ( ixx j - ihy j ) .  

where xi, y, are the corresponding components of the posi- 
tion vector of the jth electron in the coordinate frame in 
which the z-axis lies along the longitudinal velocity of the 
channeled particle and the x-axis is perpendicular to the 
channeling plane. 

The probability of a change in the transverse motion of 
a particle in the case of axial channeling can be obtained in a 
similar way," and the result is 

whered is the distance between atoms in a string 
z 

C (s) = erp (isp,) , c (r) = exp (isp) ; 

and p, is the transverse position coordinate of the jth elec- 
tron. 

The "inelastic" width of the ith level, i.e., the total prob- 
ability per unit time that a particle will leave the level i as a 
result of inelastic processes, can be obtained from W p  by 
summing over all the final states f #i. Using the complete- 
ness property of the set of wave functions for the transverse 
motion, we obtain the following expression for the planar 
case: 

4.11 

~ [ b i i ( x - y )  - b i i ( x )  hii ( - p )  I 

whereas in the axial case, 

XI (C ( s )  C* ( k )  ) ""- (C ( R )  ) O0 (C' ( k )  ) ''1. (4) 

A relatively simple estimate for the inelastic level width 
in the case of planar channeling of electrons can be obtained 
for high-lying levels in the limit of large Z and small thermal- 
vibration amplitudes. For most atomic electrons (except for 
the outermost-shell electrons), we then have 
(x')~ > (x,?) R u2 (where (x')~ is the mean square coordi- 
nate of the channeled electron in the ith state and (x,?) is the 
mean square of thex-component of the position vector of the 
jth electron in the atom), so that the exponential in 
(B(x ,A  ) )0° can be expanded in a series, and only the first few 
terms of the expansion retained. The final result is 

where 
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is the dipole moment of the atom. The field inside the atom is 
radially symmetric so that, in the derivation of ( 5  ), we can 
assume that 

Neglecting corrections O(u2/(x;), and using (3 ), we obtain 
the following estimate: 

where f l  is a numerical factor of order unity and a,, is the 
Thomas-Fermi radius. 

The mean square atomic dipole moment that appears in 
( 5 )  and (6) can be calculated, for example, in the Thomas- 
Fermi model. However, there are some doubts as to the va- 
lidity of isolated-atom models because weakly-bound elec- 
trons belonging to the outermost shell become collectivized 
in the crystal and are effectively free. The situation can then 
be described by the electron-gas model in which aTF is re- 
placed with a new parameter, namely, the plasma oscillation 
frequency. 

Let us now estimate the role of valence electrons in in- 
elastic level broadening. From (3), we have the following 
order-of-magnitude estimate: 

where d, is the separation between the planes, Z, is the num- 
ber of valence electrons per atom, f lu is a numerical constant 
of the order of unity, k,  is the characteristic momentum of 
an electron in the electron plasma, and k,  -d ;  I .  

Comparison of (6) with (7)  shows that, for the planar 
channeling of electrons, the ratio of the level widths due to 
valence electrons and inner-shell electrons is given by 

r:' ir:"" - (a,/z) (<xz)i11fidpa,.,2). 

It follows from the above estimates that, for most levels, the 
contribution of valence electrons to the inelastic width is 
small and proportional to the ratio Z ,  / Z .  The only excep- 
tion occurs for levels lying near the continuous-spectrum 
limit, for which Ty'/Tj"" may not be small because (x')~/ 
a:, is large. 

A similar estimate can be obtained for axial channeling 
in the case where the wave function of the channeled elec- 
tron is localized well away from the channel center. The 
exponential in ( C ( s )  )('" can then be expanded into a series, 
and this eventually yields 

The contribution of valence electrons is given by the follow- 
ing order-of-magnitude formula: 

where (p * 2), = Jd 'p I $, (p)  I 'p * 2, So is the area per atomic 
string in the transverse cross section, and f l ,  is a constant of 
the order of unity [like f l  in (8)  1. It follows from (8)  and 
(9) that the contribution of valence electrons to the inelastic 
width increases as the level approaches the continuous-spec- 
trum limit and, in contrast to the planar case, valence elec- 
trons play a dominant part in the inelastic broadening of 
most of the angular momentum states. This is so because the 
path of an electron traveling in an axial channel can "bend 
around" atomic chains, and run mostly along the periphery 
of the channel, where the probability of scattering by inner- 
shell electrons is small. 

Calculations'' based on the above formulas show that 
agreement with experimental dataI3 is good. 

2. KINETICS OF TRANSMISSION OF RELATIVISTIC 
ELECTRONS THROUGH AN ORIENTED CRYSTAL 

It is well known that the general equation for a weakly- 
perturbed quantum-mechanical system can be reduced to a 
set of equations for the diagonal elements of the density ma- 
trix: 

k+J 

wherej, k represent the set of quantum numbers characteriz- 
ing the eigenfunctions of the unperturbed Hamiltonian,~, is 
the population of thejth state, WJk is the transition probabil- 
ity between the states j and k per unit time, and the summa- 
tion sign represents summation over discrete, and integra- 
tion over continuous, spectra. In the case of channeling at 
relatively low electron energies, when the number of levels in 
the channel is low, the kinetics of the population of trans- 
verse-motion levels is also describedL4 by a set of equations 
such as ( 10). The coefficients TJ and WJk were evaluated 
above. 

However, the situation changes as the particle energy E 
increases. Equations ( 10) were written on the assumption 
that the perturbation was small. In particular, the probabil- 
ity that a particle will leave a given level in a time of the order 
of the reciprocal of the transition frequency between neigh- 
boring levels must be small, i.e., rJ w- ' 4 1. On the other 
hand, it has been shownX that the level widths T, tend to a 
constant as E increases, whereas the level separation falls as 
E - ' I 2 .  Consequently, after a certain electron energy has 
been rea~hed,~ '  the condition TJw -' < 1 ceases to be valid for 
most levels in the channel. The discrete energy levels actual- 
ly disappear and, from this moment onward, the transition 
kinetics is described by a more complicated set of equations 
than ( lo) ,  and the quantity T, can no longer be interpreted 
as the "level width" because one must then take into account 
the phase relationships between the wave functions of differ- 
ent levels. 

A simplification of the problem can be achieved in this 
case by allowing for the quasiclassical nature of the trans- 
verse motion of electrons at these high energies. Actually, 
when the number of levels in the channel is large, we can 
transform from the basis of the eigenfunctions of the unper- 
turbed Hamiltonian to a basis of localized wave packets. The 
transport equation for the distribution f (r,, p,, t )  of the 
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particles over the transverse momenta and position coordi- 
nates then has the standard form 

where U is the continuous potential of the corresponding 
family of strings or planes and St ( f ) is the collision integral 
which, in this case, can be written down in the small-angle 
(Fokker-Planck) approximation (we recall that the interac- 
tion between a fast particle and a crystal is partially repre- 
sented by the continuous potential). 

If there are no collisions, ( 1 1 ) describes the motion of 
particles in the field of the atomic planes and strings on tra- 
jectories that can be parametrized by certain integrals of mo- 
tion v (for planar channeling, the variable v is the "trans- 
verse" energy E ,  whereas for axial channeling v is the 
"transverse" energy E and angular momentum I of the parti- 
cle about the nearest string). The presence of the perturba- 
tion gives rise to a change in the trajectory parameters as the 
particle passes through the crystal. When this change occurs 
slowly enough, the function f (r, , p, , t)  can be replaced with 
the distribution over the variable v, i.e., f (v,t). Equation 
( 11 ) then takes the diffusion fromI5-l8 

where Dl and D, are the diffusion coefficients characterizing 
the change in the parameters of the particle trajectory per 
unit time (for the planar case, there are two such coeffi- 
cients, whereas for the axial case there are five because the 
variable v is two-dimensional). Equation ( 12) can also be 
obtained directly from the set of quantum-mechanical trans- 
port equations (10) by transforming from the discrete vari- 
ables pj to the mean distribution function f (v)  (Ref. 19). 
The diffusion coefficients then have the following form: for 
the planar case 

and for the axial case 

These transformations would appear to remove the 
above difficulty. Actually, since the quasilocal wave packet 
is constructed for a large number of closely-spaced levels, 
the width of an individual level and the separation between 
neighboring levels cannot play as important a role in the 
quasiclassical case as they do in the quantum-mechanical 
case. Nevertheless, it will be shown below that the lack of a 
small parameter associated with the probability of colli- 
sional transitions manifests itself even in the quasiclassical 
approach, and is not removed by a simple transformation to 
the diffusion equation ( 12). 

Actually, the diffusion coefficients in (12) are deter- 
mined by taking an average over certain functions D, ( x ) ,  
D, (p) (see Appendix) along the unperturbed particle tra- 
jectory. The condition for the self-consistency of this proce- 

FIG. 1.  Region of bound motion in the space of transverse energy and 
angular momentum for axial channeling of 1-GeV electrons in the ( 1  11) 
direction in silicon single crystals ( U, - 100 eV, L =. 5012). Open circles 
show the parameters of the trajectories of a number of particles entering 
the crystal; crosses indicate the "drift" and "spreading" of the initial pa- 
rameters in one revolution of the particle around the axis. 

dure is therefore that the change in the parameters of the 
trajectory, i.e., the transvere energy and the angular momen- 
tum, in one rotation around the axis (or the oscillation peri- 
od in the planar channel) should be small. It is only then that 
electron transport in the channel can be looked upon as rela- 
tively slow diffusion of quasiparticles in the space of the 
adiabatic invariants (see, for example, Ref. 20). Unless this 
is so, the "adiabatic" approach is not self-consistent, and the 
general transport equation ( 11) cannot be reduced to the 
simpler form ( 12). 

Let us now examine in greater detail the case of axial 
orientation of the crystal. In axial electron channeling, the 
region of bound motion, in which we must consider the dif- 
fusion of particles over the transverse energy and angular 
momentum, is quite complicated (see Fig. 1 ): for each value 
of the angular momentum below some maximum, there are 
two boundary values of the transverse energy corresponding 
to circular electron trajectories. The characteristic scales of 
the problem are thus the dimensions of this region, the depth 
Uo of the axial channel along the transverse energy axis and 
the maximum angular momentum L along the angular mo- 
mentum axis. 

Let us now estimate the change in the transverse energy 
of a particle in one period. This is most simply done for parti- 
cles with zero angular momentum about the axis. The princi- 
pal scattering mechanism then involves close encounters 
with nuclei so that, for approximate estimates, it is sufficient 
to retain only the first terms in (A.5 b (A .7 ) .  Next, we take 
p ( t )  =uot (where vo = [ 2 ( ~  + Uo)/E] ' I2)  and, integrating 
with respect to t between infinite limits, we obtain the follow- 
ing expressions for the mean ( %) and mean square ( =) 
increase in the transverse energy: 

The largest of the numbers &, ( p) ' I2 defines the size 
of the "cell" (in the space of s )  in which any further resolu- 
tion of the transverse-energy distribution function is not 
physically meaningful. At high energies, ( F )  decreases - 
more slowly than SE: ( &?)llZ - E  -'I4, whereas 
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FIG. 2. Dependence of 6E (broken curves) and ( ~ ) ' ' Z  (solid curves) 
on the transverse energy of particles of different angular momentum: 1- 
zero angular momentum; 2-angular momentum equal to half the maxi- 
mum possible for given transverse energy; 3-maximum possible angular 
momentum (silicon, ( 1  11) direction, I-GeV electrons). 

%-E -'I2. If we demand that ( p) 'I2 is less than 0.1 Uo, 
we obtain the condition 

(Ze2) "n2 (Eu) 
E25.1O5(e+Uo) - uo4u2dl , a  

Substituting reasonable values for the parameters in ( 17), 
i.e., ln(Eu) - 10, E- - U0/2, we obtain, for example the 
condition E 2 1012 eV for the (1 11) axis of silicon single 
crystals. The diffusion equation ( 12) thus becomes self-con- 
sistent only for gigantic energies of the order of 1000 GeV. 

We have examined the most favorable situation, i.e., the 
case where the particle moves with zero angular momentum 
about an axis. More detailed analysis shows that the situa- 
tion remains practically the same for other values of the an- 
gular momentum. Figure 2 shows the results of a numerical 
calculation of % and ( p) 'I2 using (A.5)-(A. 13) in a 
realistic (Hartree-Fock) potential of an atomic string (sili- 
con, (1 11) direction). It is readily seen that, at energies of 1 
GeV, for which the calculation was performed, the relative 
fluctuation in the transverse energy 
(max{ %, ( &?) '12)/1~1) and the relative fluctuation ST/ 
Tin  the period of revolution are of order unity. It follows 
that the diffusion equation in the space of the integrals of 
motion is physically justified only at energies much greater 
than 100 GeV. [Figure 1 illustrates the evolution of the 
"probability cloud" in (&,I) space at electron energies of 1 
GeV: a point succeeds in "spreading" by an amount compar- 
able with Uo and L in one revolution around the axis.] 

The situation is complicated further by the fact that, 
above about 100 GeV, the motion of electrons is greatly dis- 
torted by r e a ~ t i o n , ~ ' - ~ ~  which is quite strong at these ener- 
gies of electromagnetic radiation. All this leads us to the 
conclusion that generally accepted ideas on the channeling 
of electrons as a form of quasiperiodic motion, accompanied 
by relatively slow diffusion of particles in the space of trans- 
verse energy and angular momentum, are invalid. The diffu- 
sion coefficients ( 13) and ( 14) can be used only in calcula- 
tions of the dechanneling of heavy, negatively-charged 

particles (negative pions, antiprotons, etc.) with energies in 
excess of 100 GeV. 

The above result becomes particularly significant in re- 
lation to the problem of the quantitative characterization of 
electron dechanneling in axial channels, which is currently 
of interest. The last two or three years have seen the publica- 
tion of a number of papers on the "adiabatic" 
and calculations based upon it.24-28 Our analysis shows that 
the results published in these papers have not been adequate- 
ly ju~tified.~' (It  is important to remember that the precision 
of results based on the "adiabatic" approach requires further 
examination: for integrated parameters such as the total ra- 
diated intensity, or number of particles in the channel, the 
result can be close to the true result, even for ST /T  2 1. Thus, 
for planar electron channeling, the diffusion coefficients are 
not very dependent on the transverse particle energy, so that 
averaging along any trajectory, including the unperturbed 
trajectory, should lead to more or less the same results. On 
the other hand, in the case of axial electron channeling, the 
diffusion coefficients are very dependent on the particle tra- 
jectory parameters, so that one can hardly expect high preci- 
sion of the adiabatic approach.) 

Thus, the correct description of electron dechanneling 
kinetics for Tim-' 2 1 involves the solution of either the 
quantum-mechanical transport equations in their general 
form or the four-dimensional Fokker-Planck equation in the 
space of transverse momenta and coordinates. Either ap- 
proach presents us with a very complicated mathematical 
problem. 

Numerical simulation of the trajectories of channeled 
particles, as developed by the present authors in Ref. 29, is a 
possible way of resolving the problem. 

We note in conclusion that the absence of quasiperiodic 
channeled motion of electrons should have a particularly 
radical effect on the electromagnetic radiation emitted by 
them. Because of the absence of periodicity of motion, the 
spectral and angular properties of the radiation emitted by 
electrons in "bound" states are close to those of radiation 
emitted by over-barrier particles. Moreover, as the particles 
traverse the crystal, over-barrier states are found to be more 
highly populated than subbarrier states. It would appear 
that these facts explain the good agreement between mea- 
sured and theoretical  calculation^^^ based on the 
assumption that, when the crystal is thick enough, the radi- 
ation emitted by high-energy electrons is due to free-free 
transitions in the continuous potential (this is the so-called 
emission by quasichanneling, predicted in Ref. 34 and subse- 
quently investigated in several papers;35-39 see also the re- 
views in Refs. 40 and 41 ). This conclusion is also in agree- 
ment with Ref. 42, in which a study was reported of the hard 
part of the spectrum of radiation emitted by electrons travel- 
ing at small angles to the crystal axes. 

The authors are indebted to Academician S. T. Belyaev 
for extensive and fruitful discussions. 

APPENDIX 

The transition probabilities Wg reproduced above and 
in Ref. 8 can be used to find the diffusion coefficients in ( 12) 
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in an explicit form. The summation over f in ( 13) and ( 14) 
can be accomplished with the aid of relationships of the form 

h 

where H, is the transverse-motion Hamiltonian, Fis an arbi- 
trary function, and the subscript ifsignifies the correspond- 
ing matrix elements. As a result, the diffusion coefficient is 
expressed in terms of a certain function of the transverse 
coordinate, averaged over the ith state of the particle: 

D,= ( D ,  ( x )  ) ii, Dr8= (D, ,  ( p )  ) i i .  (A.1) 

In the quasiclassical limit, the matrix element is replaced 
with an integral over the period of the motion: 

T 

( D  (r) ) i i + ~ - i  J dt D (rv ( t )  ) , 

where r, ( t )  is the particle trajectory. The functions D, (x) 
and D ,  (p )  in (A. 1 ) under the matrix element symbol are 
the "local" scattering characteristics that depend on the 
transverse coordinate of the particle. Each contains an elas- 
tic and an inelastic term. 

It was shown in Ref. 11 that the contribution of elastic 
scattering to D, (x )  and D ,  (p)  iss' 

Die' ( x )  = - Jdq { J d x a p ( x a )  I X -  
4nE dx I 

- e s p  (-q2u2) 

where @, (x) ,  6 ( p )  are the corresponding Fourier compo- 
nents of the potential @ ( r )  of an individual atom: 

m , ( x )  = 5 dy eigum ( ( x ~ + ~ ~ + z ~ ) ~ ~ ) ,  

( p )  = I d z  8 ( (p2+z2)  *) ; 

P(X, ), P(R, ) is the probability density of thermal displace- 
ments of atoms from their equilibrium positions: 

P ( X . )  = (2nu2) -'" exp (-X,2/2u2),  
P  (R , )  = (2nu2) -' exp (-Ra2/2u2) ; 

and q, is the azimuthal angle of a particle relative to the 
string. Integration with respect to q in (A.2) is performed 
between the limits - E S; q 5 E (precise values are unimpor- 
tant because the divergence is logarithmic). 

Substituting ln(Eu) $1, u2/A +, 1, we can rewrite 
(A.2)-(A.4) in a more convenient form: 

?I. D;' ( x )  3 - (4n (Ze2)a in  ( E u )  P ( x )  2E 

D$ (p) = (8n (Ze2)l In (Eu)  P  (p)  

The first term in (A.5HA.7)  is due to "close encounters" 
between the channeled particle and the atomic nuclei.43 The 
second term describes the small-angle deflection of a particle 
from an equilibrium trajectory, and constitutes the analog of 
the diffusion coefficient due to scattering by fluctuations in 
the electrostatic field of the crystal lattice, obtained in Ref. 
2.6' The two terms in (A.5)-(A.7) together reproduce ap- 
proximately the behavior of the corresponding diffusion co- 
efficient in a broad range of variation of the transverse coor- 
dinate. At short distances from the string or plane (x, 
p 5 2u), the first term is dominant. On the contrary, for x, 
p R 2u, the first term decreases rapidly and the "fluctuation" 
term must therefore be taken into account. 

For diffusion coefficients due to inelastic scattering, we 
can use the result of Section 1 to obtain similarly 

D:""' ( x )  = (2ne4n/E) q'(x) In ( E a T F ) ,  (A.8) 

D:;"' ( P I  " (4ne4p2/d)  Q ( p ) l n  (Ear , ) ,  (A. 10) 

where q(x) ,  q( p) is the density of the electron cloud in a 
crystal, averaged along the plane (axis). In reality, 
D';""(x), D Z i ( p )  have a more complicated form. In parti- 
cular, when x, p -a,, , the functions D "" and D ';:"' contain 
terms corresponding to "dipole" scattering, and are propor- 
tional to (d '). Nevertheless, (A.8)-(A. lo),  which take into 
account only the "close encounters," provide an accurate 
enough approximation to D "'(x), D Z1(p ) ,  so that the 
probability of "dipole" scattering decreases rapidly with in- 
creasing x or p, and the electron density q(x) ,  q( p) differs 
from zero everywhere inside the channel. 

The remaining coefficients are related to D,, D,,, and 
Do, as follows: 

D z ( x ) = ~ ( E - U ( X ) ) D I ( X ) ,  (A.11) 

(A. 12) 

' D l i  ( p )  = ( l /EpZ)Doz(p)  , D i o ( ~ )  =01 (A. 13) 

where U(x), U(p) is the continuous potential of the atomic 
plane and string, respectively. 
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"In contrast to scattering by the electron subsystem of the crystal, scatter- 
ing by phonons will also be referred to as "ela~tic."~ 

2'Here and henceforth, fi = c = 1. 
"Estimates show that the corresponding energies amount to a few tens of 
and a few hundred of MeV for the string and plane, respectively. 

4'We note that, in Ref. 24 and in the subsequent papers by these 
 worker^,^^-^^ there is a purely mathematical error, namely, when they 
pass to over-barrier motion, the authors of Ref. 24 assume that the coeffi- 
cient of diffusion over angular momentum is zero (see Ref. 24, Appen- 
dix), whereas the problem itself indicates that it should tend to infinity. 

"We recall that these formulas contain the Coulomb divergence, so that 
we have written out only those terms for which the degree of divergence 
at the upper limit is not stronger than logarithmic. 

6'It follows from ( A S )  that both "planar  fluctuation^"^ and oscillations 
of atoms in the plane of channeling at right-angles to the direction of 
longitudinal motion are important. 
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