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An effective Hamiltonian is found for supersymmetric quantum electrodynamics defined in a 
finite volume. When the right and left fields appear in the theory nonsymmetrically (but so 
that anomalies cancel out), this Hamiltonian turns out to be nontrivial and describes the 
motion of a particle in the "ionic crystal" consisting of magnetic charges of different sign with 
an additional scalar potential of the form U = K '/2, where aiK = z.. Despite the nontrivial 
form of the effective Hamiltonian, supersymmetry remains unbroken. 

1. INTRODUCTION 

One of the most acute problems in theoretical elemen- 
tary-particle physics is the question of supersymmetry 
breaking, which is generally believed to occur in nature in 
one form or another at high enough energies. The most at- 
tractive mechanism of supersymmetry breaking is spontane- 
ous breaking by dynamic effects, not manifest at the "tree" 
level. A well-known example of this type of breaking occurs 
in the Witten quantum mechanics with superpotential of the 
form V ( X )  = A (X 3/3 - a2X) (Ref. 1 ) . However, for a long 
time, searches for the dynamic breaking of supersymmetry 
in four-dimensional field theories remained unsuccessful. 
Thus, this type of breaking does not occur in supersymme- 
tric Yang-Mills theories without matter.2 The situation is no 
better in gauge theories with extended supersymmetry, or in 
supersymmetric QCD with different numbers of right and 
left multiplets of matter in the fundamental representation. 

However, nontrivial field theories in which supersym- 
metry is dynamically broken have recently been f ~ u n d . ~ . ~  
The simplest example of this type of theory is the SU(5) 
supersymmetric Yang-Mills theory that includes chiral mat- 
ter fields in the 5, and 10, representations. The triangular 
anomaly cancels out in this theory, but right and left fields 
appear in different representations, so that matter remains 
massless. It is precisely these "theories with irremovable 
chirality" that were not fully examined by Witten in his well- 
known paper, in which he analyzed vacuum states for a wide 
class of theories.' 

The arguments advanced in Refs. 3 and 4 in favor of 
supersymmetry breaking in this theory are indirect. Instan- 
ton calculations of particular correlators support the forma- 
tion of a gluino condensate (A :A ""),, suggesting spontane- 
ous breaking of chiral symmetry. If supersymmetry is not 
broken, the pseudoscalar goldstone should be part of the 
chiral multiplet, which also contains a massless scalar parti- 
cle. However, there is no place for this particle in the present 
case because the theory has no valleys, i.e., directions in the 
space of scalar fields for which the classical potential vanish- 
es (a detailed discussion of this range of questions can be 
found in the review in Ref. 5). 

Our ultimate aim is to examine directly the question of 
supersymmetry breaking in different chiral theories by con- 
structing the effective Hamiltonian and then analyzing the 
spectrum of states of lowest energy by analogy with Witten's 

analysis of nonchiral theories. We shall investigate the sim- 
plest example of chiral supersymmetric QCD. Unfortunate- 
ly, our original hopes have not been justified, and supersym- 
metry remains unbroken in this theory. The effective 
Hamiltonian has, however, turned out to be highly nontri- 
vial and does not reduce to free motion, as was the case for 
nonchiral theories. The methods developed below can be 
used in the analysis of more complicated chiral theories, in- 
cluding those in which supersymmetry is definitely broken. 

In Section 1, we examine a chiral supersymmetric QCD 
in the quantum-mechanical limit in which the fields are as- 
sumed to be independent of spatial coordinates. We obtain 
the effective Hamiltonian that turns out to describe the mo- 
tion of a charged particle in the field of a Dirac monopole 
with an additional scalar potential ofthe form - l/r '. States 
of arbitrarily low energy are present in this problem, but 
there are no states with zero energy. In Section 3, we turn to 
field theory in a finite volume. The effective Hamiltonian for 
the zeroth harmonic of the gauge field, sought by precisely 
the same method, then describes motion in a lattice of mono- 
poles. It is interesting that the final expression for H "can be 
written only for a theory free of anomalies (e.g., a theory 
with eight left fermions of unit charge and one right fermion 
with twice this charge). The lattice then contains monopoles 
of different sign, and the average magnetic space charge is 
zero. Analysis of the effective Hamiltonian for an anomaly- 
free theory in a finite volume shows that the Witten index is 
then nonzero and supersymmetry is not broken. A briefsum- 
mary of all the results is given in Section 4. 

2. QUANTUM MECHANICS OF SUPERSYMMETRIC QCD 

Consider a theory describing the interaction of a photon 
A ,  and a photino A, with one chiral left field ( p,qa ) in the 
limit where the fields do not depend on spatial coordinates 
[in one sense, a four-dimensional theory with one left field 
does not exist because of the anomaly, but in (0  + 1 )-dimen- 
sional situations, this anomaly is not manifest]. The total 
hypercharges and the Hamiltonian for this theory are" 

Q ~ = 2 - % ~ d [ i f j  ( oh ) d p - e c p ( P 6 6 p ] + ~ [ - < 6 ~  .. 
-ieqAk (or) 2 1 ,  
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where $, and A, are two-component Weyl spinors and 

The supersymmetry algebra has the form 

{Q,, @) +=baBfi-eAk (ah) uBB, (3) 

where 

is the coupling that commutes with the hypercharge and the 
Hamiltonian. The significance of (3)  is that the superposi- 
tion of the transformed supersymmetry yields both airansla- 
tion and a gauge transformation. On physical states GY = 0, 
so that the second term on the right of (3) does not ~ n t r i -  
bute to the physical matrix elements. We note that the G that 
follows from (3)  is automatically "correctly ordered'zn the 
sense of Ref. 6. It is also clear that all the remaining G that 
differ from (4)  by a constant dozot yield the correct super- 
symmetry algebra on the space GV, = 0. 

It is clear that the classical potential following from the 
Hamiltonian (2)  vanishes when q, = @ = 0 for any A,, i.e., 
there is a valley along which the wave function tends to 
"spread out." In other words, in our problem, A is a "slow" 
variable and the lowest-energy states of the system are asso- 
ciated precisely with the excitation of this degree of freedom. 
The charged fields q, and 6, on the other hand, are "fast" 
variables and their excitation energies are high. The Born- 
Oppenheimer approximation, discussed in detail in Ref. 2 in 
relation to field theories, is valid in this case. 

It is therefore assumed that (A( B (q, 1. We shall classify 
the terms in the hypercharges and in the Hamiltonians in 
terms of the parameter (q, ( / (A( .  We have Q, = Q:) 
+ Q Y ,  where 

h A h 

and, similarly, H = Ho + H ,  + H,, where 

h 

The Hamiltonian Ho (in which Ai  appears as a parameter) is 
quadratic in the charged fields e, and $. It is not difficult to 
find the explicit form of the vacuum wave function of this 
Hamiltonian (its energy is zero) : 

@,"" (cp, $) =CAIh exp (-eAqq) qawU (AIA) , (7) 

where A = [A/ and w, is a spinor depending on the direction 
of A and is defined (to within a phase factor) by the relation 
(A,/A) (ak )% = w,. We shall take it in the form 

where B and q, are angles that parametrize the direction of A. 
The freedom in choosing the common phase will be ex- 
plained below. The factor A ' I 2  appears in (7)  for conven- 
ience, in order to ensure that the normalization integral of 
1 a, 1 over the charged field does not depend on A. The char- 
acteristic angles q, in the wave function (7)  are given by 
lpc,,, 1 - (eA ) - ' I 2 .  It is clear that the approximation A ) (q, I 
is self-consistent for y = l/eA < 1. The quantity y is, in fact, 
the true expansion parameter in the effective Hamiltonian. 

The complete wave function of the system is 

h 

where alf, are the wave functions of excited states of H,. The 
effective Hamiltonian acting on fo(AJ, ) is given by 

In our case, in which the problem is s~per~ym~metric, we can 
also define an effective hypercharge Q z" = (Q "'), + ..., so 
that 

A 

[We note that ( 11 ) does not contain a component due to G 
because, in the quantum-mechanical limit, the gauge trans- 
formation rotates only the charged fields.] At the end of the 
present paper, we shall produce arguments showing %at 
high%r-order perturbation-theory terms are absent from Q "" 
and H ''. Direct calculation yields 

1 . .  - 1 A -  g e "  = - (P-&)' + - +; . A d  , 
2 8Az 8A 

where a! is a vector function of the fields A, which is identi- 
cal with the vector potential of a Dirac monopole placed at 
the origin A = 0, with a filament running along the positive 
direction of thez axis, chosen in accordance with (8).  Other 
choices of the phase of the spinor w, correspond to other 
gauges for the vector potential d! The last term in the Ham- 
iltonian will work for wave functions in the sector with fer- 
mion charge F = 1, and describes the interaction between 
the magnetic field GV = - A/2A and a spin 5 particle, the 
gyromagnetic ratio being greater by a factor of two than the 
Dirac value. (We note that, in the F = 0 and F = 2 sectors, 
the Hamiltonian corresponds to the scattering of a scalar 
particle.) The scalar potential 1/8A is necessary to ensure 
the supersymmetry of the Hamiltonian. The Hamiltonian 
( 13) belongs to the N = 2 class of supersymmetric Hamilto- 
nians constructed by De Grombrugghe and Rittenberg:7 

where 2Y = VK. In the present case K = 1/24; another ex- 
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ample of a Hamiltonian belonging to this class was examined 
in Ref. 8. 

The Hamiltonian (13) was among those analyzed in 
Ref. 9. Its spectrum is continuous and includes states with 
arbitrarily low energy, but there are no zero-energy states. 
This is particularly clear in the case of the boson spectrum, 
for which the Hamiltonian is positive-definite and, as the 
state energy is reduced, the wave function becomes localized 
at larger distances in the space of A. 

Consequently, supersymmetry is spontaneously broken 
in this problem, but only in a certain arbitrary sense, since 
states of arbitrarily low energy are present. 

Consider now the quantum mechanics obtained by re- 
duction to the (0 + 1 )-space of the anomaly-free chiral su- 
persymmetric QCD. As an example, we take the theory with 
eight left fields of matter of charge 1 and one right field of 
charge 2. The sum of the cubes of the charges of the left fields 
is now equal to the cube of the charge of the right field, and 
the anomaly cancels out. The effective Hamiltonian in this 
problem is also given by ( 14), where d is the vector poten- 
tial of the monopole of charge - N,  + N,  = - 7 and 
K = 7/24. 

However, it is important to note that, in this problem, 
there is not only the valley along A but also a valley in the 
space of the scalar fields, defined by 

where p, are scalar components of the left multiplets Sf and 
is the scalar component of the right multiplet T. This val- 

ley can be disposed of by blocking it with the Yukawa term in 
the superpotential 

If the Yukawa constant h is of the order of or greater than the 
gauge constant, the dynamics of the system is wholly deter- 
mined by the "gauge valley" along A, and is described by the 
effective Hamiltonian ( 14). 

In the usual supersymmetric QCD, with one right and 
one left multiplet, the charge of the monopole, NR - N,,  is 
zero and the effective Hamiltonian describes free three-di- 
mensional motion in the space of A (so that supersymmetry 
is not broken in any sense). The valley p@ = XTcan then be 
blocked by the mass term v,,,~s??. In the massless case, the 
wave function of low-lying states will spread out along the 
scalar valley. It is possible to find the corresponding effective 
Hamiltonian which, in this case, describes the free two-di- 
mensional motion in the space (p, +) (the modulus o f x  is 
obtained from the condition p@ =XF, and the phase ofx  is 
the gauge degree of freedom which disappears once the cou- 
pling is settled ) . 

3. CHIRAL SUPERSYMMETRY OF QCD IN A FINITE VOLUME 

We now turn to the effective Hamiltonian in field the- 
ory. We employ our theory in a box of size L and subject 

the field to the periodic boundary conditions (Ai,pf, ... ) 
x (X + L,yg) = (A, ,pf ,...) (x,y,z) and, similarly, along the 

y and z directions. Each of the fields can be expanded into a 
Fourier series of the form 

cg (s) =x cp(") exp (2 lnn*x/~  

and so on, where n are three-dimensional integer vectors. We 
shall take the Hamiltonian in the quadratic approximation 
in the charged fields and in the excited harmonics Ai: 

[cf. (6a) 1. When n+O, the sum over i in the first two terms 
on the right of (16) is evaluated only over the transverse 
polarizations, i.e., for n,A In) = 0. The longitudinal compo- 
nents A in) are the gauge degrees of freedom, eliminated after 
the coupling is settled, and (a is the fermion component of 
the multiplet 7. The Hamiltonian ( 16) is invariant under 
the transformations 

where m is an integer vector and n,  = m - n, n, = n + 2m. 
The transformation given by (17) is none other than the 
gauge transformation of the original field theory 

In a finite volume, transformation ( 18) should not violate 
the periodic conditions, and this leads to the following re- 
striction on a ( x ) :  a ( x )  = Znm*x/L. If we expand the field 
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in terms of the harmonics, we are led to" (17). The wave 
functions of physical states should be invariant under these 
gauge transformations. This means that the wave functions 
of the effective Hamiltonian corresponding to the zeroth 
harmonic A 1°', which we aim to find, must also be periodic 
in the reciprocal-lattice shifts, i.e., A 1°" =A 1°' + 27rm,/ 
eL. The valley along A 1°) thus ceases to be unbounded (as 
was the case in quantum mechanics), the motion becomes 
finite, and a discrete spectrum appears (we have given a brief 
summary of the logic of Witten's discussion2). 

A 

The vacuum eigenfunction of the Hamiltonian Ho is 

where 

and w, is given by (8)  and niA In) = 0. 
The effective Hamiltonian is most simply found as the 

anticommutator of the effective hypercharges, and Q >' is 
given by the matrix element of the hypercharge: 

(where we recall that we must substitute the harmonic ex- 
pansion of the fields, eliminate longitudinal components 
niE jn) from the coupling condition, and impose the gauge 
conditions n,A In' = 0). In the lowest nontrivial order, the 
problem reduces to finding the average of 

The higher harmonics A In', and the terms arising after the 
coupling is settled, do not contribute to Qzff. The result is 

where d, is the sum of the vector potentials of the set of 
monopoles of charge + 1, located at the sites of the cubic 
lattice of edge length r / (e(L,  and monopoles of charge - 8, 
located at the sites of a lattice of edge length 2r/l 3 1 L, which 
is less dense by a factor of two; K is the Coulomb potential of 

an analogous lattice consisting of electric charges, so that 
Xi = diK. The effective Hamiltonian is again given by ( 14) 
(to within the factor 1/V). 

We note that the average space charge of the lattice is 
then zero, i.e., the sum over the lattice sites, which deter- 
mines the vector potential &, the magnetic field %, and the 
scalar potential U = K '/2, is found to converge. For the 
anomalous theory with one left field, we would obtain a lat- 
tice consisting of monopoles of the same sign, but the effec- 
tive Hamiltonian could not be defined: 

The wave functions of the gauge-invariant physical 
states have zero quasimomentum. The spectrum of such 
states is discrete, with characteristic level separation 
-e2(L)/L (Ref. 2).  The question is: does the spectrum of 
the Hamiltonian ( 14) contain states of zero energy? In other 
words: is supersymmetry broken in this theory? 

Direct solution of the Schrodinger equation with a 
Hamiltonian ( 14) in which K is given by 

is difficult. There is, however, a method that enables us to 
obtain information about zero modes of the Hamiltonian 
without solving the Schrodinger equation. It is based on the 
representation of the Witten index by an integral over the 
phase space:".' ' 

(24) 
Let us substitute the effective Hamiltonian (14) into this 
expression. Integration over the fermion variables reduces to 
the evaluation of the determinant 

Det IIP ( ~ ~ ) , ~ i % ~ l l = - ~ ~ % .  

If we also integrate with respect to the momenta, we obtain 

where the integral is evaluated over the unit cell of the lat- 
tice. For small B, the integral is largely determined by the 
singularities of K, i.e., the region of integration near the lat- 
tice sites. The contribution of each site is - (q(/2, where q is 
the charge of the monopole resident on the site. In our case, 
the unit cell contains a site with charge - 7 and seven sites 
with charge + 1. The final result is 

(it can be verified that, for any anomaly-free chiral QCD, 
the Witten index must be a nonzero negative integer). 

The result given by (26) can also be obtained in another 
way. Let us modify the effective Hamiltonian (14) by add- 
ing an arbitrary constant C to the function K in (23). This 
modification does not change the meaning of the index. We 
shall make C large and negative: - C ,  l/eL. The wave 
functions of low-lying states are then localized in the region 
of small R = K + C, i.e., near the sites of the lattice with 
unit-charge monopoles. The effect of the other sites can be 
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neglected, and the problem reduces to the solution of the 
Schrijdinger equation with the Hamiltonian 

where = A - m / e L .  Zero-energy states are possible only 
in the F = 1 sector, where the problem reduces to the motion 
of a fermion with gyromagnetic ratio y = 2 in the field of a 
monopole and an additional spherically-symmetric poten- 
tial. The angular variables can then be separated (see Ref. 
12), and the lowest harmonic has total angular momentum 
j = I g/2 I - 4 = 0. The equation for the corresponding radi- 
al function is 

The zero-energy solution of (28) is readily found: 

(We note that, generally, (28) can be formally satisfied by 
another normalized function with E = 0, and even a whole 
series of functions with E < 0.) However, these solutions 
cease to be normalizable when they are operated on by the 
hypercharge operator, and must be excluded because the 
only physically meaningful are those on which the super- 
symmetry algebra is realized. 

The unit cell contains seven sites with unit-charge mon- 
opoles, so that the spectrum contains seven zero-energy 
states. 

When the constant C is large and positive, the wave 
function settles on the site with q = - 7. The lowest angular 
harmonic then has j = 3, which produces a sevenfold angu- 
lar degeneracy. The radial wave function, on the other hand, 
has only one zero-energy solution, as before. 

Thus, the theory contains seven fermion states of zero 
energy, and supersymmetry is not broken. These states have 
fermion charge S =  1 for the effective Hamiltonian (14). 
The total fermion charge of the vacuum, on the other hand, 
determined by the function ( 19), is infinite. 

In the case of the usual supersymmetric QCD, the lat- 
tice of monopoles of charge - 1 is superimposed on a similar 
lattice of monopoles with charge + 1; the effective Hamilto- 
nian corresponds to free motion (with the additional condi- 
tion that the wave functions are periodic), and there are four 
zero-energy states 

which corresponds to the Witten analysis.' 

4. DISCUSSION AND CONCLUSIONS 

We note first that, in the above formulation of the prob- 
lem, the effective Hamiltonian can be constructed only in 
supersymmetric theories. In nonsupersymmetric theories, 
the valleys, even if they are present at the classical level, are 
broken up when quantum-mechanical effects are taken into 
account, even in the lowest perturbation-theory order. Con- 

sider, for example, ordinary electrodynamics interacting 
with a charged scalar field q. The analog of the Hamiltonian 
(6a) for the corresponding quantum mechanics describes 
the ordinary (nonsupersymmetric) oscillator: 

The lowest state of (29) has the energy EO(A) = eA. This 
ensures that the valley is blocked, the wave functions are 
concentrated in the region eA 5 1, and the Born-Oppenhei- 
mer approximation is not self-consistent (see, for example, 
Ref. 13, which investigates the spectrum of the quantum me- 
chanics corresponding to the ordinary Yang-Mills theory. 
The valley blocking shows that the spectrum is discrete). In 
field theory, the situation is worse still: each harmonic q '"' 
provides a contribution leA - 2m/L I to EO(A),  and the 
total EO(A) is infinite. 

The physical reason for the fact that, in chiral super- 
symmetric theories, the effective Hamiltonian turns out to 
be nontrivial is very clear and reduces to the spontaneous 
generation of the D-term by quantum-mechanical effects. In 
fact, the equations of motion give 

If we substitute into this expression the harmonic expan- 
sions of the fields, and then average over the wave function 
( 19), we find that V (D ), becomes identical with the func- 
tion K defined above and, in general, is nonzero. However, 
the resulting (D ), is not sign-definite and does not lead, in 
this case, to supersymmetry breaking. The A ,'O' configura- 
tion space contains surfaces on which the Coulomb potential 
of the lattice, given by (231, vanishes. The vacuum wave 
functions are largely concentrated on these surfaces (the 
Born-Oppenheimer approximation for these new valleys 
does not, however, work, and the width of the distribution of 
the wave functions is comparable with the edge length of the 
lattice). 

Our conclusions about the conditions for the generation 
of the D-term do not agree with the conclusions of Ref. 13, 
where it is reported that the D-term does not arise when the 
sum of the charges of the chiral multiplets is ZfQ,  = 0. 
The logic of Ref. 14 is simple: when the expression 
D = Efe,-pSf is averaged, each term produces a quadratic 
divergence at the single-loop level. When all the integrals are 
equally cut off for all the flavors, the divergence cancels out 
if EfQf  = 0. (We note that the authors of Ref. 14 have also 
analyzed higher-order loops, but this did not change the con- 
clusions of the single-loop analysis. ) However, the quadratic 
divergences require a consistent treatment. It is well-known 
that a simple momentum cutoff will upset the gauge invar- 
iance. Our arguments, which do not explicitly involve a spe- 
cific ultraviolet regularization, show that the D-term, aver- 
aged over the lattice and corresponding to the field theory 
D-term, is zero in the limit of infinite volume, subject to the 
cancellation of the anomalies Ef Q: = 0. The condition Z f Q f  
= 0 is not essential. A "fine structure" appears in the finite 

volume, and the D-term is nonzero practically everywhere. 
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We must now consi*r the hikher-order perturbation- 
theory corrections to the Q :ff and He" that we have found. 
We have some arguments that are not rigorous but are, nev- 
ertheless, convincing, that such corrections are absent. The 
first is the aesthetic argument: the Hamiltonian (14), in 
which K given by (23) is the Coulomb potential of the lat- 
tice, has a definite internal beauty and completeness. High- 
er-order corrections in the Born-Oppenheimer parameter 
will give rise to unpleasant singularities in the D-term near 
the lattice sites, of the form - l/eA 4, - l / e 2 ~  ', and so on. 
We have carried out an explicit evaluation of the corrections - l/eA to the D-term and have shown that they do, in fact, 
cancel out. The superfield analysis given in Ref. 14, in which 
it is shown that there are no higher-order corrections in the 
D-term, is a further argument. Unfortunately, this analysis 
does not directly apply to our case because it merely shows 
that the D-term averaged over the unit cell of the lattice is 
zero, even when higher orders are taken into account. In 
general, it does not follow that the corrections are zero at a 
given point in the A 1°' configuration space. The absence of 
corrections to the effective Hamiltonian acting on& in the 
expansion (9)  does not, of course, signify the absence of 
corrections in the Born-Oppenheimer parameter to the total 
vacuum wave function, which are due to the contribution of 
the excited states of Ho in (9).  

To conclude, we must briefly examine the SU(2) super- 
symmetric theory without matter. In the quantum-mechani- 
cal limit, as in the QCD case examined above, we now have 
valleys of Abelian directions in the space of the fields A : 
[strictly speaking, there is only one valley if we factor { A  7) 
with respect to the action of the gauge group]. If we direct 
the valley along the third isotopic axis, and integrate over the 
fast variables A i* (A (*A ! = 0)  and A $, we can construct 
the effective Hamiltonian for motion along the valley co- 
ordinates A and il i .  Without going into details, we merely 
note that the resulting effective Hamiltonian corresponds to 
free motion in a way very similar to the situation iri nonchiral 
supersymmetric QCD. A continuous spectrum is therefore 
found to appear in the problem. 

This explains the reason why the evaluation of the Wit- 
ten index undertaken in Ref. 15 led to a result different from 

that given in Ref. 2. In Ref. 15, we used a method based on 
the reduction of field theory to the (0  + 1 )-dimensional 
space, followed by the evaluation of the integral (24) for I,. 

However, in quantum mechanics, the spectrum is con- 
tinuous and the very concept of the index is not well estab- 
lished. It is therefore not surprising that the evaluation of the 
integral for I, led to a result that was different from the 
value of I ,  obtained in field theory defined in a finite volume 
in which the motion was finite and the spectrum discrete. 

The phenomenon of spontaneous generation of the D- 
term, found above, is quite universal and occurs in a wide 
class of chiral supersymmetric gauge fields. We shall exam- 
ine this question in greater detail elsewhere. 

I am greatly indebted to B. Yu. Blok, A. A. Roslov, and 
M. A. Shifman for useful discussions and suggestions. 1 wish 
particularly to thank A. I. VaYnshteTn for collaborating in 
the analysis of the supersymmetric Yang-Mills theory with- 
out matter. 

('A nonlinear a ( x )  would lead to more complicated transformations that 
mix the higher harmonics A j"'. 
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