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Sets of constants of motion of a particle that correspond to different types of r-motion are 
considered. The topology of these sets is determined and a number of constants characterizing 
these sets are found. 

INTRODUCTION 

An important problem in the study of unbound motion 
of particles in the Kerr metric is the description of the set of 
constants of motion for which a particle traveling from infin- 
ity goes below the horizon of a black hole. We shall give a 
qualitative description of this set and also of the set of con- 
stants of motion for which the particle asymptotically ap- 
proaches a sphere placed around the black hole, and the sets 
of constants of motion for which the particle departs to infin- 
ity. The solution of this problem is important in connection 
with the accretion of noninteracting particles on a rotating 
black hole. 

It is well-known that Kepler orbits are characterized by 
two constants (E and L) ,  since we can identify orbits that 
can transform into one another by rotations through the 
Euler angles. Hence, orbits in the Schwarzschild metric are 
also characterized by two constants. It turns out that a 
change in the radial coordinate in the Kerr metric is deter- 
mined by only three constants in the case of moving particles 
(because the particle mass characterizes the connection 
between the affine parameter and the proper time of the par- 
ticle, and the affine parameter can be chosen to be the proper 
time of the particle), and two constants in the case of the 
motion of photons (because of the photon energy character- 
izes the set of different affine parameters in the equation for 
the change in the r coordinate.) 

1. BASIC NOTATION 

The equation of motion for the radial variable in the 
Kerr metric is' 

p4 (drldz) L R  (r) , (1 
R(r) =?+ (a2-Ez-q)y2+2M [qf (g-a)21r-aZq (Photons) , 

R (r) =r6+ (a2-e2--q) 12 
+2M[q+ (E-a) '1 r-a2q-FA/&? (Particles) , 

where 

The constants S and M refer to the black hole, namely, S is 
the angular momentum and M the mass of the black hole. 
The constants E, 6, and r] refer to the particle, namely, E is 
its energy at infinity, 6 = L,/E (L, is the angular momen- 
tum of the particle about the axis of rotation of the black 
hole), and r] = Q /E  ( Q is given by 

and ,d is the mass of the particle). It is readily verified that 

the radial motion of the particle depends on the following 
constants: 

The r~dia l  motion of photons does not depend on the con- 
stant E. Instead of the coordinate r, we now introduce i = r/ 
M. (The symbol A will be omitted henceforth.) Thus, the 
character of motion in the r-coordinate for given value of a is 
determined by the three constants E, 6, r] in the case of a 
moving particle, and by the two constants 6 and r ]  in the case 
of photons. 

Depending on the multiplicities of the roots of the poly- 
nomial R ( r )  (for r)rg ), we can have three types of motion 
in the r-~oordinate,~ namely: 

( 1 ) the polynomial R ( r )  has no roots (for r>r, ). The 
particle then falls into the black hole; 

(2 )  the polynomial R ( r )  has roots and r,,, > r, (r,,, 
is the maximum root); for (dR /dr) (r,,, ) #Owe then have, 
(dR /dr) (r,,, ) > 0, and the particle departs to infinity after 
approaching the black hole; 

(3)  the polynomial R( r )  has a root and 
R (r,,, ) = (dR /dr) (r,,, ) = 0; the particle now takes an 
infinite proper time to approach the sphere of radius r,,, . 

2. DESCRIPTION OF THE SET OF CONSTANTS 
CORRESPONDING TO DIFFERENT TYPES OF MOTION 

We shall now examine the sets of constants of motion E, 
g, and r ]  corresponding to different types of particles motion 
for a given black-hole rotation parameter a = const. Let us 
cut the space E,g,r] with the plane E = const> 1 and describe 
in this slice the set of constants corresponding to different 
types of motion. It then turns out that the boundary of the set 
of constants corresponding to the second type of motion for 
720 is the set of constants for which the motion belongs to 
the third type. We shall look upon this set as the graph of the 
function r ]  = r] (C). We note that the set of these constants as 
functions g( r )  and 7 ( r )  was examined by Chandrasekhar I. 
Let us describe some of the properties of the function ~ ( 5 ) .  
If the motion of the particle is of the third type, we have 

R (r) =0, (BR/dr) (r) =O (3  
for r]>O,r>rg. 

Thus, to obtain the function r](f ), we must eliminate r 
from ( 3 ) . Assuming that ( 3 ) provides an implicit specifica- 
tion of r(6)  and r ]  (c), we find that 
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for r>r, ,r]>O. We note that, for A > 0 and d 'R /dr2#0, the 
implicit function theorem shows that r ( f )  and r](f) are sin- 
gle-valued functions. Analysis similar to that given in Ref. 3 
then shows that, when a # 1 or f # 2, we have d 'R /d? > 0. 
When a = 1 and f = 2, we find from (3)  that A = 0. When 
a = 1, it is readily verified that the set corresponding to the 
third type of motion includes the straight segments 
[f=2,0(r]((3E4-4E2+ 1 ) / ( E 2 ( E 2 -  I ) ) ]  (Ref. 4) 
(for photons, f = 2,0<r]<3, by analogy with Refs. 5 and 6).  
It can also be shown that the function ~ ( 5 )  has one maxi- 
mum and r ( f )  is a monotonically decreasing f ~ n c t i o n . ~  
Thus, the set of constants corresponding to the first type of 
motion is bounded by the curve q ( f )  for 720, as shown in 
Figs. 1 and 2. It is also readily shown that, when r ]  < 0 and 
when 7 and f are such that the motion of the particle is 
possible, i.e., 

the particle is also capturedZ (this set is illustrated in Fig. 2).  

3. UNBOUND MOTION OF PHOTONS 

Chandrasekhar' has shown that the condition for cap- 
ture of a particle in the equatorial plane is the inequality 

G cos [nrccos ( - ( I )  l3+2nl:i] 

-n<t<ri cos [arccos (-n)/3]-a. (5 

Thus, the functions of r ( f )  and r](f) are defined only for 
values satisfying the inequalities (5).  We also note that the 
function r](f) is a maximum for 
f = - 2a,r( - 2a) = 3(77( - 2a) = 27). This can be veri- 

FIG. 1 .  Different types ofparticle motion for E = 1 and a = 1 .  Region 1- 
particle trapped, region 2-scattering; curve 3 corresponds to the third 
type of motion. Region 4 corresponds to values of the constants for which 
particle motion is impossible. 

FIG. 2. Same as Fig. 1 for a massless particle and a = 1 .  

fied by direct evaluation of (3)  and (4).  Figure 2 shows a 
plot of the function r](f) for a = 1. 

4. MOTION OF PARTICLE OF ARBITRARY ENERGY 

Consider a moving particle of arbitrary energy at infin- 
ity (E > 1 ). It can be verified that, if 

where a = (E - I)- ' ,  these values ensure that R ( r )  and 
dR /dr vanish, i.e., they satisfy (3).  We also note that, for 
values chosen in accordance with (6),  the right-hand side of 
the first equation in (4)  vanishes, i.e., these values corre- 
spond to the maximum of r ]  (6). The values vmax and r,,, 
turn out to be equal to the corresponding values of these 
quantities for a = 0 (Schwarzschild metric) .' 

5. ONE CASE OF UNBOUND PARTICLE MOTION 

Consider a case of unbound particle motion for E = 1. 
If the motion takes place in the equatorial plane, r ]  = 0 (Ref. 
8) and 

R (r) =2r7-E2r2+2 ( ~ - $ ) ~ r .  ( 7 )  

The motion then belongs to the third type if 
f = 16(a - f)', and r = f 2/4. It follows that there areonly 
two values that correspond to the third type of motion in the 
equatorial plane, namely, f = - 2 - 2( 1 + a )  ' I2 and 
f = 2 + 2( 1 - a )  'Iz. Thus, the domain of definition of r](f) 

is the segment [ - 2(1 + (1 +a) 'I2),2(1 + (1 -a ) ' I2 ) ] .  
The domain of variation of the function r ( f )  is the segment 
[ ( I  + (1 -a)"2)2,(1 + (1  +a) '12)2] .  This follows from 
the fact that r (g)  is a monotonically decreasing function of 
f.Whena =O,wefindthatr](f) = 16-f2.WhenE-1,we 
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can show from ( 6 )  that the maximum of the function q(6)  is 
reached for 6 = - a,r( - a )  = 4,q( - a )  = 16 [since 
q,,, ( l )  -, 16 for E-, 1 1. This can be demonstrated by direct 
verification of (3) and (4). 

The author is indebted to V. S. Imshennik for his inter- 
est in this research and to S. I. Blinnikov, I. D. Novikov, and 
A. G. Polnarev for valuable discussions. 
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