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The one-particle density matrix in a one-dimensional system of spinless particles (bosons or 
fermions) with strong repulsion between the particles is found. At zero temperature it 
oscillates at large distances, and the amplitude of the oscillations decays by a power law. The 
character of the oscillations and the exponents depend on the statistics. Relations connecting 
these exponents with the velocity of sound in the system are obtained. 

1. In the theory of quantum one-dimensional systems, 
the problem of finding the various correlation functions is 
currently very important. In many cases the asymptotic be- 
havior of the correlators at large distances is found to be 
especially interesting. 

In a paper by Efetov and Larkin1 it was postulated that 
the asymptotic form of correlation functions of one-dimen- 
sional Fermi systems is determined by the long-wavelength 
gapless excitations. Neglecting all the other excitations, one 
can find the explicit form of the correlation functions. An- 
other approach to the problem involves linearization of the 
quadratic spectrum of the fermions and introduction of two 
kinds of particles, after which the calculations can be per- 
formed Recently, Haldane has proposed yet an- 
other method of treating one-dimensional quantum Bose 
and Fermi systems-a method based on conjectures analo- 
gous to the hypothesis of Ref. 1 and consisting in the reduc- 
tion of the system to a certain universal "Luttinger liq- 
Uid.975.6 This approach makes it possible to find the 

correlation functions. 
The correlation functions found by means of these ap- 

proaches qualitatively coincide: Their characteristic feature 
is a power-law decay at large distances and a continuous 
dependence of the exponents on the coupling constant. By 
analogy with the theory of phase transitions, these expo- 
nents are sometimes called the critical indices of the corre- 
sponding correlators; their determination is one of the prob- 
lems of the theory. 

However, all these approaches are based on assump- 
tions which, though plausible, are difficult to prove. More- 
over, in Ref. 7 it was noted that the asymptotic form of the 
correlation functions may not be connected with excitations 
of the acoustic type. Nevertheless, it has been shown by 
Krivnov and Ov~hinnikov'-~ that the qualitative behavior of 
the correlators does not change, and they postulated that the 
corresponding exponents are related in a simple way to the 
velocity of sound in the system. In the case of the density 
correlator this postulate was proved in Ref. 10 in all orders of 
perturbation theory in a large coupling constant: The critical 
exponent was found to be equal to 4rrpc-', where p is the 
particle density and c is the velocity of sound. The important 
point is that this results is valid for a rather arbitrary form of 
pair-interaction potential. Knowledge of the relationship of 
the exponents to the velocity of sound greatly facilitates the 

determination of the asymptotic forms of the correlators, 
since the problem of calculating c is considerably simpler 
and for its solution there exist methods that give a good ap- 
proximation. 

In the present paper we shall apply the method devel- 
oped in Ref. 10 for the determination of the asymptotic be- 
havior of the one-particle density matrix (which, for brevity, 
we shall sometimes call the Green function) in a one-dimen- 
sional system of spinless Bose or Fermi particles with strong 
pair interaction (repulsion). The Fourier transform of this 
function is the momentum distribution function of the parti- 
cles. Only the case of zero temperature will be considered. 
We shall see that the one-particle density matrix has a more 
complicated structure than the "density-density" pair corre- 
lation function; in particular, its asymptotic form depends 
on the particle statistics. Nevertheless, even in this case the 
critical exponents can be expressed in terms of the velocity of 
sound. 

The content of the paper is as follows. In Sec. 2 we de- 
fine the model to be used, and, following Ref. 10, briefly 
describe the transformation to the "phonon" Lagrangian 
that will be used to construct the perturbation theory. In Sec. 
3 we obtain a convenient representation of the ground-state 
wave function in terms of the phonon variables. On the basis 
of these auxiliary results, the Green function is calculate di- 
rectly in Sec. 4. Finally, in Sec. 5 we compare our results with 
certain known results. 

2. We consider a one-dimensional system of N spinless 
particles (bosons or fermions) with the Hamiltonian 

I - 1  N-i  

Here V(x) is the pair-interaction potential, which is as- 
sumed to be long-range but sufficiently rapidly decaying 
with distance (faster than x-' )-in other respects, the form 
of V(x) is arbitrary; g is the coupling constant, and through- 
out the paper we consider the case of repulsion (g > 0).  We 
assign boundary conditions by placing the particles on a cir- 
cle with a large circumference L. Here, strictly speaking, it is 
necessary to regard the potential V(x) as periodic with peri- 
od L. We can immediately introduce the periodic potential 

m 
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in the thermodynamic limit (L + a,, N+ a, , L /N = p- ' ) 
this will not be reflected in the results. 

The one-particle density matrix at zero temperature is 
defined as follows: 

where Yo is the ground-state wave function, appropriately 
symmetrized. 

We shall make use of perturbation theory in the large 
coupling constant g (Refs. 7,lO). In the case of strong repul- 
sion (g+ oo ) a Wigner crystal with lattice constant a is 
formed, making it possible to regard the system as a gas of 
interacting phonons, for which the interaction (which van- 
ishes as g-, a, ) can be taken into account systematically by 
means of perturbation theory. In place of the particle coordi- 
nates x, we introduce "phonon" lattice variables p, (Ref. 
7) : 

Their Fourier components (normal modes) have the form 

where p is the dimensionless "momentum," which takes 
quasidiscrete values 2n-ma/L; m is an integer; Tis a certain 
large interval of time. 

The Hamiltonian ( 1 ) corresponds to the following La- 
grangian in the new variables": 

Here we have made the dilatation pp -+g-1/2pp. The fre- 
quency oo( p )  describes the free-phonon spectrum: 

'I, 

n-i 

The remaining terms of the Lagrangian correspond to the 
terms after the quadratic term in the expansion of the poten- 
tial in a Taylor series in the pi: 

I':" ( p , .  . .p.)- V n ) ( k a )  TI [exp(ip.,,k)- i]. 

It is important that 
n 

Finally, ?i( p )  ensures quasimomentum conservation to 
within a reciprocal-lattice vector, i.e., to within an integer 
multiple of 2n. 

3. In this section we obtain for the ground-state wave 
function a representation convenient for calculation of the 
integral (2). The wave function Yo(xo, ..., x,- , ) has in the 
sector x, < x ,  < ... <x,- , a maximum at x, = na, i.e., at 
p, = 0. It is found that for largeg and R the main contribu- 
tion to the integral (2) is given by small neighborhoods of 
similar maxima in different sectors. Taking this into ac- 
count, we write Yo in the form 

The sum is taken over all permutations of the N arguments, 
and ( - 1 )P is the parity of the permutation P (here and 
below, the upper sign refers to bosons, and the lower sign to 
fermions). The function 8 is equal to unity when the inequal- 
ity indicated in brackets is fulfilled, and equal to zero other- 
wise. It can be seen from (6) that Yo possesses the correct 
symmetry. The function 

is the wave function in one sector. In Ref. 10 the following 
representation was obtained for it: 

n-3 zz k-i j-1 P 

The summation overp here, as in ( 5 ), is taken over the Bril- 
louin zone form - a to n-; J, are auxiliary integration vari- 
ables; D ( p )  and D '"'(p, ...p,) are the exact Green func- 
tions G( p, w ) and G '"' ( p,, o , ;  ...; p, , w ,  ) of the phonon 
system with the Lagrangian (5 ) , integrated over the external 
frequencies with allowance for the conservation laws: 

D'"' ( p i .  - . ~ n )  

-- 1 -1  j-i 

(8 )  
The factor g'l2 in the last term in (7)  corresponds to the 
normalization we have used for pp. 

It can be shown that 

These relations were obtained in Ref. 10. Here c is the exact 
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velocity of sound in the original system with the Hamilto- 
nian ( 1 ) . It is related to the ground-state energy density E, 

by the thermodynamic relation 

It is convenient to use an abbreviated form of expressions of 
the type ( 7 ) ,  in which we omit the summation symbols and 
the superscripts and subscripts of D '"' and Jp.  In addition, 
we shall use the path-integration symbol D J r  IIp dJP. The 
function $(p) can be assumed to be real, and therefore ( 7 )  
can be written in the form 

1 
q?('P)= ~ D J  exp {- JDJ + C ~ ( " ' ~ ~ - i g ' l c p \  . (10) 

However, we shall need not $' but $. The required represen- 
tation of $ is most simply obtained from ( 10) by noting that 
(9)  are the only properties of the coefficient functions D and 
D '"' that are important for the following. We write $ in the 
form 

m 

* ( c p )  = j Dl exp {- JDJ +z D(n)Jn-ig'lsJcp 
n=3 

where D and D '"' are certain functions that differ, generally 
speaking, from the analogous functions in ( 10) (in order not 
to encumber the text, we have denoted them by the same 
symbols). Making use of perturbation theory, we can show 
in all orders that these new D and D '"' also possess the prop- 
erties (9)  (but, of course, the relations (8 )  for them are no 
longer fulfilled). 

Thus, (6)  and ( 11) together with (9)  are the required 
representation of the wave function. 

4. We now study the calculation of the integral (2) .  
Making use of (6) ,  we can write it entirely in terms of the 
variables p, : 

In the second factor all arguments up to the k th are shifted 
by the lattice constant a and cyclically permuted. For nega- 
tive values of k the analogous cycle starts from p,-, and 
goes to the left. By substituting ( 11 ) into this and taking the 
integral over p (p appears linearly in the exponent), we ar- 
rive at the following expression, which is more conveniently 
written in the "coordinate" representation: 

One must take the limit N- w before calculating the sum 
over k. In ( 13) J, are the Fourier components of Jp (see 
(3) ), and D,, is an N X N  matrix: 

the D Lf;,,, are written analogously. We note that D, is peri- 
odic in n with period N. The matrix Urn, is an N X N unitary 
matrix, which cyclically permutes the first k + 1 variables: 
U m , = 6 , - , , ,  for O<m,n<k: U,,=S, ,  for 
k + l(m,n(N - 1; Urn, = 0 in the remaining cases. 

In (13) we shall denote J, = p ,  with the aim of inte- 
grating first over all the other variables (the path integral in 
( 13) is understood in the perturbation-theory sense). The 
quadratic form in ( 13) is transformed to the form 

Here the J, are now the new, relabelled variables, N - 1 in 
number; 5 is the matrix D without the zeroth row and zeroth 
column. We note that, in view of (9),  the quantities D, are 
poorly defined, but only their differences D, - D m ,  which 
do have meaning, appear in the final answer. The matrix A,, 
has the form 

with A,, = 0 in the remaining cases. 
Unfortunately, we are not able to diagonalize the qua- 

dratic form ( 14) exactly. Nevertheless, it turns out that the 
asymptotic behavior of S(R ) as R - w is determined entire- 
ly by the term withz, which, obviously, can be diagonalized. 
Therefore, we shall proceed as follows: We invert the matrix 

exactly, and treat the entire remainder (the term with A,, 
and all terms with higher powers of J, ) as a perturbation. 
After this it will be possible to verify that the perturbation 
does indeed have no effect on the asymptotic form. 

Let Wm, be the inverse of the matrix Dm,. It is also 
diagonal in the momentum representation, and, by virture of 
(91, 

W ( p )  = (ag ) - l cp ,  p+O. 

Then the inverse of the matrix 5 is the matrix 

As we shall see soon, the value of the critical index of 
S(R ) is affected only by the terms with large (of the order of 
R /a) labels in the sum ( 13). Therefore, in the calculation of 
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each integral in ( 13) it is necessary to bear in mind that in 
the answer the only important terms in the exponent will be 
those which grow with k (in the present case, as Ink), while 
those which tend to a constant as k -, co can be discarded. Of 
course, the limit k - co has meaning only after N+  co . Here 
it turns out that all the terms that increase with k are ob- 
tained as a result of taking the Gaussian integral with the 
quadratic form ( 14) (without the last term). As regards all 
the other contributions, by means of the relations (9)  and a 
diagrammatic technique that is obvious from ( 13) and ( 14) 
it is possible to show in all orders of perturbation theory that 
they remain bounded as k- co . 

With allowance for these considerations, and having 
transformed (as N- co ) the sums overp into integrals, we 
can represent the result of the calculation of the integrals 
over J, in ( 13 ) in the form 

n 

- azg(16n)- '  j d p  ~ - ' ( p )  ( I  - cos kp) (1 - c o s p ) - i  

where and V, are bounded as k- co . Next, the analysis of 
this expression is carried out as in Ref. 10. Namely, the lead- 
ing (in k)  term of the asymptotic form of the integrals overp 
(the term proportional to Ink) is determined entirely by the 
behavior of D ( p )  andp-0 (9); it can then be shown that 
the sum is built up in the vicinity of ko = R /a, and the terms 
with higher powers of p do not make a contribution to the 
critical index. The constant 6 (the limit o f l a s  k- co ) deter- 
mines the phase of the oscillating term in the asymptotic 
form. It is clear that one cannot calculate this phase in the 
framework of the method under consideration, since the an- 
harmonic terms in ( 13) contribute to it. 

We shall write out the final answer separately for bo- 
sons and fermions. In the case of Bose statistics the leading 
term of the asymptotic form does not contain oscillations; 
we shall give also the next, oscillating term: 

S, ( R )  =A,R-B~+A2R-88' cos (2npR+cps) R+m. ( 16) 

In the case of Fermi statistics the leading term does oscillate, 
and the frequency is half that for bosons: 

In these expressions, A, A,, and A, are constants that do not 
depend on R; p, and pF are phases that are also independent 
of R (O(p,, (27~). The values of the critical indices are as 
follows (c is the exact velocity of sound) : 

We note that fiB = a-', where a = 4npc-' is the critical 

index of the "density-density" correlator.1° 
5. In conclusion we shall compare our relations (16)- 

(20) with certain known results for the one-particle density 
matrix. 

In the case of Fermi statistics the indexfi, coincides (in 
the sense of the dependence (20) on c )  with the value ob- 
tained in Ref. 8, in which a Fermi gas with weak coupling 
was considered and a perturbation theory in the smallg was 
constructed. Evidently, this implies that formula (20) has a 
universal character and is valid for all g > 0. 

It is interesting to compare ( 16), ( 18), and ( 19) with 
results for the one-dimensional Bose gas with 8-function in- 
teraction. Our method does not work for this model, since 
the potential is short-range, leading to a number of qualita- 
tive difference (in particular, in this model the velocity of 
sound does not increase without limit as g increases, but 
remains finite at g = co ) . Therefore, generally speaking, we 
cannot expect any coincidences of critical indices. It is all the 
more interesting that the result obtained in Ref. 11 for the 
leading term of the long-wavelength asymptotic form of the 
one-particle Green function in the one-dimensional Bose gas 
with 6-function interaction coincides with the first term in 
( 16), the exponent being related to the velocity of sound by 
the same formula ( 18). As regards the oscillating term in the 
asymptotic form of the Green function in this model, here 
only the result for g = co is known12.13: = 5/2. It is easy 
to show that the velocity of sound forg = co is equal to 2 ~ p ,  
i.e., the formula ( 19) is valid. Thus, here too we find agree- 
ment that can hardly be accidental and indicates that the 
relations obtained for the critical indices of the correlation 
functions actually have a wider range of applicability. 

We are grateful to V. Ya. Krivnov for useful discus- 
sions. 
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