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The kernel W(E,E') for the collision integral due to electron-electron scattering is calculated 
with allowance for the static screening in the case of small disequilibrium. The kernel is used in 
the integral kinetic equation for the emission of optical phonons due to thermalized 
distribution. The range of validity of the integral equation turns out to be substantially larger 
than in the Landau-Fokker-Planck approximation. 

I. INTRODUCTION 

A study of electron-electron scattering in two-dimen- 
sional quantum wells' has revealed that the collision integral 
corresponding to this scattering cannot be reduced to the 
Landau-Focker-Planck ( LFP) form. Another approach 
was developed, based on a calculation of the scattering prob- 
ability and a solution of an integral equation. The integral- 
equation method is applied in the present paper to a three- 
dimensional gas. If the static screening is weak and the 
minimum energy transfer in electron scattering is small 
compared with other scales of the distribution function, the 
integral equation can be reduced to the LFP approximation. 
At the same time, this equation is just as suitable for the case 
of strong screening, for which electron-electron scattering 
has heretofore not been studied. The solution of the integral 
equation defines more precisely the limits of applicability of 
the LFP approximation. 

It is assumed in the calculation of the electron-electron 
scattering probability that the Coulomb interaction is 
screened at impact distances ofthe order of the Debye radius 
r,. The probability is calculated in the Born approximation. 
It describes the scattering of a test electron by the main 
group of electrons that have a Maxwellian distribution. The 
expression for W(E,E') differs from that used in Refs. 2 and 
3. It turns out, in addition, that an estimate of the minimum 
energy transferred in ee scattering in connection with 
scattering turns out to be different compared with the 
expression for A&,,, .3" The Coulomb logarithm is also dif- 
ferent from the logarithm used in Refs. 3-10. 

The superiority of the integral equation is most fully 
manifested in solutions of threshold problems. We consider 
therefore the problem of optical phonons emitted in a ther- 
malized distribution. Electrons with temperature T, <fin, 
propel a small fraction of the electrons from the passive re- 
gion & <fin, through the threshold E = fin,, tending to 
make up for the depletion, due to phonon emission, of the 
distribution in the active region E > fin, (fin, is the optical- 
phonon energy without allowance for dispersion). For a 2 0  
gas, the kinetic equation was solved by the Wiener-Hopf 
method.' In the case of a 3 0  gas the probability of emission 
of an optical phonon near the threshold, which is propor- 
tional to the density of the states of the electron near the 

bottom of the band ? - I ( & )  - & ' I 2 ,  de'pends on the energy 
[ T ( E )  is constant for a 2 0  gas]. The solution of the equation 
becomes therefore more complicated. The distribution func- 
tions f ( ~ )  at all energies of the heat power W lost to the 
lattice are calculated. 

The problem described was investigated earlier,,-' and 
the LFP approximation was used in Refs. 4 and 5. To be able 
to use the LFP approximation, it was assumed in Refs. 4 and 
5 that the minimum jump A&,, along the energy axis is 
small compared with the characteristic scales off(&), such 
as T, and the depth of penetration into the active region. The 
case when AE,, exceeds the electron penetration depth into 
the active region was investigated in Ref. 3. 

To solve the problem, a more precise criterion was used 
for the applicability of the LFP approximation. This crite- 
rion is different for f(s)  and Q. A different result is obtained 
for Q in the case treated in Ref. 3, where the power loss was 
calculated without solving the kinetic equation, by using a 
model assumption concerning the form of f(s).  

We have thus investigated the competition between 
electron-electron scattering and emission of optical phonons 
in that part of the concentration-temperature plane where 
the pair-collision approximation can be used for ee scatter- 
ing. Numerical estimates have been obtained for a number of 
semiconductors. 

11. ELECTRON-ELECTRON SCATTERING 

A. The probability YY(E,e1) 

We calculated the probability of transition of a test elec- 
tron from an energy E to an energy E' via scattering by the 
Maxwell-distributed bulk of the electrons. The law of inter- 
action of two colliding electrons with distance R = r, - r, 
between them is given by 

V ( R )  = (ee/R) e-"R, (1) 
wherea = r ,  -' is the modulus of the Debye wave vector; an 
effective electron charge is assumed, with allowance for the 
static dielectric constant. The matrix element of the scatter- 
ing of two electrons (k, p -, k', p') is easily calculated in the 
plane-wave Born approximation and is equal to 
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where L is the normalization volume, and 
q = k' - k = p - p' is the momentum transfer. Using it to 
write down the four-particle transition probability W(k, 
p - k', p') and averaging the latter over p and p' with the 
Maxwellian distribution function fTe (p), we obtain the 
probability in momentum space: 

W (k,  k') 

= (8n) "nne' ( - ye)  Ib 1 
AZL3 

exp (- I k,,' 1 ' /2mT,).  ( 3 
4 (qZ+a2)" 

Here k i; = ( klq)/l q 1 .  The kinetic equation for the distribu- 
tion function along the energy axis contains the probability 
(3) averaged over the angles between the vectors k and k'. 
Denoting the cosine of this angle by x ,  we get 

W ( E ,  E') =WOK ( y ,  y'), Wo=2n''~ne4A3/m2Te3L3, 
L 

We have introduced energies normalized to the temperature: 
y = E/T,, y' = E'/T,, yo = @a2/2mT,. The quantity yo, 
which has the meaning of dimensionless energy with wave 
vector equal to the Debye vector, assumes the role of the 
screening parameter. 

It will be seen from the solution of the kinetic equation 
that energy transfers (E  - E'(  <E,E', fino are important near 
the threshold E = fin,. We shall use this circumstance and 
the condition E,E'> T, to simplify the kernel K ( y ,  y ' ) .  For 
small transfers o = (E' - E ) / T ,  the kernel depends only on 
y = fifl,/T, z y ~ y '  and w. Small transfers correspond to 
scattering through small angles: 1 - x &  1. The integral (4)  
can be expressed in terms of the variable 6 = 2y( 1 - x )  in 
the form 

m 

where the upper limit 6 = 4y is replaced by infinity in view of 
the rapid convergence of the integral. For arbitrary yo and w 
(which are naturally small compared with y by virtue of the 
transition from (4)  to ( S ) ,  although the integrand is not 
formally dependent on y) the integral (5)  is equal to 

where we have for small values of the screening parameter 

1 0 1  >yo', yo<l or l ~ l w y o ,  yowl, 

and for large ones 

FIG. 1. Plots of the function K(y ,yr  ) at fixed y = 10 for 0 (y' ( 13 in the 
range 0.1 <y,<2 of parameter yo. 

The regions where the asymptotes ( 7 )  and ( 8 )  are valid 
overlap at Iw 1 >yo 2 1.  Figure 1 shows the kernel K ( y ,  y ' )  as 
given by Eq. (4).  At small transfers Iw 1 < 1 the screening 
becomes substantial at Iw 1 5 yo1/*.  This important circum- 
stance will be discussed in detail below. At large transfers 
10 1 ) 1 the screening comes into play when Iw ( 5 yo. If the 
screening is insignificant, the representation ( 7 )  is valid for 
all transfers ( Iw 1 >< 1 ) . We note also that 

as follows from ( 6 ) .  The asymptotic form ( 7 )  turns out to be 
different from Eq. (23) of Ref. 3. 

B. Minimum and maximum transfers. The Coulomb 
logarithm 

The kernel ( 7 )  is precisely the one used to calculate the 
diffusion and dynamic-friction coefficients in the LFP ap- 
proximation. For the diffusion coefficient we have 

The usual integration limits in this equation are 0 and co, 
assuming rapid convergence of the integral. For Coulomb 
scattering with kernel ( 7 ) ,  the integral ( 1 0 )  diverges not 
only logarithmically at small I E  - E' ( < T, , but also in pow- 
er-law fashion at large I E  - E ' I  ) T,. In the FP approxima- 
tion, however, the distribution function can be expanded 
only in powers of small transfers. Having among other prop- 
erties a scale on the order of the electron temperature, the 
distribution function cannot be expanded in a series if 

I E  - E'J 2 T,. Thus, besides the minimum energy transfer, 
which is determined by the screening, the integral ( 10) has 
also a maximum energy transfer AE,,, - T, that limits the 
applicability of the FP method itself. 

We discuss now the minimum energy transfer. The fol- 
lowing argument can be found in the l i t e r a t ~ r e . ~ . ~ - ~  Let the 
electron acquire as a result of scattering a momentum 
q = p' - p. Then 

2mAe-  (p+q)"p2==2p2[1- (pp ' /p2 ) ]  =2p2[  1-cos c p ] ,  
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where q, is the angle between the vectors p and P'. The last validity of the LFP approximation calls for In( T,/ 
transition contains an error, since I p 1 # I p' I. The formula z) ln( T, /hEmin ) A,, . 
A&,, = EP,, does not hold for small-angle scattering. The 
minimum energy transfer is obtained from the scattering Ill. KINETIC EQUATION 
kernel and amounts to 

Aemi,-e yo". (1 1) 

In the case of the transfer ( 1 1 ) the expressions (7)  and (9)  
are of the same order of magnitude. This, on the average, is 
precisely the energy transfer when the scattering alters the 
momentum by q-fi/rD in the Born approximation. 

In the Born approximation we have finally for the Cou- 
lomb logarithm 

A. Derivation of equation 

Assume that external heating maintains the electron 
gas at constant low temperature T, such that exp( - fiOo/ 
T,) 4 1. In view of the electron-electron scattering, a small 
fraction of the electron rises above the threshold E = fino 
and emits optical p h ~ n o n s . ~ - ~  We must calculate the elec- 
tron distribution function and the power lost to optical 
phonons 

01 

in lieu of the usual Jln(&&,T,/ne6). Just such a factor 0 

(T,/E) distinguishes also the Coulomb logarithm in the where 
classical approximation from that given in the literature. S ( E )  =-f ( e ) / z o ( e ) ,  l/.r0 ( E )  = t # ( t ) / ~ ~ y ' ~ ,  

We note that it is incomparably simpler to derive Eq. 
(12) in momentum space. The maximum (for the FP ap- t= (e-AQ,) /T..  (18) 
proximation) scattering angle is p,,, - ( T,/E) 'I2, the mini- 
mum scattering angle is pmin -qmin/p-fi(rn~)'/*/r,; the 

The distribution function satisfies the equation 

logarithm of their ratio is given by ( 12). It usually assumed C,,++C,,-+S=O, (19) 
that p,,, - 1 (Ref. 10, p. 21 1, and elsewhere). 

Therefore, if the condition 

In (&ITe)  <A,, (13) 

does not hold for hot electrons, the usual Coulomb loga- 
rithm must be replaced by the logarithm ( 12). 

We ultimately have for the diffusion coefficient, in view 
of (121, 

D ( E )  = 2 K n n e ' T . A , , / m ' 1 2 ~  E;ZT.. (14) 

We can use for the integral of the dynamic-friction coeffi- 
cient 

where C; are given by the integrals ( 16) of the probability 
(4)  with kernel (6).  The square-root dependence of r, (E) is 
determined only by the density of states g ( ~ )  -E"' on the 
bottom of the band and is valid for either a deformational or 
a polarizational interaction with the optical phonons. 

We have introduced the characteristic scattering time 
7, (Ref. 11). No arrival term will be taken into account for 
this type of scattering, since we are interested in the distribu- 
tion function near the threshold / E  - fifl,l< fiO,, or t 4 r ,  and 
the lattice temperature T, satisfies the equation T, 4 T, . 
Equation (19) does not conserve energy, so that the loss 
power is ( 17). 

We transform in (19) to an argument t and to a new 
( I5 )  function p ( t ) :  

a similar reasoning, and as a result we obtain, naturally, 
A = D/T,. c~ ( t )  =e-'-f (y+ t )  

Energy transfers I &  - E'(  % T, are not taken into ac- The equation takes the form 
count in the LFP approximation. The question whether such 
transfers are significant reduces to an estimate of integrals of pgit[cp ( l - ) ]  =8 ( t )  tah[e-'-cp ( 2 )  1, - - 
the form C 2 ,  which make up the electron-electron collision 

wherep is the second parameter of the problem (besides yo) : 
integral C,, = C 2 + C , , where 

It can be shown that the contribution of the transfers 
(E - ~ ' 1 %  T, to the integral C ,  is small, but for the integral 
C 2  this must be verified separately in each problem after 
determining f(e) in the LFP approximation. We note in ad- 
dition that if the scale of the distribution function is F < T,, 

and the operator 
00 

contains the kernel (6) .  The integration extends over all pos- 
sible energy transfers t in view of the convergence of the 
integral at values of t that do not exceed t / - max ( 1, y,,) . 

With an aim at using for (2 1 ) the Wiener-Hopf meth- 
od,' we introduce the functions p * ( t )  defined by p * ( t )  
= q , ( t ) O (  & t) ,  and take the Fourier transform of (21 ). As 

a result we obtain a second integral equation: 
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with the contour drawn such that Imk < Imk ' < 1. The 
"transform" of the kernel is calculated from the equation 

LD 

using the integral representation (5 ) and is equal to 

where El is the integral exponential function. The asymp- 
totes are of the form 

pk (k-i)  In [ply,k (k - i )  I [ ~ ' ( k )  + ~ - ( k ) l  

above the threshold. Here 
OD 

and the function u (x)  satisfies the equation 

The parameter A is connected with p: 

The function u (x)  and the parameter b were investigated in 
the Appendix of Ref. 5 [see also Eq. (56) 1. These equations 
describe the distribution function at not too smallp. Name- 
ly, from (26), (29), and (32) we get 

In yo-'>ln[pA,, ] -'I5 (33) 
(24) (in contrast to the criteria in Refs. 4 and 5).  

C. Weak electron-electron scattering 

A small p, Eq. (22) can be simplified by making the 
substitution 

followed by neglect of the term containingp2: 

By virtue of the derivation, Eqs. (27) and (35) should be 
simultaneously valid at 1 sp) y,5I4/~,, . Neglect of the 
terms c p 2  violates, however, this validity at sufficiently 
large k; it turns out further that at small yo Eq. (35) is valid 
precisely when (27) is not. For large yo, Eq. (35) is valid at 
k <p/y, [see (50) and (5 1 ) 1. 

To solve (35) we use the fact that the integral in the 
right-hand side of (35) is an analytic function of k at 
Im k < 1. Introducing, in accordance with the Wiener-Hopf 
method, the functions 

K ( k )  =K-(k) lK+ ( k ) ,  

(25) C*: Im f S  Im k,  0  C Im fC1, 

where ( - I@) = C is the Euler constant, P = 0.561 ... . 
The functions @ + (k)  and @ - (k)  are analytic in the half- 
planes Imk < 1 and Imk > 0, respectively. 

The plan for the analysis of Eq. (22) is the following 
(study Fig. 4 simultaneously). We draw in the quadrant 
p>O,yo>O thelinesp = 1 ,p  =yo, yo=  =y,5/4Aee-1. 
The region yo < 1, In yo-' %In [PA,, ] -4/5 is called the weak- 
screening region and is investigated in the next subsection B. 
The region p < 1 is called the region of weak electron-elec- 
tron scattering and is studied in Subsec. C. The region yo) 1 
is called the strong screening region and is analyzed in Sub- 
set. D. Finally, the strong electron-electron scattering sec- 
tionp) 1 is not examined separately, since, accurate to small 
corrections, f ( ~ )  = fTe ( E )  in the vicinity of the threshold, as 
will be seen later from (28) and (29) at yo< 1 andp) 1, and 
from (5 1) and (52) at yo% 1 andp %yo. A method of solving 
(22) for large p can be borrowed from Ref. 1. 

B. Weak screening 

We begin with the case yo< 1, when moreover y~ 
zy0k < 1 or t - k - ' %yo1/*. Consider the corresponding 
equation: 

= S  [ ( l S i k ) - ' 1  -S[T+ ( k ) ] .  

The logarithmic dependence on k is insignificant if 
we get 

In y o - ' ~ l n  k2. (26) 
K + ( k )  d [ @ + ( k )  1 - K - ( k ) q - ( k )  = K - ( k )  ( l+ ik ) - ' ,  (37) 

Returning in this case to the variable t, we get from (25) and 
(26) the usual LFP equation 

S [ @ + ( k )  ] = ( l + i k ) - ' K - ( i ) / K f ( k ) ,  (38) 

2pAe,[cp"+cp']=0(t) tIh[e-'-rp+ ( t )  1, (27 ) whence 

which was solved in Refs. 4 and 5, where the distribution q-(k)=(l+ik)-'[K-(i)/K-(k)-I]. (39) 

function From the integral equation (38) we obtain [see (34)]  

f ( t ) = f ~ a ( t ) - ( l - b ) f , ~ ( O ) ,  t c O  

was obtained below the threshold, and 

f ( t )  = b f ~ =  ( 0 )  u ( t l h ) ,  t>O (29) and from (39) we have 
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1  dk eikt K-  ( i )  
I -  2n - l+$k K - ( k )  1  Im k>O. ( 4 1 )  

Together with the explicit form of the "transform" of the 
kernel ( 2 3 ) ,  Eqs. ( 4 0 )  and ( 4 1 )  give the distribution func- 
tion in accordance with ( 2 0 ) .  For the case of weak screen- 
ing, if ( 2 6 )  is valid, the factorization of K ( k )  is trivial: 

In this approximation we obtain for the functions cp and f  
directly from ( 4 0 )  and (41 ) 

rp+(t) =e-', f ( t )  =0, t>O, (43  

9 - ( t )  =I ,  f ( t )=fre( t ) - fze(O) ,  t<O, ( 4 4 )  

which agree with ( 3 8 )  and ( 2 9 )  asp - 0  if ( 5 6 )  is taken into 
account. For large yo we get K ' = y o  '4 whence we have for 
the distribution function 

We refine now Eq. ( 4 5 ) ,  since the result f ( t )  = 0 ob- 
tained in the logarithmic approximation ( 4 2 )  is not satisfac- 
tory. At sufficiently large t ,  when Ik - il 4 1 ,  we can neglect 
in ( 3 5 )  the function @ - ( k ) ,  which is regular at k  = i ,  
against the background ( 1 + i k )  - ' and put k  = i every- 
where except for the difference k  - i  itself. We have 

hence 

f ( t )  =fT,(0)pt-"e-', t>to. ( 4 8 )  

We can determine to by comparing ( 4 8 )  with ( 3 9 )  at p, 
A< 1 .  Equation ( 2 9 )  is valid at t g t ,  and ( 4 8 )  is valid at 
t , to: 

to=p2l5&.l1s[ln Aee]'I5. ( 4 9 )  

Physically, to is the depth of penetration that can be reached 
into the active medium with equal probability either by dif- 
fusion or by a single collision. 

D. Strong screening 

Equation ( 2 2 )  becomes much simpler in the case of 
strong screening y, , ,  1 .  It turns out at the same time that 
yok(k - i )  $ 1 ,  since we are interested in the solution at 
It I 5 1 .  Using the asymptotic form ( 2 4 )  for the "transform" 
of the kernel, we obtain 

Returning to the usual variables, we have an algebraic solu- 
tion whose solution yields a distribution function 

that depends on one parameter p/y,. 
At t  < 0  we obtain in first-order approximation 

Equations ( 5 1 )  and ( 5 2 )  yield the same distribution func- 
tions as Eqs. ( 4 5 )  and ( 4 6 )  in the overlap regionp 4 1 ,  y o )  1 .  

IV. POWER LOSS 

The power loss to optical phonons can be represented in 
the form of the following integral of the distribution function 
[see ( l 7 ) ,  ( 1 9 ) ,  and ( 2 0 ) l :  

In the case of strong electron-electron scattering, the correc- 
tion q, + ( t )  is small and we have in first-order approximation 

In the case of weak screening when the LFP approximation 
is valid, the power loss was calculated in Refs. 4  and 5. In our 
notation, 

QIQo=Qn-"pL (1-b) , yo<min ( I ,  p1/5A,.'/5), ( 55 ) 

with 

for p 4 1 and 

forp 4 1 .  The correct Coulomb logarithm in ( 5 6 )  is given by 
( 1 2 ) .  

In the case of weak electron-electron scattering it fol- 
lows from ( 4 0 )  and ( 5 3 )  that 

Using the explicit form of the functions K  * (k) ,  we can rep- 
resent { by the following integral: 

A plot of the function f ( y o )  is shown in Fig. 2. The following 
asymptotic relations hold [see ( 2 4 )  1 : 

FIG. 2. Plot ofthe function g(yo)  (58) .  The dashed lines show the asymp- 
totes (59)  and (69) .  Case of the weak electron-electron scattering. 
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In the case of strong screening the integral ( 5 3 )  of Eq. 
( 5  1 ) takes, if ( 2 0 )  is used, the form 

This function has the asymptotic form 

A plot of the function ~ ( x )  is shown in Fig. 3. 
We have thus investigated the distribution function and 

the power loss in the entire ( p ,  yo) plane except in the region 
p - 1, yo- 1 ,  for which Eq. ( 2 2 )  or (21 ) must be solved ex- 
actly. At p -  1 and yo- 1 ,  we have, of course, f ( ~ )  - fT,  ( E ) ,  

( E  - fino( 5 T,,Q-Qw 

V. DISCUSSION 

It is useful to map the ( p ,  yo )  plane on the ( T ,  ,n ) plane 
of Fig. 4. The latter indicates the regions where the LFP 
approximation and the integral equation are valid. The co- 
ordinates of the point ( T  :, n* ) determined from the equa- 
tion p  = y o  = 1 are 

where a, is the Bohr radius. 
The physical meaning of the various lines in Fig. 4  is the 

following. The linep = 1 ,  n a T  :I2 corresponds to the condi- 
tion r0(2fiR,,) = ?,, ( T e  ) and indicates the arguments at 
which the scattering times must be compared. The line 
yo = 1 ,  n a Ta demarcates the regions where the minimum 
energy transfer in ee scattering is small (yo& 1 )  and 
large ( y o )  1 ) compared with T e .  The line p  = y o  corre- 
sponds to the case when the departure into the passive region 
at the point E = fiRo + Te proceeds equally rapidly as a re- 
sult of ee scattering and of phonon emission (in the case of 
strong screening). Finally, the line yo = @Aee ) 4 1 5  can be 
obtained from the condition that AE,, be equal to the diffu- 
sion depth of penetration into the active region. 

FIG. 3. Plot of the function ~ ( x )  (61 ). The dashed lines show the asymp- 
totes (61a). Case of strong screening. 

FIG. 4. The region on the (T , ,  n )  plane where the Landau-Fokker- 
Planck approximation is valid is hatched and marked by the letters LFP. 
At the point-2 In P we have T, = fiR,,, at the point-2 In a we have T, 
= E ~ .  The case E < T :  < fiR,, is chosen. See Table I. 

Ifcondition ( 3 3 )  is met, the distribution function above 
the threshold is calculated in the LFP approximation at 
scales t g t ,  ( 4 9 ) ,  while for scales t )  to the distribution is 
described by Eq. ( 4 8 ) ,  which does not contain a Coulomb 
logarithm. The scale of the function ( 2 9 )  is the diffusion 
penetration depth into the active region in the presence of 
optical-phonon emission5 with diffusion coefficient ( 14).  In 
temperature units, this depth t  -A - p 2 1 5 ~ ,  ' I 5  ( 3 2 )  is 
somewhat less than to ( 4 9 ) .  Since the probability of return- 
ing an electron to the passive region via electron-electron 
scatter is low at t%A, the distribution ( 4 8 )  can be obtained 
directly from the relation C 2 + S = 0, where C 2 was cal- 
culated with the function ( 4 4 ) .  

When yo increases, the condition (33 ) is violated, and at 
yo'12 2 p 2 1 5 ~ e e 2 1 5  the distribution in the active region is the 
following. Over scales t ~ y ; ' ~  with yo& 1 ,  the function f ( 6 )  
changes little by virtueof the properties of the kernel ( 9 ) .  At 
larger scales, t)y;12, the distribution is described as before 
by Eq. ( 4 8 ) .  Each electron is then propelled into the active 
region by a single collision and emits immediately a phonon. 
No Coulomb logarithm appears. The distribution is given in 
the passive region by ( 4 4 ) ,  or by the more accurate ( 2 8 )  if 
( 3 3 )  is valid. 

Equation ( 55 ) for the power loss is equivalent at p  & 1 
andln y ,  ', 1 toEq. ( 5 7 )  with6 from ( 5 9 ) .  It turnsout that 
the LFP power loss is always valid at 

h.M, ( 6 3 )  
i.e., even when the distribution in the active region is not 
described by the LFP approximation. The point is that at 
b = 0 the power loss is the maximum possible for the givenp. 
It can be obtained by solving in the passive region Eq. ( 2 7 )  
with the boundary conditionp(0) = 1, i.e., f ( ~  = fin,) = 0. 
The solution described by Eq. ( 4 4 )  or ( 2 8 )  with b = 0 has a 
scale t -  1, from which ( 6 3 )  follows as the condition for the 
validity of the approximation. 

The LFP equation can thus be used in threshold prob- 
lems to find the distribution function in the passive region, as 
well as the power loss (i.e., the flux through the threshold) 
when condition ( 6 3 )  is satisfied. It can also be used to find 
the main contribution made to the distribution by active re- 
gion when the more stringent condition ( 3 3 )  is met. Over 
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TABLE I. 

1) Note: The initial data were taken from Ref. 13 for CdSe and from Ref. 11 for the remaining 
materials. 

GaAs 
CdSe 
InSb 
InAs 
Gash 

scales substantially larger than the depth of diffusional pene- 
tration into the active region, the distribution function can 
be taken only from the integral equation. 

In strong-screening case yo) 1 it follows from (52) that 
the distribution in the passive region does not differ from an 
equilibrium distribution in the first-order approximation in 
yo- '. A difference does appear in the active region at t kp/yo. 
This is clear also from qualitative considerations. The life- 
time of an electron of energy E relative to electron-electron 
scattering is given by 

and is independent of energy. The phonon emission time 
( 19) becomes equal to .ree at t = p/yo. Ifp/yo ) 1, a Maxwel- 
lian function can be substituted in the integral ( 17) and (54) 
is obtained; in the opposite case one must use the solution 
(5 1 ), from which (61 ) follows. 

It was shown in the course of the solution of the kinetic 
equation that the distribution function above the threshold 
at a scale E - fino 5 Te is Maxwellian if 

On the other hand, it is proposed in Ref. 12 to solve this 
problem by comparing the expressions (in our notation) 

6 

nn,, K I e ~ .  X 

The explicit form for the integral (65) turns out to be quite 
unwieldy, but its asymptotes have the simple form 

420 
307 
284 
350 
347 

Calculating (66) at (E - fin,) - Te and comparing with 
(65), we see that (dE /dt) ., ) (dE /dt), if 

a 

0.88 
1.49 
1.80 
2.11 
0.58 

65 
216 

7 
17 
31 

T:, K n*. ~ m - ~  I 

The criterion (64) above therefore does not agree with the 
criterion in Ref. 12. 

We discuss now the region where the theory is valid. 
The problem of the interaction of a hot test electron with the 
surrounding gas was reduced here to pair collisions. It is 
known that this electron-electron scattering mechanism pre- 

51 
480 
22 
76 
10 

vails over excitation of collective oscillations of the plasma is 
sufficiently ideal, i.e., the sphere r i  contains many elec- 
t r o n ~ . ~ ~ ~ . ' ~  The necessary condition is therefore 

e2n"%T,. (67) 

2.10'0 
3.1018 
1.lWJ 
3.10'" 
1. 1015 

This condition is quite stringent for semiconductors. Thus, a 
plasma at the point (T:, n*)  is ideal i f a )  1 for a = fi/i/'i,~, . 
In binary semiconductors we usually have a)  1, if 7, is tak- 
en to mean the characteristic time of emission of a polariza- 
tion optical phonon 

where xo and x ,  are the static and dynamic dielectric con- 
stants. We can then write (see Fig. 4) 

The numerical values for a number of semiconductors are 
listed in Table I. 

We note finally that the employed Born approximation 
is valid if fin,) E, . 
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