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It is shown that in two-dimensional ferromagnets a special type of nonperiodic domain 
structure, characterized by an anomalous susceptibility m a ln-" (HJH), is possible. 

1. Usually, the domain structure of ferromagnets in 
conditions of equilibrium possesses a definite period. For a 
sufficiently large sample thickness L, a certain complicated 
branched domain structure, with perioda oc L 2/3  (Refs. 1-3) 
is realized. " 

It is customary to assume that with decrease of the 
thickness the L 'I3 law is replaced by an L 'I2 law (for L ,a). 
In fact, however, this is not so. For a small anisotropy con- 
stant (P447r), a candidate for a structure with accL '/' 
could be the Landau-Lifshitz structure4 (Fig. la) ,  but, as 
Lifshitz ~howed ,~  it is unstable at LC = 646, a, = 166 (for- 
mulas (32) in Ref. 5 withP--0). By making use of the ideas 
of Lifshitz,' it is not difficult to verify that the structure is 
absolutely unstable against the appearance of small wedges 
(see Fig. lc). For simplicity, we shall assume the wedge 
boundary to be planar. For a small wedge angle (2$), it 
follows from the condition of closure of the magnetic flux 
that the angle of deviation of the magnetization in the region 
ABCO is equal to 2$, and QABC = $. The change of the 
energy is determined primarily by two contributions: a 
loss - the energy 2ah of the wedge boundaries, where 
a = PSM is the energy per unit are of the and 
M is the magnitude of the magnetization, and a gain 
- 2pM 'h associated with the change of direction of the 
magnetization in the shaded regions. Thus, when the width 
of the wedge at the base (2qh) is greater than 26, i.e., in all 
cases when the width of the domains is appreciably greater 
than S and the macroscopic problem has meaning, the for- 
mation of wedges is favored. 

Privorotskii2 proposed a structure (a a L 'I2) with an 
energy lower than that of the Landau-Lifshitz structure. 
However, as in Ref. 4, in determining the emergent surface 
structure he minimized only the anisotropy energy and did 
not take into account the energy of the magnetic field or the 
energy associated with the nonuniformity. Let us assume, 
however, that the nonuniformity energy need not be taken 
into account, i.e., the characteristic distances over which the 
direction of the magnetization changes substantially are 
much greater than S. Then, in order that the angle of devi- 
ation of the magnetization be appreciable, fields H-PM are 
necessary, and the quantity M-H -,OM > 0. By virtue of the 
Maxwell equations in the absence of an external field, we 
have 

I BH dV-0 

(the integration is over all space) or 

consequently, since there are regions with dimensions of or- 
der a in which M-H-DM2 is positive, there should also be 
regions of the same size in which M-H -PM is negative. In 
these regions the magnetization direction (against the field) 
corresponds to a metastable state, but, as was established by 
Privorot~kii,~ in a field -QM the size of a critical nucleus 
( f o r P 4 4 ~ )  is of the order ofS. Consequently, it is not possi- 
ble to disregard the nonuniformity energy and field energy. 

We recall here that for p <  41r a domain structure does 
not exist at all in wafers that are too thin, and appears con- 
tinuously at L = Lk = n-6 (Ref. 7)  (P441r), while the L 'I3 

law is observed1 up to small thicknesses, when a - L. 
For a large anisotropy constant P)41r, in a narrow 

range of thicknesses PS S L  S 15@, the Kittel structure8 is 
realized' (Fig. lb).  At L = LC = 15PS (then a=0.2L), the 
stability of the planar shape of the interdomain boundaries 
in the neighborhood of their emergence at the surface is lost, 
and for large thicknesses one observes' a complicated emer- 
gent structure in which the period of the domains in the 
depth of the sample is a a L 2/3. On the other hand, for L &S 
one observes a hexagonal structure of cylindrical  domain^.^ 
The formula a =0.77(PSL) ' I2  obtained for the period of the 
structure by ~ i t t e l ~  in the limit L $-a also works quite well in 
the above-indicated region, where 1 5 L /a 5 5. In fact, the 
exact energy density of the Kittel structure for an arbitrary 
ratio a/L is equal to - 

C 
FIG. 1. 
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(cf. the problem in Sec. 44 of Ref. 3 ) . Retaining here the first 
correction for a (L, it is not difficult to convince oneself that 
the error in the Kittel formula for L /a = 1 is about 5%, and 
for L / a  = 2 is already only 0.5%. 

In the present paper we shall investigate the domain 
structure of extremely thin (L (P6) wafers for ferromag- 
nets withp> 4?r, in which a uniform state with the magneti- 
zation along the anisotropy axis (perpendicular to the plane 
of the wafer) is stable under small deviations. It is found that 
in such a ferromagnet a fundamentally new nonperiodic do- 
main structure is possible. 

2. In formula ( 1 ) we take the limit a ) L: 

Here the second term is the magnetic-energy density of the 
uniform state (then, the field inside the wafer is 
H = - 4?rM), and the third term gives (with logarithmic 
accuracy) the magnetic-energy gain associated with the ap- 
pearance of domains. The minimum of (2) corresponds to 
the domain width 

amL esp ( @ 6 / 4 L ) ,  P6BL. (3) 

For further investigation of this essentially two-dimen- 
sional situation it is convenient to represent the energy as 
follows. We note that in the case when the period is apprecia- 
bly greater than the thickness of the wafer, the energy of the 
magnetic dipole-dipole interaction reduces to the integral 

Here Iml = m, = ML is the magnetization density per unit 
area of the wafer (mlr,  - r,). Integrating this expression 
twice by parts and omitting the formally divergent integral 
determining the energy of the uniform state Ithe second 
term in (2) 1, we obtain 

dm, dm, u = q  j ,rl-r2,-,-- 
2  8rli drZi d ~ ,  d ~ , .  

The gradients of the magnetization are nonzero only on the 
boundaries between the domains, and therefore 

where the integration is taken over lines on the boundaries, 
the vector d 1 having a direction such that, e.g., on the right 
the magnetization points downward. 

By making use of the representation (4) ,  we shall find 
the energy density of the above-considered [formulas ( 2 ) , 
(3) ]  striped structure in an external field perpendicular to 
the plane of the wafer [cf. Ref. 10, formula (4) ] : 

2a 8m,2 as innc  -- -1n [TI - ( I -2c)  moH. 
a a 

Here c is the concentration of domains in which the direction 
of the magnetization is against the field H, a = aL, and a is 
the period of the striped structure (for H = 0 it is twice the 
width of one domain). The integral that diverges logarithmi- 
cally at short distances is cut off at a length A which, obvi- 
ously, is of the order of L if L > 6 or of the order of 6 if L < 6. 

Minimizing the energy (5) with respect to a and c, we find 
the following expressions for the period and the magnetiza- 
tion M = ( 1 - 2c)m0 of the structure: 

where 

H,= (4mJeA)  exp ( - a / 4 m 0 2 ) ,  ao=neA exp (a/4nzo2),  (7) 

where e is the base of the natural logarithms. 
We now show that the striped structure is unstable. For 

this, for H = 0 we shall find the change of energy upon a 
small deviation (of the form y = fcoskx) of one of the boun- 
daries for a fixed rectilinear arrangement of all the others. 
The intrinsic energy of the chosen boundary will change, in 
the approximation quadratic inJ; by the amount 

C Y  ( X I - - Y  (2') l2  s d z { + ( $ ) 2 + 2 m :  l ax' [ - 2 ,  x-x/  i3 
1  d y  d y  (x') -- -- 

Ix-x'I ax dx' I I- 
CkA =, [$- + m:k2 1, (T) ] J 

where C ~ 0 . 5 7 7  is the Euler constant. The energy of the 
interaction with the other boundaries will change by the 
amount 

OD 

- [ x - x  + a n 2  - y  = - j ax .  1 nz2zzf  (9)  

We shall express the quantity A in terms of a = a, from (7) 
and substitute the result into (8),  when, for the total energy 
change (8) + (91, we obtain 

per unit length of the boundary. For this result, in (5) and 
(8) the calculations were performed to within the constants 
under the logarithm that arise in the integration over dis- 
tances large in comparison with A. The energy ( 10) is nega- 
tive in a certain range of wave vectors. 

Thus, it is necessary to consider certain more-compli- 
cated structures. In principle, there are two essentially dif- 
ferent structures. First, the real structure can retain the basic 
property of the striped structure-the symmetry TR: trans- 
lation by a half-period with time reversal (i.e., m-. - m). 
By virtue of this symmetry the average magnetization of the 
structure is then equal to zero. Secondly, a structure of the 
bubble-lattice type (Fig. 2) is possible, and is observed when 
L -BS (Ref. 9).  A feature of this structure is the absence of a 
symmetry-based exclusion of the existence of an average 
magnetization m, = Am, (A < 1 ). Upon time reversal this 
structure is transformed into another with the opposite di- 
rection of the magnetization, and in this way the initial situa- 
tion (with degenerate states + m,) is repeated with a new 
magnetization value + m,. Therefore, a superstructure 
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must necessarily appear-the system stratifies into regions 
with opposite values + m ,. Here again we have two possibil- 
ities: The superstructure is either of the striped type, or of the 
lattice type. Because of the anisotropy that arises in the ener- 
gy of the boundaries between the states f m, on account of 
the particular symmetry of the bubble lattice, even a striped 
structure with straight boundaries can turn out to be stable. 
We shall assume, however, that, again, a superlattice of bub- 
bles turns out to be favored. The characteristic length scale 
of such a superlattice is of the order of 

a,-a. exp ( ~ a / 4 h ~ m , 2 ) ,  

where the parameter p determines the average energy2' 
a, =pa of the boundary between the states + m,. 

Next, it is clear from scaling considerations that if p/ 
A * > 1 (this is the most interesting case), the procedure for 
the systematic construction of superstructures is in no way 
limited, and at the n-th step we shall have 
m, = Am, - = An mo, a, = pn a ,  and 

where x is a certain constant. 
We shall elucidate the behavior of the considered struc- 

ture in an external field. Beginning with large fields, we note 
that a domain structure is absent in fields above a certain 
Ho-H, (7) but appears at the point at which the energy 

E (R ,  H) =8nm,ZR ln (8R/e2A) + 2nRa+2nR2m,H ( 11 ) 

of a circular domain of radius R and with magnetization 
opposed to the field becomes negative. Solving the system of 
equations &(R,H) = 0 and d&/dR = 0, we find 

Ho= (8 /e2)  Hk>Hk, R,= (e3A/8) exp (a /4m02) .  ( 12) 

In fields a little smaller than Ho, a lattice of domains with 
radius practically equal to Ro should arise. Since the do- 
mains repel each other as magnetic dipoles ( a F3), and the 
energy of the domains is linear in the field, i.e., 
E a (H - H,), the lattice period a becomes infinite in accor- 
dance with the law a a (Ho - H) -'I3. From symmetry con- 
siderations, a hexagonal and a square lattice are singled out. 
The square lattice with an r W 3  interaction law is found, how- 
ever, to be unstable. We note that the energy of the square 
lattice is greater than that of the hexagonal lattice by about 
1 % in total. 

Thermodynamically, the phase transition considered is 

FIG. 2. 

undoubtedly a second-order phase transition. The kinetics 
of this transition upon decrease of the field should have at 
least two distinctive stages. In the first stage, nuclei (do- 
mains with reversed magnetization) are formed, and the sit- 
uation is fully analogous to the nucleation stage in first-order 
phase transitions. In the second stage, the interaction 
between the domains should lead to the formation of the 
lattice. This stage and the kinetics of the reverse transition 
with increase of the field require special investigation. 

Upon further decrease of the field the period of the 
structure becomes of the order of R,, and in a field H, gHo, 
when the magnetization of the structure is M = m, = Am,, a 
superlattice of domains of radius R, and with magnetization 
m , = - Amo arises. The quantities R , and HI are obtained 
from Ro and Ho by the replacements Amo-mo and pa +a: 

HI-AH, exp (-ya/41L2mO2), R,-Ro exp (~a/41L~m,2) 

The process of the appearance of superlattices with decrease 
of the field will then be repeated, so that, when the magneti- 
zation of the structure at the nth step becomes equal to An mo 
in the field 

(here we have kept the leading term in the exponential as 
n + UJ ), a new superlattice appears. Using (13) to express 
the index n, we obtain the following dependence of the mag- 
netization M = An mosignH on the magnetic field in the limit 
H+O: 

where the index Y is equal to 

We note that a completely analogous pattern of critical 
behavior should be observed, instead of a first-order phase 
transition, on the surface of crystals and liquids, where, be- 
cause of the striction" and ele~trocapillary'~ effects, we 
have the same logarithmic behavior of the energy of the in- 
terphase boundaries as above. The role of the external field 
in these cases is played by the temperature, and the charac- 
teristic analogous to the magnetization is the polarization P 
of the surface. Then 

p ( T )  -P(T, )  m (Pi -P2)  sign(T-T,) [In (T, / (T-T,I )  I-', 

where P, and P2 are the polarizations of the surface in the 
coexisting states 1 and 2 (see Refs. 10 and 11). 

I express my thanks to S. V. IordanskC, S. V. Meshkov, 
and D. E. Khmel'nitskii for useful comments. 

"It is scarcely possible to calculate the coefficient in this formula, since the 
observed pattern' does not reduce to a two-dimensional problem, as is 
usually assumed,' and, moreover, it is difficult to take into account the 
nonuniformity of the field outside the sample over distance of the order 
of a period. This nonuniformity should be determined by the competition 
between the nonuniformity energy and the energy of the domain-emer- 
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gence structure, i.e., must make an important contribution. 
*'The quantities 1 and p, like the lattice parameters, can hardly be found 

analytically. 
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