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The spectral density of equilibrium fluctuations of a quasiparticle conduction current in a low- 
capacitance tunnel junction is obtained, as well as the low-current conductivity of such a 
junction. 

1. INTRODUCTION 

Processes in tunnel junctions (between normal metals 
or superconductors) of low capacitance C S  e2/T have been 
attracting considerable interest lately. This interest is caused 
to a considerable degree by the possible manifestation of new 
Coulomb and microscopic effects in such junctions. 

The present paper is devoted to the calculation of the 
fluctuations of the quasiparticle current and to the conduc- 
tivity of such junctions in the absence of the Josephson com- 
ponent of the tunnel current. A similar problem (for the 
particular case of normal metals) was considered earlier in 
Refs. 1, but the results there pertained to the physically unre- 
alistic case of a discrete spectrum of the electric charge Q of 
the junction. It will be shown in Sec. 2 that in all situations 
realizable in practice the spectrum of the charge is, on the 
contrary, continuous. 

The paper consists of two main parts. In Sec. 3 is calcu- 
lated the spectral density of the fluctuations of a quasiparti- 
cle current and the junction conductivity at zero average 
current through the junction, i.e., for thermal equilibrium 
between the junction and the heat bath. In Sec. 4 is calculat- 
ed the conductivity of the junction likewise in the limit as 
I+0, but in the regime of single-electron oscillations,4 i.e., in 
a patently nonequilibrium situation. 

2. FUNDAMENTAL EQUATIONS 

The Hamiltonian of the system in question and the stan- 
dard Hamiltonian used to describe tunneling differ only in 
the allowance made for the Coulomb energy of the junction: 

where H ,  and H2 are the Hamiltonian of the metals forming 
the junctions, Q is the electric charge of the junction as a 
capacitor: 

Q5-e (Ni-N,)/Z+Q., N,  = C< c k t ,  (2) 
4 

and HT is the usual tunneling Hamiltonian5 

kt4 

The summation in (2) and (3) is over all the electronic 
states of the metals 1 and 2, while c,+ and ck are the electron 
creation and annihilation operators. In Eq. (2  1, Qo is a con- 
stant that corresponds to the charge produced, say, by the 
difference between the Fermi levels of the metals."* 

We shall need the commutation rules for the operator Q 
with the operators H ,  and H ,,, . Assuming, as usual, that 

the operators c,f and c, pertaining to different metals com- 
mute with each other, it is easy to verify by direct substitu- 
tion that the following relations hold: 

H+Q= (Q+e) H+. (4b) 
Since Eq. (4b) leads to a similar relation for the operator Q" 

the following rule is valid for any analytic operator function 

The same procedure can be used to prove a similar relation 
for H- : 

Let the number N of the electronic states in metals be 
large, so that not too large a charge 1 Q I (eN does ?ot change 
their internal properties. It can then be assumed that 

We have already used the commutation relations (6) and 
(7) in Ref. 4, where we analyzed the dynamic properties of 
low-capacitance tunnel junctions. 

As noted in the Introduction, the final results depend 
substantialy on the properties of the eigenvalue spectra of 
the operator Q. Since, according to (3) ,  tunneling leads only 
to discrete charge transfer ( AQ = * e),  one might assume 
that the operator Q = Q - Qo takes on only discrete values 
ne. This assumption is actually correct when Q is the charge 
on an isolated conductor connected to the "outside world" 
only via the tunnel current. This is the case, for example, for 
a metal granule in the oxide layer of a tunnel 
which leads in particular to oscillatory (e-periodic) depen- 
dence of the properties of such structures on the values of Q, 
observed in experiment.' 

A more realistic situation for an ordinary tunnel junc- 
tion, however, is one in which it is shunted by an albeit small 
but finite metallic-type conductance G, (this shunting is 
necessary at the very least for the measurement of the elec- 
trodynamic characteristics of the junction). The electric 
charge is transported through such a "shunt" as a result of 
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small displacements of a large number of carriers, so that 
this charge is not discrete in the scale of e. 

Therefore, if the quantities characterizing the junctions 
are averaged over a time interval AT( C/G, during which 
the action of the current through the shunt can be neglected, 
it can be assumed that the charge takes on only discrete value 
Qo + ne, where Qo is the initial value of the charge. On the 
other hand, if the averaging is over a time interval AT) C/G, 
(as is in fact assumed when the equilibrium properties of the 
junctions are considered), it must be assumed that the 
charge takes on a continuous set of values4 (see also Ref. 9). 
Therefore Refs. 1 should accordingly be reviewed, as will be 
done indeed later for the case G, ( G ,  . Here 

G*=dI(V) ldVI v,,, (8)  

and I( V )  is the average current through the junction in the 
classical situation, when the junction voltage V can be re- 
garded as fixed (this situation is realized, in particular, for 
junctions of usual size with capacitance C)e2/T). 

3. EQUILIBRIUM CHARACTERISTICS OF JUNCTION 

We calculate first the spectral density of the fluctu- 
ations of the quasiparticle conduction current at zero aver- 
age current through the junction. In the first nonvanishing 
approximation in HT we have at ( I  ) = 0 (Ref. 10) 

+- 
(I2)"= ( 2 4  -I J d~ e-'mT(Z(r)Z(0) +I(O)I(r) )He 

-00 

OD 

2ez 
= - ~ e j  d~msr~(H+(r)H-(O)+~-(r)~+(0))~~, (9)  

nh2 

where the time dependences of the operators and the equilib- 
rium density matrix over which the averaging is carried out 
are determined by the Hamiltonian H,. Since the operators 
H ,,, and Q commute, the averaging over the internal degrees 
of freedom of the metals and over Q can be carried out inde- 
pendently. In addition, it follows from (6)  and (7)  that 

Thus, expression (9)  takes the form 
OD 

( P )  .= ( 2 n ~ ~ ) - "  5 dq exp { - $1 [$Re 

Using now the known relation" 

x Re dr  e-'"(H- (0) H+ (r) )H,+H,, (12) 
0 

we can express the right-hand side of ( 11 ) in terms of the 
aformentioned I (V)  dependence of the average current 
through the junction at a fixed junction voltage" 

00 

I ( v )  = 2 c ~ e  I dr  erp{- e} ( [H- (0). H+ (r) 1 ).,+,. 
0 (13) 

From ( 1 1 )-( 13) we obtain ultimately 

A m ] } )  -'I. (14) 

Using the fluctuation-dissipation theorem and the 
Kramers-Kronig relation, we can obtain from the spectral 
density of the conduction-current fluctuations the real and 
imaginary parts of the junction conductance Y ( w  ), and con- 
sequently calculate also the spectral densities of the small 
voltage fluctuations across the junction 

In the low-temperature limit 

T<eZ/C, 

we obtain from ( 14) the following asymptotic expression for 
the junction conductance at zero frequency: 

Y (0) =GT (n3CT/2e2)" exp (-e2/8CT}, (17) 

which differs substantially from the corresponding expres- 
sion of Ref. 1 both in the argument of the exponential and in 
the pre-exponential factor. At high temperatures, T$e2/C, 
the effects connected with the Coulomb energy of the transi- 
tion become insignificant and the junction conductance 
ceases to depend on temperature: Y(0) = GT. 

Equation ( 17) is valid for a junction between supercon- 
ductors if the characteristic scale of the junction voltage e/C 
is much smaller than the nonlinearity scale A/e of the func- 
tion I( V), i.e., if 

e2/C,<A. (18) 
Obviously, inequalities ( 16) and ( 18) can be simultaneously 
satisfied only if T( T, . 

A more stringent restriction on the region of applicabi- 
lity of Eqs. (14) and (17) follows from the necessary re- 
quirement that the voltage-fluctuation spectrum ( 15) ob- 
tained be compatible with the Gibbs charge probability 
distribution used in its derivation. This is possible only in the 
case of classical fluctuations ( V2), at all the essential fre- 
quencies w 5 Y(O)/C, i.e., when 

AY (0) ICKT. (19) 

In the low-temperature limit (16), the condition ( 19) takes 
the form 
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and for high temperatures 

GTRQ<CTIe2, 

where RQ = 7di/2e2 is the quantum unit of resistance. 
Finally, these results are valid for a junction in thermo- 

dynamic equilibrium, i.e., when the external current that 
causes the deviation from equilibrium is small. In the case 
G, 4GT considered, the smallness of the current is deter- 
mined not by the conductance G, of the junction itself, but 
by the conductance of the shunt 

I<eG,IC, (21) 

since failure to satisfy the last condition leads to the onset of 
one-electron  oscillation^,^ i.e., to a substantial deviation 
from equilibrium. 

4. JUNCTION CONDUCTANCE IN THE ONE-ELECTRON 
OSCILLATION REGIME 

The spectral density of the voltage fluctuations on a 
junction for one-electron oscillations (for the case T = 0) 
was calculated in Ref. 4. We confine ourselves in this section 
to calculation of the conductance of the junction to the cur- 
rent that causes these oscillations,T> eGs/2c, but is small in 
the following sense: 

I<eGT/C. (22) 

To this end we must obtain a stationary solution for the ki- 
netic equation that describes the dynamics of the charge on 
the j~nc t ion .~  Under the additional condition 

I>eG,/C, (23) 

this equation can be expressed in a particularly simple form 

x (o  (q) -o (9-r) eXp{- e(qi;/2) I). (24b) 

To calculate the conductance, it suffices to solve the equa- 
tion accurate to first order i n 7  

It is obvious from (24a) that the following relation 
holds: 

+a, 

Whereas a tT=  0 the condition (25) is identically satisfied 
with respect to a (q) ,  a t 7  #O Eq. (35) leads to a relation that 
must be satisfied by the solution of Eq. (24) and can be 
written, with allowance for the normalization of the function 
r ( q ) ,  in the form 

It is easily verified by direct substitution that a solution 
satisfying (26) can be written for (24) in the zeroth approxi- 
mation inTin the form 
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In the limit of low temperature (16) and a weak current 
(22), the probability density a ( q )  differs from zero only on 
the interval [ - e/2, + e/2] and in its nearest vicinities. In 
this case it is easy to find the correction in first order i n 7  to 
the solution (27), and the following expression is obtained 
for the junction conductance in the one-electron-oscillation 
regime 

At high temperatures, the amplitude of the one-electron os- 
cillations falls off rapidly and the junction conductance 
tends to its classical value Y(0) = G,. 

Thus, at low temperatures the junction conductance 
(28) for one-electron oscillations is linear in the tempera- 
ture and, unlike the equilibrium conductance, contains no 
exponentially small factor. This result is a reflection of the 
fact that in one-electron oscillations the charge on the junc- 
tion becomes "smeared out" by the external current over the 
entire interval [ - e/2, + e/2], in contast to the equilibri- 
um case, when the charge is concentrated near the point 
q = 0 and the probability of electron tunneling that increases 
the junction energy by AE-e2/C is exponentially small. 

Expression (28) obtained for the junction conductance 
pertains to the case of a substantial disequilibrium. If, how- 
ever, the average junction voltage is low, eV4 T, a situation 
is possible when the current is subject to a stronger restric- 
tion than condition (22), viz., 

PI<.(TCle2) (eG,/C) , (29) 

the spectrum of the voltage fluctuations can be assumed to 
differ little from the equilibrium spectrum. In this case the 
condition under which (28) is valid can again be obtained 
from Eq. ( 19), namely, 

GTRQ<l. (30) 

Comparison of conditions (20) and (30) shows that at low 
temperatures coherent one-electron oscillations are sup- 
pressed by strong dissipation more rapidly than the classical 
Gibbs distribution of the charge. It is interesting to note that 
condition (30) coincides with the condition for the suppres- 
sion of coherent Bloch oscillations in Josephson  junction^.^ 

5. CONCLUSION 

It can be seen from our results that the properties of 
low-capacitance tunnel junctions in a weak external field dif- 
fer substantially from those of high-capacitance junctions. 
The qualitative meaning of this difference is that the conduc- 
tance of the junction depends on temperature and decreases 
with it. A similar effect was observed in experiments on tun- 
neling through metallic granules in an oxide layer.6 Not- 
withstanding the substantial difference between that case 

D. V. Averin 1308 



and the case considered here (the principal difference is due 
to the discrete spectrum of the electric charges on the gran- 
ules), the behavior of Y(0) in the two systems has features in 
common. If the electric charge is localized near a fixed point 
inside the interval [ - e/2, + e/2], the conductance de- 
creases exponentially with decreasing temperature. If for 
some reason the charge is distributed over the entire interval 
[ - e/2, + e/2] and the characteristics of the junction must 
be averaged over this distribution, the conductance decreses 
linearly with temperature. In the case considered, this aver- 
aging is ensured by the one-electron oscillations,4 while for 
an ensemble of granules in an oxide layer6-s it is determined 
by statistical averaging over the positions of the effective 
Fermi levels of the different granules. 
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