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The increase in the probability for a classically forbidden process under the action of a time- 
varying perturbation is investigated. As is well known, semiclassical tunneling through a 
potential barrier V ( x )  can be described in terms of complex classical trajectories satisfying 
Newton's equation, which perforce leads to the concept of motion in imaginary time. A 
homogeneous alternating field gcos Rt is transformed, when t is replaced by ir, into a field 
gcosh Rt that increases with T, the characteristic T values being determined by the period 
during which the motion takes place in the classically forbidden region. As a result, the 
effective field determining the change in the index of the tunneling exponential function is of 
the order of 8exp(Rr, ), where T, is the imaginary part of the time it takes the particle to get 
to a singular point of the potential after emerging from under the barrier. A phenomenological 
picture of tunneling in an alternating field is described, and a general approach to the 
computation of the probabilities for semiclassical processes occurring under non-&ady-state 
conditions is presented. The probabilities for penetration through a potential barrier, decay of 
a metastable state, and above-barrier reflection are found in the weak-field limit. The complete 
solution to the problem of tunneling through a triangular potential barrier (field emission) in 
an arbitrary alternating field is presented. The simplest band-structure model for a 
semiconductor is used to investigate the interband breakdown in an arbitrary field 
go + gcos Rt (the nonlinear Franz-Keldysh effect). The possibility of an experimental 
observation of the investigated phenomena is discussed. 

1. INTRODUCTION 

The processes of subbarrier transmission and above- 
barrier reflection, which are forbidden by classical mechan- 
ics, acquire finite probabilities when the quantum effects are 
taken into account. As a rule, these probabilities decrease 
exponentially as the barrier width-to-particle wavelength ra- 
tio increases. The computation of the probability for a classi- 
cally forbidden process has a certain peculiarity from the 
mathematical standpoint: there necessarily arises here the 
concept of motion in imaginary time or along a complex 
trajectory.' This characteristic of semiclassical processes 
makes their computation quite difficult, and because of this 
no detailed investigation of, in particular, the effect of a vari- 
able perturbation on classically forbidden processes has thus 
far been published. The problems that have been solved ei- 
ther assume that the variable perturbation is weak, as ob- 
tains in the case of the Franz-Keldysh e f f e ~ t , ~  or are limited 
by the stipulation that the static potential is a short-range 
one, a condition which, fortunately, turns out to be adequate 
for the investigation of the practically important problem of 
many-photon ionization of an a t ~ m . ~ - ~  Thus, a large number 
of phenomena that arise when semiclassical processes occur- 
ring in realistic potential fields are exposed to the nonlinear 
action of a high-frequency field have as yet not been investi- 
gated. 

In the the present paper we consider the effect of an 
alternating field on the quantum tunneling of a particle 
through a potential barrier, interband tunneling in a semi- 
conductor, and above-barrier reflection. These effects are 
encountered in field emission, interband breakdown, charge 

exchange between deep-lying impurity centers in semicon- 
d u c t o r ~ , ~  tunneling chemical reactions,' and the destruction 
of the adiabatic invariants in classical  mechanic^.^ In all sit- 
uations of this kind a variable perturbation substantially in- 
creases the probabilities for the forbidden processes. 

Let us illustrate the subject of the present paper by the 
process of tunneling. If the amplitude of the alternating field 
is small, then the passage through the barrier will be deter- 
mined largely by ordinary tunneling, and the alternating 
field can be taken into account within the framework of per- 
turbation theory. This means that the probability for tunnel- 
ing accompanied by absorption of one or several photons is 
small compared to the probability for tunneling in zero field. 
But if the alternating-field strength exceeds a certain value, 
then the tunneling will be insignificant, and the passage will 
occur as a result of the absorption by the particle of that 
number of photons which it needs in order to get to the top of 
the potential barrier. 

These limiting cases are separated by a broad range of 
alternating field-strength values at which the passage 
through the barrier is a process of the mixed type, in the 
sense that it is advantageous for the particle to absorb a cer- 
tain number of field quanta so as to tunnel in a higher energy 
region, where the barrier is more transparent. The optimum 
number of absorbed quanta is determined in this case by the 
competition between the growth of the tunneling probability 
and the decrease of the absorption probability as the number 
of quanta increases. 

This type of problem is solved in Ref. 9 in the weak 
alternating field approximation. It is shown there that the 
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amplitude of the alternating field gcos Rt enters into the 
answer in the combination gexp(RrS ), where the rS is con- 
nected with the particle motion in the forbidden region. 
Thus, in the high-frequency limit RT,, 1 the barrier-pene- 
tration probability depends anomalously strongly on the 
amplitude and frequency of the field. The most promising in 
respect of an experimental observation of the indicated ef- 
fects are Josephson junctions, for which we have theoretical- 
ly investigated the voltage-state lifetime in a weak alternat- 
ing field. 10.'l 

In spite of the fact that the problem under discussion is a 
pressing one, in view of the latest experimental advances in 
the study of the decay of the voltage states of Josephson 
 junction^,'^-'^ the question of the effect of an alternating 
field on the tunneling processes has almost not been touched 
upon in the literature. In Refs. 17-19 the effect of an alter- 
nating field on the motion of a particle in the classically al- 
lowed region is considered. In Ref. 20 an attempt is made to 
take into account the effect of an alternating field on subbar- 
rier motion, but the general arguments do not lead to specific 
results. 

The purpose of the present paper is to investigate semi- 
classical processes in a high-frequency field, which is not 
necessarily considered to be weak. In the next section we 
qualitatively consider tunneling in an alternating field, and 
determine the typical orders of magnitude of the quantities 
involved in the process. In Sec. 3 we formulate the problem 
in a relatively general situation, and indicate a procedure for 
solving it with the use of the method of complex trajectories. 
Since Newton's equation in variable and spatially inhomo- 
geneous fields can be solved only in specific cases, the re- 
maining part of the paper is devoted to the analysis of a 
number of specific problems. In Sec. 4 we investigate the 
effect of a weak alternating field on tunneling, i.e., the case in 
which it is sufficient to take accouct of the linear-in the 
field--correction to the argument of the tunneling exponen- 
tial function. This in no way implies that the effect in ques- 
tion is weak. On the contrary, the condition of applicability 
of the semiclassical approximation requires that the indicat- 
ed correction be much greater than unity, so that the trans- 
mission coefficient should increase by several orders of mag- 
nitude. To elucidate more fully the physical picture of the 
phenomenon in question, we consider the effect of spatially 
inhomogeneous perturbations in the same linear approxima- 
tion. In Sec. 5 we study the decay of metastable states in an 
alternating field, and show that the oscillating dependence of 
the argument of the tunneling exponential function on the 
frequency is connected not only with the normal classical, 
but also with a specific quantum, resonance whose frequency 
is determined by the particle motion in the forbidden region. 
In Sec. 6 we briefly investigate the effect of an alternating 
field on above-barrier reflection. Allowance in the argument 
of the exponential function for the terms nonlinear in the 
field is possible only for relatively simple potentials; there- 
fore, here we shall not generalize the results obtained in Refs. 
10 and 11 for a sinusoidal potential to the nonlinear case. 
Below we present the solution to the nonlinear problem in 
two situations. In Sec. 7 we obtain and investigate in detail 

the exact solution to the problem of tunneling through a 
triangular barrier in an alternating field. These results have a 
direct bearing on the phenomenon of field emission. With 
the aid of the simplest band-structure model for a semicon- 
ductor, we carry out in Sec. 8 a detailed investigation of the 
interband breakdown in constant and alternating electric 
fields (the nonlinear Franz-Keldysh effect). In the Conclu- 
sion we discuss the results obtained in the paper and the 
possibility of their experimental observation. 

2. QUALITATIVE ANALYSIS 

Let us consider the problem of subbarrier tunneling in a 
uniform alternating field from a phenomenological point of 
view in order to elucidate the physics of the matter without 
laying any claims to quantitative results. We shall assume 
that a particle of energy E is incident from the left on a poten- 
tial barrier (of height V) of the type shown in Fig. 1. In the 
absence of an alternating field the probability for penetration 
through the barrier is, with exponential accuracy, equal to 
exp [ - A,(E) 1, where A, is the imaginary part of the corre- 
sponding action. ' In the general case, for a barrier of width 
oftheorder ofa, and forE- V, the quantity do- V/w, wheq 
w = ( V/ma2) 'I2 is the characteristic oscillation frequency 
in the inverted potential. On the basis of the semiclassical 
approximation condition A,) 1. 

When the alternating field is taken into account within 
the framework of perturbation theory, the transmission 
probability increases by a term proportional to the square of 
the field: 

D=exp[-A,  ( E )  I S  ( P P / ~ ; ) ' ~ X ~ [ - A ~  (E+R)  1, (1) 

where i?? is some internal field, the magnitude of which will 
be discussed later. The second term in ( 1 ) corresponds to a 
single-photon absorption and the subsequent tunneling with 
the increased energy E + a. We shall assume everywhere 
below that the alternating-field frequency is small compared 
to the height of the potential barrier and the initial energy of 
the particles: R 4 V, E. Taking into account the relation 

where irO is the imaginary time of the motion under the bar- 
rier between the turning points, we obtain in place of ( 1 ) the 
expression 

~ ( 8 )  =D ( 0 )  { 1 + [ 8  e x p ( ~ ~ o ) / ~ 1 2 ) .  (2) 

FIG. 1 .  Subbarrier transmission of a particle with absorption of N quanta 
of an alternating field. 
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It can be seen from this that perturbation theory ceases to be 
applicable even in very weak fields, specifically, in fields 
-- @exp( - fir0),  when we are considering the high-fre- 
quency limit nr0) 1. Let us note that r,- w - '; therefore, for 
semiclassical potentials ( i.e., for V )  w ) , the semiclassicality 
condition V )  f l  can be fulfilled simultaneously with the con- 
dition firo) 1. 

As the amplitude of the alternating field increases, the 
many-photon absorption processes, i.e., the next terms of the 
expansion in powers of ( 9/@ ) in the expression ( 1 ), be- 
come more and more important. The term corresponding to 
the absorption of N photons has the form 

where nfl is the energy received by the particle from the 
field. The change in the perturbation-theory parameter is 
due to the fact that the N th term of the perturbation-theory 
series contains in the denominator the factor (N!!)4 (Ref. 5), 
which has been included in ( 3 ) after being approximated by 
the Stirling formula, which is applicable when N )  1. We find 
the optimum number of quanta by maximizing (3) with re- 
spkt  to N, as a result of which we obtain 

s 
if: D=exp[  -Ao (E)+M exp  (L2zo) lg], 

(4) 
N,=& exp (Q2,) 18. 

This expression is applicable when the correction to the ar- 
gument of the exponential function is much greater than uni- 
ty, a condition which coincides with the condition for the 
process to be a many-photon one. The effective field 
8exp(flr0) should therefore be stronger than the character- 
istic internal field 29. Moreover, Nm fl  should be at least sig- 
nificantly smaller than the barrier height V  - E. 

When the field 9 is increased further, and the energy 
transfer Nm f l  becomes comparable in order of magnitude to 
the barrier height V - E, the passage occurs without the par- 
ticipation of tunneling. Retaining only the preexponential 
factor in the expression (3) with Nfl replaced by V  - E, we 
obtain in this limit the expression 

The exact limits of applicability of the expressions (2) and 
(5) will be indicated in Sec. 7, after the problem has been 
rigorously solved. 

The expressions (2) and (5) have been obtained on the 
basis of simple physical arguments. The parameter @ enter- 
ing into them can easily be estimated by computing with the 
aid of perturbation theory the linear-in the field ampli- 
tude-correction to the wave function of the transmitted 
particle. In the case of, for example, the triangular barrier 
shown in Fig. 1, this calculation yields 

- 
8-Q2[ml ( V-E) ] '". 
Naturally, for potentials of general form, the foregoing 

results are only of a qualitative nature, for the same reason 
that the total probability cannot in the the general case be 

represented in the form of a product of separate probabilities 
for absorption and tunneling. Nevertheless, for potential 
barriers having artificial singularities, for example, kinks, 
the qualitative results obtained here are, as shown below, 
exact in the quantitative sense as well. Only the regions of 
applicability and the numerical coefficients of @ in the var- 
ious limiting case are determined more accurately. Thus, the 
correctness of the expression (4) for triangular and rectan- 
gular barriers can easily be verified. 

3. SEMICLASSICAL DESCRIPTION OF TUNNELING IN AN 
ALTERNATING FIELD 

Let us proceed to the derivation of the general expres- 
sion for the probability for tunneling of a particle through an 
arbitrary time-dependent semiclassical potential barrier 
V(x,t). As is well known, in the semiclassical limit the wave 
functions can be sought with exponential accuracy in the 
form 

where S(x,t) is the classical action, and x and t lie on the 
particle's classical trajectory, which can be found from New- 
ton's equation 

Let the particle be incident on the barrier from the left. 
The problem is to find a relation between the values of the 
wave function at points x ,  and x, lying on opposite sides of 
the barrier. The forbiddenness of the tunneling process in 
classical mechanics implies, however, that there does not 
exist an ordinary trajectory connecting such points. For this 
reason, we shall consider the trajectories in complex time 
along the contour C+ in Fig. 2. On the symmetrically locat- 
ed contour C- we have x ( t  * ) = x* ( t ) .  To the right on C ,  
the quantities x and t are real, x lies to the right of the barrier, 
and the solution to Eq. (6) depends on two arbitrary real 
parameters. We shall assume that the particle emerges from 
under the barrier at the moment of time t2 at the point x,. 
This means that x(t,) = x, and (dx/dt), = 0. Then as the 
two real parameters, we can take the point x, and instant t2 at 
which the particle emerges from under the barrier. 

Let us assume that the nonstationary part of the poten- 

FIG. 2. The integration contour, singular points of the trajectory x ( t ) ,  
and branch cuts for the computation of the subbarrier transmission coeffi- 
cient. 
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tial is at least adiabatically switched off at t -  - w , i.e., that 
V(x , t )  - V ( x ) .  Then at points far to the left on the contour 
C+ the function x ( t )  is a solution to the steady-state equa- 
tion ( 6 ) ,  and depends on two parameters, which we can take 
to be the time shift t ,  and the conserved quantity E  = m ( d x /  
dt)' /2 + V ( x ) ,  i.e., x ( t )  = x ( t  - t , ,  E ) .  It is significant 
that the quantities E  and t ,  are, generally speaking, complex, 
and depend on the point x,  and instant t ,  at which the parti- 
cle emerges from under the barrier. 

The physically justified formulation of the problem 
consists in our prescribing the initial particle energy E  and 
measuring the particle flux emerging from under the barrier 
at the instant t,. In the general case there are no grounds for 
assuming that the trajectory x ( t )  defined by the real param- 
eters E  and t,  (the latter enters into the problem through the 
condition ( d x / d t ) ,  = 0 )  will itself be real. A more detailed 
analysis shows, however, that the time-averaged probability 
for semiclassical processes is determined solely by the real 
trajectories. The point is that the imaginary part of the ac- 
tion A(x , t )  = 2 ImS(x,t)  obtained from the Hamilton-Ja- 
cobi equation is, on the basis of the semiclassicality condi- 
tion, large, and its variations should also be much greater 
than unity. Accordingly, the particles should pass through 
the barrier at instants lying in a narrow neighborhood of that 
instant at which the function A  ( t )  has its minimum value. 
With allowance for the condition ( d ~ / d t ) , ~  = 0 ,  the condi- 
tion for A ( t , )  to be the minimum value ofA ( t )  has the form 

t3Alt3t2=-21m V (x,)  =0, 

from which the reality of x,  follows. Below we limit our- 
selves to the computation of the minimum values of the func- 
tion A  ( t ) ,  and we shall therefore consider the trajectory x (  t )  
to be real. The integration contour C+ in this case consists of 
a vertical section and two horizontal sections, as shown in 
Fig. 2. 

The value of the wave function on the remote left sec- 
tion of the contour C+ differs from the value of the function 
on the real time axis by the quantity Ero in the index of the 
exponential function. With allowance for this contribution, 
the effective Lagrangian has the form 

L='/2m(&/dt)LV (x ,  t )  +E, 

using which, we obtain for the transmission coefficient the 
expression 

~ = e - ~ ,  A=-i j L at, ( 8  
C 

where the contour C= C+ + C - .  For specific calculations it 
may turn out to be convenient to shift the integration path, 
allowing for its linkage behind the singular points of the tra- 
jectory. 

Thus far we have considered the problem of tunneling 
of a particle with energy E  prescribed at t -  - co , when the 
potential is stationary. If the tunneling proceeds from a state 
of thermodynamic equilibrium, then the result should be 
averaged over the energy E  with the Gibbs distributions: 

( D )  - J exp[-EIT-A ( E )  ]dE, 

where by A ( E )  we mean the action computed earlier with 
the formulas ( 7 )  and ( 8 ) .  Here it is important that the ener- 
gy derivative of the action A ( E )  be equal to - 27,, as was 
the case in the absence of the variable perturbation. The 
point is that, because the action is an extremal quantity, only 
the term with E in the expression ( 8 )  makes a contribution 
to aA /aE, and 2r0 is the distance between the remote ends to 
the contours C ,  . Of course the quantity r0 may itself de- 
pend on the amplitude of the variable field. Thus, in thermo- 
dynamic equilibrium the barrier penetration factor is found 
by substituting into ( 8 )  the real trajectory satisfying the con-" 
dition , 

'co=l/2T, 

which implicitly selects the energy of the particles tunneling 
through the barrier. 

The scope of the general expressions obtained in the 
present section is revealed below in a number of specific ex- 
amples. 

4. TUNNELING THROUGH ANALYTIC POTENTIALS IN A 
' 

WEAK HOMOGENEOUS FIELD , j  

Let us consider tunneling through potential barriers 
specified by analytic functions, taking account of only that 
correction to the action A, which is linear in the monochro- 
matic field. We shall consider the field to be homogeneous, 
so that 

L='/,m (dxldt)  '-V ( x )  + 8 x  cos SZt+E. 

We shall also assume that R 4 V, a condition which allows us 
to use the semiclassical expressions obtained in the preced- 
ing section. As is well known, allowance for a small pertur- 
bation in the Lagrangian in the action calculation amounts 
to the substitution of the perturbation into the Lagrangian of 
the unperturbed trajectory. The action A can therefore be 
represented in the form 

where 

Here x ,  and x ,  are the turning points, V(x , , ,  ) = E, and x  ( t )  
is the zero-field classical trajectory, fixed, for example, by 
the requirement that the particle emerge from under the bar- 
rier at the instant t  = 0, i.e., by the condition x ( 0 )  = x,. The 
quantity x then denotes the relative phase of the field. 

The action A,, as a function of the two variables x  and t, 
can be found by computing the linear-in 29-correction 
S,  ( x , t )  to the solution to the Hamilton-Jacobi equation: 

We then obtain forA , = 2ImS, in the region to the right 
of the barrier the expression 
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A, ( z ,  t )  --f# j dt'z(tl) COB { P  04-t') 
0 

which coincides with the expression (9) if t = 0 and x = x2. 
The integration path in the expressions (9) and ( 10) is 

the rectangular contour in Fig. 2, where the horizontal 
straight line on the left is at a distance of i.r, from the real axis 
and corresponds to motion to the left of x,, the vertical sec- 
tion from irO to 0 corresponds to subbarrier motion, and the 
positive half of the t axis corresponds to motion to the right 
of x,. On such a contour ~ ( t )  is real. 

To evaluate the integral (9) ,  it is convenient to shift the 
contour C far to the left (where the field is adiabatically 
switched off), allowing for its linkage behind the singular 
points of the trajectory x(t).  The importance of studying the 
singularities of the unperturbed trajectory is apparent from 
this. As can easily be seen from the following implicit depen- 
dence: 

the singularities of the functions x( t )  are connected with 
those of the function V(x) in the complex x plane. 

Let us consider those barriers for which V(x ) possesses 
power-law singularities at some points x, and x?, becoming 
infinite there: 

where a <O. Included here are singularities of the type 
V=: xx" forx 4 UJ and a > 0. In the vicinity ofx, the solution 
to Eq. (6) has the form 

x ( t )  =x.+[-x (2-a)' (t-t,)'/2m] 1'(2-a', 

where t, is the complex time required for the motion from x, 
to x, : 

4 

t .  - {2[E-V(u) ]/rn)-"'dy. (11) 

The corresponding singular points and branch cuts are 
shown in Fig. 2. In order of magnitude, 7, r Im t, is equal to 
the time r0 of subbarrier motion. In the limit of high alternat- 
ing field frequency, i.e., for fl7, ) 1, the dominant contribu- 
tion to the integral (9) is made by the branch-cut sections 
close to the singular points t, and t f. For the transmission 
coefficient we finally obtain 

D (8, t )  -D ( 0 )  exp [a' cos (Qt+X1) I ,  (12) 

where X ,  is the phase shift, which is unimportant for what 
follows, and 

This exact result is similar in structure to the expression 
(4), but, instead of rO, it contains the time T,, which, for 
analytic potentials, is always smaller than 7,. The maximum 
value of the field on a real trajectory is, of course, of the order 
of 8exp(Qro), but because of the field oscillations, its con- 
tribution to the action is greatly reduced, so that, for exam- 
ple, for even potentials 8, - 8 exp (Rrd2) .  

Averaging (12) over time with allowance for the in- 
equality a ,  lp 1, we obtain 

~(e) =D (0) (2nai)-" exp a,. (14) 

The use of perturbation theory makes it possible for us to 
compute the pre-exponential factor. 

The results ( 12) and ( 14) are applicable so long as 

where the limitation from above justifies the linear expan- 
sion in 8, while the limitation from below is due to the use of 
the semiclassical approximation. The criterion limiting the 
field amplitude from above becomes much more rigid in a 
more accurate calculation, as can be seen from the results 
pertaining to tunneling through a triangular barrier (Sec. 7)  
and interband tunneling (Sec. 8).  

Let us illustrate the results obtained with potential bar- 
riers of specific form. If V(x) = v ~ o s h - ~ ( x / a ) ,  then the 
trajectory with energy E is given by the relations 

sh (x/a) =[ (V-E)/E] " ch at ,  a2=2E/ma', 
dx/dt=aa sh (at) [El(V-E) +ch2 at]-".  

The appearance of singularities of the solution in the com- 
plex time plane can be directly seen from these relations. 
Substituting into the general expression ( 13) the values 

we obtain for the transmission coefficient the expression 

aPP 2na 
D (8) - D (0)  exp [-Tj (T) " ( g)"' e p  (a%)] . 

For the potential V(x) = V( 1 + x2/a2)-' we have 
x, = i a ,x= iVa /2 , anda=  - 1,andfrom (13) and (14) 
we obtain 

ha8 v " 
D ( 8 )  = D (0)  exp [ -( -) eXP ( ~ r * ) ]  , 

S 2  ( ) 6ma2S2' 

where 7, can be expressed in terms of an elliptic integral. 
The considered potentials above are even; therefore, T, 

is exactly equal to half the subbarrier-motion time rw We 
shall not carry out the analysis for other types of potential, 
noting only that among the potentials with power-law singu- 
larities the a = 2 case, in which T, - UJ and the expression 
( 13 ) is inapplicable, is unique. 

Another characteristic example is the case of those po- 
tentials in which the particle slides to the right from x,  along 
the real axis, and reaches the point x = UJ in finite real time 
t, . In this case Im t, = 0, and the exponential field intensifi- 
cation effect does not occur. This circumstance was noted in 
the investigation of the tunneling decay of the voltage states 
in a Josephson junction carrying a near-critical direct cur- 
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rent.lO*" The depth of the potential well in this case is small 
compared to the overall scale of the potential, and the shape 
of the potential in the vicinity of the barrier is well described 
in the cubic approximation, which is quite adequate for the 
computation of A,, but which, as has already been stated, 
leads to the result that rs = 0. To find the finite 7, value, we 
must remember that in fact the potential energy of a Joseph- 
son junction is described by an oblique sinusoid, along which 
the particle slides for an infinitely long time. By turning the 
integration contour in the expression ( 1 1 ) in the direction of 
imaginary x values, we can make it possible for the particle 
to reach the point where V(x) = co in finite, but now com- 
plex, time, so that rS = 1.177 w; ', where w, is the Joseph- 
son plasma frequency, i.e., the frequency of small oscilla- 
tions of the particle in one of the troughs of the sinusoidal 
potential when it is not sloping. Let us emphasize that T, 

tends to a finite value as the direct current appr~aches the 
critical value, whereas the subbarrier motion time 7, tends in 
this case to infinity. This fact sharply distinguishes tunneling 
in Josephson junctions from the examples considered in the 
present paper, and demonstrates the importance of the ana- 
lytic structure of the potential as a whole, i.e, in the regions 
far from the barrier region. 

The exponential field enhancement has been noted by 
V'yurkov and Ryzhi'izl in the case of electron tunneling 
between &function wells, when 7, is equal to the time of 
flight across the forbidden region, and by S u m e t ~ k i ? ~ ~  in the 
case of tunneling through a triangular potential barrier. 

Let us compute the energy distribution for the particles 
that have tunneled through. The time dependence of the 
wave function can be explicitly found from the solution to 
the Hamilton-Jacobi equation. In the fir, & 1 limit we have 

$(t) WJexp {-iEt-l/Zal exp  (-iQt) ), 

since there remains out of cos flt only the term that increases 
in the region Im t > 0. Leaving out the structure of the ener- 
gy spectrum at scales - a ,  we find that the spectral envelope 

Thus, the particles that have passed through the barrier gain 
on the average an energy of a1fl/2, and have a Gaussian 
energy distribution in an interval - ~ : ' ~ f l .  

Let us now consider the situation in which the intensity 
of the alternating field is nonuniform in space: 

V, (x, t )  =V, (x) cos Qt. 

Then instead of (9),  for the correction to the action we write 

~ , = i j  v , ( ~ ( t ) ) ~ ~ ~ s a t a t ,  ( 1 5 )  
C 

where the singularities of both the unperturbed trajectory 
x( t )  and the potential Vl (x)  as a function ofx must be taken 
into account. Without intending here an investigation of the 
general case, we consider the class of potentials Vl (x)  that 
possess no singularities. Then in the expression ( 13), we 

should simply substitute for tY the quantity I V; (x), I,.i.e., 
the amplitude of the additional field at the singular point of 
the original potential. In the particular case when 

Vt' (x) =8 e x p  [- (x-xp) '/ye], V (5) =V ~h-~ (x / a ) ,  

we obtain 

This example shows that the anomalous increase in the con- 
tirubtion of the perturbation to the tunneling exponential 
function can be the result of not only the rapid variations in 
time, but also the pronounced spatial inhomogeneity, of the 
perturbation. The effect of the perturbation weakens as the 
intensity of the alternating field in the barrier region is de- 
creased 

Also of interest is the case when the potential is nonsta- 
tionary as a reault of jittering as a whole: 

Then in the formula ( 15 ) we have Vl (x)  = PV(x), and it ie  
convenient to rewrite it in the form 

In place of ( 13) we obtain 

from which we can find the answers for potentials of specific 
forms. 

Notice that the tunneling problem in a high-frequency 
field (a $ w ) cannot be solved with the aid of Kapitza's pen- 
dulum method,' since in complex time the field is not an 
oscillating one, and the amplitude of the alternating field in 
the region of interest to us is much smaller than the intensity 
of the constant field. 

5. TUNNELING DECAY OF A METASTABLE STATE IN A 
WEAK ALTERNATING FIELD 

In the preceding section we investigated the effect of an 
alternating field on the transparency of an isolated potential 
barrier. If the initial state corresponds to a particle located in 
a potential well, the particle motion in zero field is finite and 
periodic: x ( t  + to) = x( t )  , where to is the period of the parti- 
cle vibrations in the well. Taking this into account, we can 
transform the contour C r  C+ + C- in Fig. 2 into a series of 
closed contours differing from each other by a to shift along 
the real taxis. The function x ( t )  has the same form on all the 
contours; therefore, the summation over the contours corre- 
sponds to our going over from (9)  to the following expres- 
sion: 

A, = " $ d t  x (t) sin ~ t ,  
2 sin (Qto/2) 

where the integration is along the contour shown in Fig. 3. 
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FIG. 3. The integration contour and singular points of the trajectory x ( t )  
in the case of the computation of the probability for decay of a metastable 
state. 

The arbitrary phase corresponding to the choice of the initial 
moment of time is included in the function x ( t ) ,  and should 
be chosen so as to minimize A,.  

We shall assume, as before, that V ( x )  is singular at the 
points x, and x,*. In the t  plane these points correspond not 
to two points t ,  and t  :, as before, but to four points: f t, 
and f, t  r. The latter circumstance is due to the fact that, in 
contrast to the potential barrier problem, in which the sign 
of the root in the expression ( 1 1 ) is specified by the direction 
of the particle motion, roots of either sign are suitable for the 
problem with periodic motion. The summation of the resi- 
dues at the indicated points leads to an expression differing 
from ( 13) by the factor 

F ( ~ ) = I  .I, 
sin (S2to/2) 

where t, = Re t, . 
The result shows that the field-frequency dependence of 

the decay probability is of an oscillatory nature, and is deter- 
mined by two periods. One of them is the period of the classi- 
cal vibrations of the particle in the well at a given energy; the 
second one is determined by the quantum effects, and does 
not admit of a simple interpretation. The function F ( R )  is 
infinite when the frequency il is comparable to the frequen- 
cy 2?r/to of the internal motion. The final answer in this case 
can be obtained by taking account of the nonlinear effects or 
the damping of the oscillations. The complete solution to the 
problem of the decay of a metastable state in an oblique sinu- 
soidal potential and in a weak alternating field is given in 
Ref. 1 1 .  

6. ABOVE-BARRIER REFLECTION IN A WEAK 
ALTERNATING FIELD 

In the static situation the coefficient for above-barrier 
reflection is given by the expression' 

where x ,  is the real and xo the complex root of the equation 
V ( x )  = E determining the position ofthe turning point. The 
correction due to the alternating field is given, as before, by 
the formula ( 9 ) ,  but the integration contour will now be 
different. 

The reflection coefficient is given by the ratio of the 
amplitudes of the incident and reflected waves. Let the parti- 
cle be incident on the barrier from the left. Then the classical 
trajectory x ( t )  describing the reflection of the particle from 
the barrier is specified in the complex t plane by the contour 
C+ in Fig. 4. The section 1 corresponds to the incident parti- 
cle; the section 3, to the reflected particle; and the section 4, 
to the transmitted particle. At the remote ends of the sec- 
tions 1 and 3 we have x  < 0. The section 2  contains the turn- 
ing point, where d x / d t  = 0 and the coordinate x  is complex, 
in accordance with the fact that the turning point does not 
exist in classical mechanics. With allowance for the forego- 
ing 

As before, in the high-frequency limit the dominant 
contribution to the integral is made by the potential's singu- 
lar points, the behavior o f x ( t )  in the vicinity of which has 
already been investigated. It is clear that, for potentials with 
power-law singularities, the correction to the action will, as 
before, be given by the expression ( 13 ), with the only differ- 
ence that we should now use for the imaginary part of the 
time of motion to the singular point x,  the expression 

x. 

r - Im 5 xI { ~ [ E - V ( X ) ] / ~ ) - ~  dx, 

where x ,  is an arbitrary real coordinate. 
For the particular case of a potential of the form 

V ( x )  = v c o ~ h - ~  ( x / a ) ,  we have 

sh (x/a) a [ (E-V)  IE] '" sh o t ,  02r2Elmaa,  

dzldt-  (2Elm)" ch ( a t )  [sh2 o t f  E / ( E - V ) ]  -". 

As can be seen, the turning point t ,  = in/2w is located in the 
middle of the section 2 in Fig. 4, where x  is pure imaginary. 
On sections 1 and 3  the quantity x  is real. The correction to 
the argument of the exponential function in the limit i lr, $1 
has the same form as for the transmission coefficient in the 
case when E < V: 

a&P 2no  " V " 
R (8) =R (0) exp [F( --ih) (F) exp ( Q r . ) ] .  

FIG. 4. Integration contour for the computation of the above-barrier re- 
flection coefficient. 
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Let us note that the equality of T, and Im t ,  is due to the 
special choice of potential, and does not hold in the general 
case. 

From the mathematical standpoint the above-barrier 
reflection effect is similar to the phenomenon of nonconser- 
vation of adiabatic invariants.' The results of the present 
section show that a weak variable perturbation should 
anomalously greatly change the adiabatic invariant if the 
frequency of the perturbation exceeds the characteristic re- 
ciprocal time of the variation of the system's parameters. 

7. EXACT SOLUTION FOR A TRIANGULAR BARRIER: FIELD 
EMISSION IN AN ALTERNATING FIELD 

In the preceding sections we computed the corrections 
to the argument of the tunneling exponential function that 
are linear in the alternating field. The exact solution in the 
nonlinear case is possible only for potentials of a specific 
form. Below we consider in detail the practically important 
case of the triangular barrier, a case which has a direct bear- 
ing on field emission.23 We shall assume that, as shown in 
Fig. 1, a particle of energy Estrikes a barrier of height V from 
the left, and that a constant, go ,  and an alternating, 
8 cos a t ,  field exist beyond the barrier. The assumption 
that there is no electric field in the region to the left of the 
barrier not only simplifies the problem, but also corresponds 
to the realizable conditions in which the field is screened off 
in the vicinity of the metal surface. These assumptions re- 
duce the problem to the problem of computing the imagi- 
nary part of the action 

tr 

m & "  
S -- [-2.(;ii) - V + 8 0 ~ + 8 r  con ~ t + ~ ] d t ,  ( 16) 

11 

where t, and t ,  are respectively the instants at which the 
particle goes, and emerges from, under the barrier. The tra- 
jectory x ( t )  can be found from the equation 

md2x/dt2=8,+8 cos Qt (17) 

with the boundary conditions 

As stated in Sec. 3, to compute the minimum value of 
the imaginary part of the action, it is sufficient to limit our- 
selves to real trajectories. It is easy to verify that the real 
solution to Eq. ( 17) corresponds to the situation in which 
the particle emerges from under the barrier at the instant 
when the alternatic field has its maximum intensity. For 
definiteness, we shall therefore assume that t, = 0. The solu- 
tion of ( 17) with the boundary condition (dx/dt), = , = 0 
allows us to find t ,  from the condition ( 18), the quantity 
t ,  = ir turning out to be pure imaginary. The real trajectory 
satisfying the indicated conditions has the form 

x (t) =ZTO (t2+ze)/2m+8 (ch Qz-cos Qt) /mQ2, ( 19) 

where t varies along the imaginary axis and the quantity T 
can be found from the equation 

where x = [2m ( V - E )  ] ' I 2  is the initial momentum for the 
subbarrier motion. 

Substituting the expression ( 19) into ( 16), and going 
over to imaginary time, we obtain for the quantity 
A = 2 Im Safter a number of transformations the expression 

A=Aov.-S[3~.2~/2-v3/2- (38/8,) (v ch V-sh v) (20) 
- (3EPX/W,Z) (sh 2~-2v)] , 

v+ (&/go) sh v=v,, (21 

where we have introduced the notation 

and the action A, takes in the absence of an alternating field 
the form 

The dependence, as given by the relations (20) and (21 ), of 
A /A, on the parameters g/g, and Ors is depicted in Fig. 5. 
Simpler analytic expressions can be obtained for several 
limiting cases. 

Let us consider the case of high frequencies, i.e., the 
case in which v, Y, % 1. The equation for Y assumes the form 

Ignoring the terms small in the parameters Y;' and 
exp( - Y ) ,  we obtain for A the expression 

where the last term in the brackets is always small compared 
to the other two, but must be retained, since it is precisely the 
term that gives the linear-in g-correction in the case of 
small 25'. In the latter case we have 

The limitation on g from below is due to the fact that, ac- 
cording to the condition of applicability of the semiclassical 
approximation, the absolute value of the correction to the 

FIG. 5. Dependence ofA / A ,  on RT, for the following values of I@,: 1 ) 
0.001; 2 )  0.01; 3) 0.03; 4) 0.1; 5) 0.3; 6 )  1; and 7 )  3. 
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action should be much greater than unity. The limitation 
from above indicates that the linear-in the $ field-correc- 
tion to the action a,  is correct so long as a,  ( A d ( n r ,  )2, 

which is a much more rigid criterion than the one indicated 
in Sec. 4. 

In the region 

exp (Qz , )  -1 

we obtain for A the expression 

A--Ao(1- ( Q z . ) - ~ f %  exp (Qz.)lzaPo] ), (25) 

where the function f ( x )  is given by the relations 

f -3y+3y2/2, (26) 

yeq=x, (27) 

and its plot is shown in Fig. 6. In the limit of small $ the 
expression (25 goes over into (24), while at large $ it tends 
to the expression 

31n2[eP exp ( Q z . ) / M O ]  
A-A,, {i - - 

2(Bz.)' I* (28) 

which is applicable if 

SZz.wln [d exp (Qz.) I 2 8 0 1  w 1 .  (29) 

At still higher 8 values we can neglect in the expression 
(23) the last term in the brackets, but the first two should be 
retained. Solving Eq. (27) y > 1 by the iteration method, and 
introducing the variable z = 1 - y/Rr,, we obtain 

A=Ao[3z /2-zs /2] ,  z= ( Q T , ) - ~  In [W0(;2z. /8] .  (30) 

This expression is applicable if 

In [% exp (QT,) /so] 1, d / & o < ~ T , ,  

where the latter inequality follows from the condition v% 1. 
The expression (30) is matched with (28) in the region 
(29). But if the condition 

In (2EPoQz./8) <SZz., 

is fulfilled, then only the first term in the brackets in (30) 
should be retained. The field go then drops out of the an- 
swer, and 

A=2[ ( V - E )  ISZ] In (2SZxleP), (31) 

which corresponds to a multiquantum non-tunneling pene- 
tration of the barrier, when we have for the transmission 
coefficient 

An increase in the field amplitude 8 leads to further 
reduction in the quantity v = S1r. When v(v,, Eq. (21.) 
should be written in the form 

which is valid in the v- 1 case as well. In this situation it is 
necessary to return to the expression (20) for A, in which 
only the first and last terms in the square brackets should be 
retained. It is easy to see that the approximations made cor- 
respond to a field go negligible compared with the strong 
alternating field, so that the problem reduces to the one 
solved earlier by K e l d y ~ h , ~  and has the solution 

A=(x2/mS2) { (1+82/2Qax2)  arsh ( P x l 8 )  

In the region of still higher field intensities where 
8 BxO, we find from (32) that 

which corresponds to tunneling at the maximum field inten- 
sity in a time short compared to the period of the field, so 
that the tunneling occurs quasistatically. 

Thus, as the amplitude $ of the high-frequency 
(Rrs > 1 ) field increases, the following tunneling regimes 
occur one after another: 1 ) the static regime (22), in which 
the field amplitude 8 does not exceed the lower limit set by 
the inequality (24), and the field has no effect on the tunnel- 
ing; 2) the regime in which the $ field has an anomalously 
strong effect on the tunneling, and the correction (of the 
order of to A, depends on the combination 
$exp(S1rS )/2$, (see (25)-(27) and Fig. 6); 3) the regime 
(30), in which A depends logarithmically on $, i.e., varies 
much more slowly with 8 than before; 4) the regime (3 1 ) of 
multiquantum non-tunneling penetration of the barrier; 5 )  
the strong-alternating-fielld regime (32) investigated by 
~ e l d y s h ~ ;  and 6) the quasistatic tunneling regime (33), in 
which, because of the high intensity of the variable field, the 
tunneling time is short compared to the period of the field, 
and the tunneling occurs at the instant when the barrier is 
narrowest. 

FIG. 6. 

8. THE FRANZ-KELDYSH EFFECT IN A STRONG VARIABLE 
FIELD 

Let us consider the interband breakdown in a semicon- 
ductor in the presence of a constant and an alternating elec- 
tric field. In the case of a very weak alternating field the 
probability for a one-photon transition can be computed 
with the aid of perturbation t h e ~ r y . ~  We shall be interested 
in the case of relatively strong fields, when the multiquan- 
tum transitions are important. In this case we must use the 
semiclassical approximation instead of perturbation theory. 
This method is used to solve the breakdown problem in Refs. 
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24 and 25, where the constant and alternating fields are con- 
sidered separately. 

For a one-dimensional two-band semiconductor with a 
spectrum given by 

the Lagrangian that takes account of the alternating, 
8' cos Rt, and constant, O,, fields has the form 

L=- ( 4 2 )  [I- (dx/dt)'/cZ] ' h+~(8p+8  cos at) .  (34) 

The classical trajectory can be found in its explicit form: 

dxldt =c [8,t+ (8lZ;Z) sin Qt] 

x ( (ed2c) '+[got+ (8152) sin a t ]  '1-'". (35) 

The tunneling transition probability in the semiclassi- 
cal limit can, according to (8) ,  be computed with the La- 
grangian (34), using as C+ and C- the contours in Fig. 7. 
The square root in ( 35 has opposite signs on opposite banks 
of the branch cut, and the interband transition occurs at the 
instant ir corresponding to the zero of the radicand in (35). 
As in the preceding section, the instant at which the particle 
emerges from the forbidden region should correspond to the 
maximum value of the field. The argument of the tunneling 
exponential function then has the form 

where the upper integration limit corresponds to the root of 
the integrand. Let us introduce the time 

which is the time required by the particle to gain in the static 
field go an energy of the order of the forbidden-band width 
8',, and rewrite the action (36) in the form 

v 

A=A.(~~v:)  j {v:-[,+(a/a.)ss p13w, (37) 
I O 

where 

is the action in the absence of an alternating field and v is the 
root of the equation 

FIG. 7. Integration contour for the computation of the probability for 
interband tunneling in a semiconductor. 

The family of curves given by the expressions (37 ) and (38) 
is virtually indistinguishable from the family depicted in Fig. 
5. 

The analyses of the particular cases with simplified ex- 
pressions for A is entirely similar to the corresponding analy- 
sis carried out in the preceding section. As before, we shall 
assume that Or, )p 1. 

In the limit of weak variable fields, i.e., for 

d exp (Qz.) < 8 0 ,  

we obtain from (37) and (38) the expression 

A-A~{ 1 - ($) " 8 exp (QT,) 
(n~ . )  w, -1. 

As in the preceding section, for the small, but nonlin- 
ear-in g--correction to A, we obtain 

A=Ao(I- (SZr,)-"2cp[8 exp (Bz,)/W,]), (40) 

where p(x) is given by the parametric relations 
.D 

(2'/2/at) {2yn/3 + J [z'- ( ~ - ~ e ~ - ~ ) ~ ] d z ) ,  (41 ) 
Y 

yeY=x, (42) 

and its plot is shown in Fig. 6. The expression (40) goes over 
in the limit of weak fields into the expression (39), and tends 
in the limit of strong fields to 

2'1% h"[8 exp (Qz,) /2PPo] 
A=A.{~ -- 3n 

(Qr*) 1 , (43)  

which is applicable in the region 

Pz.Wln [8 exp (52r.)/2ePo] W1. (44)  

For still higher values of %' we can neglect the hyperbo- 
lic sine in the integrand in (37), and solve Eq. (42) for y ) 1 
by the interaction method, as a result of which we obtain 

A = (2Aoln) [arcsin z+z (1-2') '"1, 
(45 

z= (QrJ -' ln (WOQr,/8). 

This expression is applicable if 

In [ 8  exp (52r,)/280J >I, 8/8,<SZr,, 

where the latter inequality is a consequence of the condition 
O T )  1. The expression (45) is matched with (43) under the 
conditions (44). In the region of still stronger O fields where 

we have from (45) that 

which corresponds to a multiquantum nontunneling sur- 
mounting of the forbidden band under conditions when the 
effect of the constant field can be ignored. Further increase 
of the field amplitude O leads to the situation in which the 
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quantity v(v,, and the action is given by the e x p r e s s i ~ n ~ ~ . ~ ~  

A- (2eJQ) J [ I -  ( 2 d P ~ l e ~ Q ) ~ s h ~  p]' d p ,  

where the effect of the constant field can be ignored if 

In the region of relatively small g the expression (47) goes 
over into (46), while for 8 %E, R/c the tunneling process is 
quasistatic, and 

which is entirely similar to the expression (33) in the preced- 
ing section. 

We shall not enumerate the tunneling regimes, since the 
corresponding field intensity and frequency regions coincide 
exactly with the regions given in the preceding section, and 
the entire difference amounts to some change in the depen- 
dences of the action Aon the indicated parameters. 

9. CONCLUSION 

Our purpose in the present paper was to investigate in 
all detail the effect of an alternating field on semiclassical 
processes. The most striking effect here consists in the expo- 
nential enhancement of the high-frequency field during the 
motion of the particle in imaginary time. We have found 
that, in the particular cases of field emission and interband 
tunneling, the argument of the tunneling exponential func- 
tion depends nonlinearly on the ratio g exp (RT, )/go when 
the latter is of the order of unity. The relative correction to 
the action in this case is of the same order of smallness as the 
parameter (RT, ) - 2  or (RT, ) -3'2, but the absolute value of 
the correction should be large, if the semiclassical approxi- 
mation is to be applicable. It is, apparently, in this regime 
that the qualitative difference between the variable and con- 
stant fields is most clearly manifested. As the field intensity 
is increased further, the dependence of the action on the field 
amplitude $ becomes much weaker, specifically, it becomes 
logarithmic. We have computed these dependences in the 
entire domains of the parameters, but the conditions of ap- 
plicability of the corresponding analytic expressions are too 
rigid to be fulfilled in the case of real systems. Thus, we can 
hope for the fulfillment of the condition RT, % 1, but when 
the condition 1n(Rrs ) % 1 is fulfilled simultaneously with 
the condition V% R, the decay probability exp( - a VT, ) ( a  
is of the order of unity) will be so small that the decay will be 
unobservable. 

In the case of charge exchange between deep-lying 
centers in semiconductors, when the distance between them 
is large, typical values ofAo- In( 1/D) are - 30 (Ref. 6).  We 
can then fulfill the condition AO%Rrs by taking RT, -6, 
which corresponds to a field enhancement ratio 
exp(Rr, ) -400. But if the action does not attain too large 
values, i.e., ifAo lies in the range from 10 to 15, as is possible 
in tunneling chemical reactions,' or in field emis~ion,'~ then 
the exponential enhancement of the alternating field can be 

observed in the case of the absorption of a small number Nof 
quanta, when the quantity ( V - E ) / n  2 1. For the triangu- 
lar barrier 

which corresponds to perturbation theory in the case of high 
field frequencies, when the semiclassical approximation is 
inapplicable. Nevertheless, as can be seen from the expres- 
sion given above, the effective field turns out to be exponen- 
tially enhanced in this limit as well. 
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