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It is shown that the singular character of the distribution of parametrically excited magnons in 
k-space (points, lines, surfaces) leads to singularities in the spectra of other quasiparticles. For 
antiferromagnets the positions and types of the singularities arising in the spectra of the 
magnons of the antiferromagnetic branch and of the phonons upon parametric excitation of 
magnons of the ferromagnetic branch are found. 

Under the action of a microwave field of frequency w, 
and power above threshold, in a magnet spin waves with 
wave vectors concentrated near the constant-frequency sur- 
face w, = w, /2 in k-space are parametrically excited.' At 
power levels slightly above threshold the packet of parame- 
trically excited spin waves (PSW) is rather narrow,' and the 
occupation numbers of the PSW are such as to correspond to 
spectral temperatures of millions of degrees.' This implies 
that in k-space there is a strongly superheated constant-fre- 
quency surface. Thanks to this singular character of the dis- 
tribution of PSW their interaction with other quasiparticles 
should lead to singularities in the dispersion law of the lat- 
ter.3 As noted in Ref. 3, in this respect there is a certain 
analogy with the situation in metals, where at T = 0 there 
exists a distinct constant-energy Fermi surface ~ ( k )  = E,, 

and the interaction of electrons with other quasiparticles 
(e.g., phonons) leads to anomalies of one kind or another at 
k = 2k, in the spectrum of these quasi particle^.^ 

For definiteness we shall consider an antiferromagnet 
with two branches of the spin-wave (magnon) spectrum5: a 
ferromagnetic branch ( f  ) 

O L =  ( ~ ~ ~ + v , , , ~ k ~ )  Ib (1)  

and an antiferromagnetic branch (a) 

~ . k =  ( ~ , ~ ~ + v , ~ k ~ ) ' ~ ,  

and also with an acoustic branch whose dispersion law we 
shall assume to be linear: 

(here v, and v,  are the sound velocity and the "limiting" 
velocity of the magnons). 

We suppose that parametric pumping with frequency 
w, excitesf-magnons whose wave vectors lie on the con- 
stant-frequency surface w, = w, /2. We shall discuss first 
the distortion which then arises in the spectrum of the a- 
magnons. At small levels of excitation, and if the external 
magnetic field is not too small, the chief interaction process 

where a and f are the amplitudes of the waves, and the matrix 
element (see Ref. 3) 

is a smooth function of the frequencies and wave vectors. 
The nonlinear frequency shift Soaq is determined by the 

real part of the polarization operator. Calculating it for 
small f k  ( I Yf I <wk ) , we obtain, in second order ofperturba- 
tion theory, 

60., = lim Re 

where ( f, f ,*. ) = N, A (k - k' ), the angular brackets de- 
note averaging over the random phases (or over the random 
external force in the diagram technique of Wild6), and N, is 
the number of excitedf-magnons. 

As can be seen from (2),  the character of the singularity 
of Sw, (q) depends on the dimensionality of the distribution 
of PSW in k-space. The simplest case is considered in Ref. 3, 
viz., the excitation of a monochromatic standing wave (i.e., 
of a pair + k,, where wko = wp/2), and in this case two 
terms remain in (2) : 

For Aw: =ma, - oko - w, * ,, + 0 formula (3) displays a 
singularity of the form l/Aw, . The resonance surfaces speci- 
fied by the equalities Aw: = 0 are ellipsoids of revolution: 

(here the x axis is directed along ko). As can be seen from 
(4), these surfaces exist for waO >2w,. 

We turn now to the case when the wave vectors of the f- 
magnons lie on a line (usually, this is a circle on the surface 
w, = w, /2). Letting the z axis be perpendicular to the plane 
in which this circle lies, we write (2)  in the form 

*- 
'I 

between magnons of different branches is the coalescence- I y,r(q-k,IalfkltdV 
decay process described by the Hamiltonian loaq = ! o a q - o k -  [ ~ ; ' + v . ~ ( ~ ~ + k ~ - 2 k ~  sin 8 cos V) 1% ' 

m 

Here 6 is the angle formed by the vector q and the z axis. 
Since the matrix element Y is a smooth function ofq, it can be 
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taken outside the integral, after which the integral can be 
calculated. For 

Ao,=o.,-cot- [oo2+vmZ(qZ+kZ+2kq sine)] "20  

we obtain (M = 8, N, is the total number of PSW) 

6waq = 
4 1 Y I Z f l  { - K ( [ 2 / ( b + l ) l K )  

(2vm2kq sin 0) '" (b+1)" 

b 5 ( o , 2 + ~ m 2 ( k 2 + q " ) / 2 ~ m 2 k q  sin 0, r=b- (bz-I )" ,  ( 5 )  

where K and lI are complete elliptic integrals of the first and 
third kinds, respectively. Since II(r/2, x, r )  - . ~ x - ' / ~  as 
X +  03,  the singularity is of the square-root kind: Sw,, 
cc ( Aw, ) as Aw, - 0. The resonance surface Aw, = 0 is 
a torus, one of whose sections is the ellipse (4), while the 
other is two circles with their centers at the origin. 

In the case when the wave vectors of the PSW fill the 
whole constant-frequency surface w, = wp /2, the singular- 
ity in the dispersion law of the other quasiparticles becomes 
logarithmic. We shall illustrate this for the example of the 
interaction of f-magnons with phonons. If the velocities of 
the PSW exceed the sound velocity, then for 2vi k,)v,op a 
Cerenkov process of emission of a phonon by magnons is 
allowed. The Hamiltonian of this process has the form 

where 6, are the amplitudes of the sound waves. In this case 
the expression for the polarization operator in second order 
of perturbation theory7 contains the difference N ,  - Nk - ,: 

The renormalized dispersion law Z, is expressed in terms of 
the phonon Green function D(q,w), which is related to the 
polarization operator by the Dyson equation 

Here the bare Green function is 

Do (q, o )  = (0 -o . ,+ iq )  -'- (a+%-iq)-',  q++O. 

Assuming that the occupation numbers of the PSW are the 
same for all points on the constant-frequency surface, we 
obtain 

Putting w = w,, in the argument of the logarithm, we see 
that the renormalized dispersion law of the phonons, 

a.q2=co8,2-20., Re 11 (q, a,,) 

has logarithmic singularities on two surfaces in q-space: 

[ o o 2 f  vmZ (ko=tq) '1 %= (oO2+vm2ko2) 1b+v8q/v, (8) 

(the signs can be changed independently). Here it is perti- 
nent to note again that the singularity under discussion is a 
direct analog of the Kohn effect in metals.' In 1959 Kohn 
predicted the presence of a logarithmic singularity of the 
phonon group velocity dZ,,/dq at +ig = 2po, wherep, is the 
Fermi momentum. This singularity is connected with the 
electron-phonon interaction of the form (6).  Since the dis- 
tribution of magnons has a 6-function dependence on the 
energy, and the Fermi distribution at T = 0 (i.e., a 8-func- 
tion) is an integral of the S-function, it is clear why in our 
case a logarithmic singularity is observed not in dZ,, /dq but 
in the frequency Z, itself. For an electron-phonon system, 
us /upo E (m/M) ' I 2  4 1, where up" is the electron velocity at 
the Fermi surface, and m and M are the electron and ion 
masses, respectively. In our case, for v, &urn,  from ( 8 )  we 
find that in the present case of a magnet with pumping the 
singularities will be at q=2kO, as in the Kohn effect. The 
dependence of the character of the singularity on the dimen- 
sionality of the distribution of PSW on the resonance surface 
is analogous to the predicted (by Afanas'ev and Kagan4) 
dependence of the character of the singularity on the geome- 
try of the Fermi surface (sphere, cylinder, or plane). If the 
wave vectors of the PSW lie on a line, then, as for a-magnons, 
the singularity in the phonon dispersion law is a square-root 
singularity and occurs at 

sin 0 [ q  sin 0* (4k02-q2 cosZ 0)  '''1 =*vSo0/vmZ. 

In the case 8 = r / 2  (i.e., when the wave vectors of the PSW 
and phonon lie in the same plane) the singularity should be 
observed at q = + 2k, f v, wo/v2,. 

Of course, the formulas ( 3  ), ( 5  ), and (7),  obtained un- 
der the assumption that Sw, &m, , are not valid in the imme- 
diate vicinity of the corresponding resonance surface. To de- 
scribe the behavior of So, as Am, -+O it is necessary to 
analyze the whole perturbation-theory series, and this 
should transform Sw, into a regular function of q. For exam- 
ple, for the case of a pair f k, (more precisely, for the case 
of a pair of narrow packets of waves concentrated near 

k,), it can be shown that in each order of perturbation 
theory the main diagrams for n (q, w,, ) as Am, +O are the 
diagrams of the "skeleton" and "ladder" s e r i e ~ , ~  which can 
be summed, leading to an algebraic equation for Sw, of the 
form 

From (9)  it is easy to see that on the resonance surface itself 
(i.e., for Am, = 0) there is no nonlinear frequency shift: 
Sw, = 0. This fact can be perceived directly from an analysis 
of the diagrammatic series, from which it follows that Sw, 
for Aw, -0 is an odd function of Aw, . The regularity of Sw, , 
in combination with the oddness, leads to the conclusion 
that Sw, = , = 0. The frequency shift is a maximum at 
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Awq =IYI.ForAw, )IY( wehave6wq =IYI2N/Awq,i.e., 
(9) goes over into (3). 

In a real situation there are always factors leading to 
smearing out of the singular PSW distributions: thermal 
noise, scattering by  defect^,^ and nonlinear interaction of the 
PSW with each other and with thermal  wave^.^.^ In the case 
of smooth (albeit narrow) PSW distributions the singulari- 
ties in the spectra of other quasiparticles are also smeared 
out. If the wave vectors of the f-magnons occupy a layer of a 
certain width about the constant-frequency surface, with a 
distribution N ,  in the form of, e.g., the Lorentz function 
[ (w, - wp/212 + v2] - I ,  a spectral soliton cosh-' [ ( a ,  
- wp /2)/7], or a more complicated the correc- 

tion to the phonon frequency has the form 

60,q=ln [ (op/2+~8q-aro+q) '+$I. 
Here we have written out the principal term near the surface 
wp /2 + w, - w,, + , = 0. It should be noted that situations 
are possible in which the k-distributions of the PSW have 
finite widths in all directions but sharp boundaries in just 
one of the  direction^'^." (e.g., a distribution in the form of 
an oblong in the modulus k).  In this case, as in the Kohn 
effect, there should be a logarithmic singularity in the group 
velocity 6'65, /dq. 

A quantitative estimate of the magnitude of the effect, 
e.g., for FeBO,, for which the exchange constant 0, 

128 .8 -  10, GHz, us = 4.7 x 10' cm/sec, u, ~ 3 v , ,  the mag- 
netoelastic constant O/kB ~ 2 0  K, and the elastic-energy 
constant Mvf/kB 1 10' K gives, for up = 277-30 GHz, su- 
percriticality h /h, 110 ,  and 7/wp 1 

V ( b + q ) ~ o q = 2 ~ e ~ e ' 0 ~ q h I M v I l O p  (OP-O.~) , 

I V(b+P+w I 2Jro* UP In- = 2:0-'. 
A2~.2koq~aq rl 

The presence of w, in the expression for V2 gives grounds 
for drawing attention to the fact that the phonon renormal- 
ization that depends on the level of pumping of the magnons, 
while possible in principle both in ferromagnets and in anti- 
ferromagnets, is much more clearly expressed in the latter. 
This is yet another manifestation of the exchange enhance- 
ment of single-ion interactions in antiferromagnets.12 

The above-described singularities in dispersion laws 
can be observed in neutron-scattering experiments (very dif- 
ficult, since it is difficult to make Iql large) or in the excita- 
tion of a-magnons or phonons by an external source. For 
example, if the source excites these quasiparticles parametri- 
cally, then, as their frequencies approach the corresponding 
resonance surface, singularities will be observed both in the 
threshold h :q' and in the above-threshold behavior of the 
wave system. In addition, if through the magnet in which the 
PSW are excited one passes pulses (e.g., sound pulses) with 
a frequency approaching the resonance frequency, because 
of the presence of the anomalously large dispersion the time 
of spreading of the pulses should decrease with increase of 
the level of excitation of the PSW. 

Experimental study of the singularities in the emission 
spectra of other quasiparticles will make it possible to deter- 
mine the distribution of the initial parametrically excited 
spin waves in k-space. 
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