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The collision of two fluxons of opposite polarity in a long (linear or annular) Josephson high- 
current dissipative junction is investigated. The total radiated collision energy and its spectral 
composition are obtained. 

1. INTRODUCTION 

One important application of Josephson junctions is 
their use to generate microwave radiation (see, e.g., Refs. 1 
and 2). In particular, the radiation accompanies various dy- 
namic processes in which magnetic-flux quanta (fluxons) 
participate. In the case of one fluxon, the generation can be 
due to inhomogeneity of the junction (e.g., in the presence of 
reflecting end points1 or of distributed inh~mogeneity,~-' 
and also to the action of an alternating external field on the 
f l ~ x o n . ~  

If two fluxons are present, wave generation is made pos- 
sible even in a homogeneous medium by interaction between 
them. 

The dynamics of a pair of fluxons in a long Josephson 
junction was investigated theoretically in Refs. 3 and 7-1 1. 
It was shown in Refs. 9 and 12, in particular, that in the 
presence of reflecting edges a pair of fluxon with arbitrary 
relative polarity is transformed as a result of the reflection 
into a "bunched" (bound) pair of like polarity. 

We consider the interaction of fluxon of opposite polar- 
ity in asystem without end points (in an annular or infinitely 
long linear junction), described by the equation3.8-1' 

where Q, is the normalized magnetic flux, f the dimensionless 
density of the extraneous current, and y the dissipative coef- 
ficient. The coordinate x ,  directed along the junction, and 
the time t are normalized respectively to the characteristic 
space and time scales (see, e.g., Ref. 6). At f = y = 0, Eq. 
( 1) goes over into an exactly integrable sine-Gordon equa- 
tion (SGE). Its elementary solution, which describes one 
fluxon, is of the form 

where v is the fluxon velocity and a = f 1 is its polarity. At 
small f and yon can apply to Eq. ( 1 ) the perturbation theory 
for solitons (Refs. 3, 7, 12, 13). In particular, this equation 
has as before a stable solution in the form of a kink whose 
velocity v. is no longer arbitrary, but is uniquely expressed 
in terms of the perturbation parameters3.14 

v./ (1-v.~) %=nof/4y. ( 3 )  

In addition, small perturbations distort slightly the form of 
the kink, and the asymptotic values of the wave field Q,, as 
x+ f a, are determined by the relation 

sin @,= f. (4) 

We calculate in this paper the total energy radiation 
upon collision of fluxons of opposite polarity and moving 
with velocities * v. and the spectral composition of the ra- 
diation. Note that collision of a fluxon with an antifluxon is 
accompanied, besides by collision radiative loss, also by di- 
rect energy loss due to the presence of dissipation in Eq. ( 1 ) . 
Owing to these losses, the collision leads to coalescence of 
the fluxon and antifluxon into a bound state called bion 
(breather), if the extraneous-current density f is much less 
than the critical 

We consider only the case f >Ar, when the fluxon-antifluxon 
pair does not annihilate into a bion. 

2. RADIATED ENERGY 

Expressions for the total radiated energy and for its 
spectral density can be obtained analytically by a perturba- 
tion theory based the method of the inverse scattering prob- 
lem,7-'3 under the conditions 

The condition (6) and the condition y cg 1 that follows from 
(6) and (7) permits the use of perturbation theory in the 
small parameters f and y, while the second condition means 
that ( 1 - v. ) ' I 2 -  y/f 4 1, i.e., the fluxons are "relativistic"; 
this simplifies substantially the subsequent calculations. 

To allow for the perturbation-induced shift (4) of the 
asymptotic values of @, it is convenient to transform to a new 
variable u: @ = Qo + u, for which Eq. (1)  takes approxi- 
mately the form 

utt-u,+sin u==f (I-cos u) -yu,. ( 8  

In terms of the inverse problem method,'' the radiation 
is described by a complex coefficient b(A) that constitutes 
the scattering data for the continuous spectrum. Here A is a 
real spectral parameter connected with the radiation wave 
number k: 

k=h- 1/4h. (9) 

The spectral energy density Era, takes in the case of small 
Ib(A)IZ the form7 

p(h) =dE,,ddh.z (1+4h2) I b (A) I2/nhz. (10) 
The physical spectral density is easily expressed in terms of 
( 10) with allowance for (9)  : 
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The perturbation governed evolution of b (A ) is determined 
by known equation of soliton perturbation t h e ~ r y ' ~ , ' ~ . ' ~  

where q"*2'(~,t;A) are called Jost functions and are used in 
the inverse-problem method. Since a solitary fluxon is an 
exact solution of Eq. ( 1) and does not radiate energy, it is 
natural to assume that no radiation exists prior to the colli- 
sion. This means that Eq. ( 12) can be supplemented by the 
initial condition b(A, t = - a, ) = 0. The total density of 
the energy radiated as a result of the collision is determined 
by expression ( lo),  in which b (A ) must be replaced by b(A, 
t = + oo ). Obtaining this value from (12) with (7) taken 
into account, we obtain after rather laborious calculations 

where 

shachb 

while Q, ( m  = 1,2, 3) are the complex polynomials 

We have introduced here a quantity which is designated as 

v= (I-v,')-"=nf/4y, (15) 

and is a large parameter by virtue of (7) .  
The dependence of the physical density of the radiated 

energy on the wave number is shown in the figure. It can be 
seen from ( 13) that % (k )  = 59 ( - k)  (reversal of the sign 
ofk is equivalent, according to ( 9 ) ,  to replacement ofA by 1/ 
4A). This symmetry is perfectly natural, since the waves 
emitted to the left and to the right should carry away equal 
energies. 

It is readily understandable that the value k,,, corre- 
sponding to the maximum of the spectral density (Fig. 1) is 
of the order of the reciprocal width (2) of the fluxon: 
kmax - Y .  An investigation of expressions ( 13) and (4)  
yields the corresponding value 

FIG. 1 .  Spectral density of radiated energy. 

In view of the condition (7),  the dependence of the principal 
term in expression ( 13) or ( 14) for the density of the radiat- 
ed energy on the parameters f and y and on the wave number 
k (in the region k-kmax ) can be represented in the "self- 
similar" form 

For large k, Ik I % k,,, , the energy density falls off exponen- 
tially. Its value at k = 0 is 29,- y6/f 4. 

We obtain the total radiated energy by integrating over 
all k: 

m - 

The condition (7)  facilitates greatly the calculation of the 
integral in ( 17). We ultimately get 

The coefficient D can be expressed rather cumbersomely in 
terms of numerical values of non-elementary functions. We 
have approximately D = 0.568. 

We note in conclusion that both perturbed terms in ( 1 ) 
make contributions of the same order to ( 17). In fact, using 
(3) we obtain the simple estimate yu, -pa/ 
(1 - v * ~ ) ' ' ~ - J  

3. CONCLUSION 

The calculations above made use essentially of condi- 
tion (7).  The radiated energy Era, and its spectral composi- 
tion can in principle be determined also for the case f 5 y 
(Ref. 7).  Although the expressions obtained turn out to be 
exceedingly unwieldy, it is easy to write down in this case an 
estimate for the total radiated energy: Era, - y. (In contrast 
to the situation f % y considered above, the radiation energy 
is concentrated in a region with wavelengths larger than or 
of the order of unity.) Note that this energy is always less 
than the "direct" energy loss due to dissipation: Edis - y 
(Ref. 13). In particular, the radiation loss should lead to a 
relatively small increase of the quantity f,, defined in (5) .  
Reasoning similar to that developed in the preceding section 
yields readily a corresponding estimate for the relative 
change of this quantity: Sf,, /f,, - y2. 

So far, all our calculations pertained strictly speaking to 
an infinite straight line. From the physical point of view, it is 
more realistic to consider a circle, meaning a narrow annular 
Josephson j~nction.~.'~" Using the results of the numerical 
calculations of Ref. 17 we can conclude that the equations 
obtained by us for an infinitely long Josephson junction are 
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applicable also to this problem, if the length L of the ring is 
large enough compared with the fluxon dimension: 
L 2 10(1 - v. 2, ' I 2 .  The continuous spectrum shown in Fig. 
1 is then transformed into a discrete one, consisting of many 
individual lines spaces -L -' apart. The envelope of this 
spectrum is close to the curve shown in the figure. The total 
power P of this radiation can be expressed in obvious manner 
by ( 17) and ( 18) : P = 2Er, /L (where it is recognized that 
in the intervals between the collisions the fluxon velocity is 
close to unity by virtue of condition (7) ). 

We note that an "annular generator" of microwave ra- 
diation based on a Josephson junction was proposed in Ref. 
3, in which is calculated the radiation generated by one 
fluxon that is successively scattered by a system of "micro- 
shorts" (microinhomogeneities) built into the junction. In 
the present paper we conclude in fact the feasibility of a 
"two-fluxon generator" based on a homogeneous annular 
junction. According to ( 16), the spectral composition of the 
radiation can be easily varied by changing the density of the 
extraneous currentf. To assess the real possibility of creating 
such a generator, however, it is necessary to take into ac- 
count also at least the influence of the perturbation on the 
generated radiation. 

Note added in proof (16 April 1986). A. Davidson, B. 
Dueholm, B. Krygger, and N. F. Pederson report in a recent 
experimental paper [Phys. Rev. Lett. 55,2059 ( 1985) 1 the 
first direct observation of one and several fluxons in a long 
annular Josephson junction. This circumstance makes quite 

feasible an experimental realization of the problem consid- 
ered in the present paper. We note furthermore that accord- 
ing to Lin Lei, Shu Changqing, Shen Juelin, P. M. Lam, and 
Huang Yun [Phys. Rev. Lett. 49,1335 ( 1982) ] our Eq. ( 1) 
describes also soliton motion in a liquid-crystal (nematic) 
layer with shear flow. 
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