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A consistent theory is constructed for the electronic-nuclear spin ordering in singlet magnets. 
In particular, the theory explains the results of recent experiments in PrNi,. A study is made of 
how the phase transition is affected by a magnetic field imposed perpendicular to the basal 
plane. Depending on the strength of the exchange interaction, the magnetic field can increase 
or decrease the transition temperature. For example, an increase in the transition temperature 
upon application of the field should occur in the hexagonal modification of praseodymium. 

Praseodymium and its intermetallic compounds 
(PrCu,, PrCu,, PrNi,, etc. ) are among the few substances in 
which nuclear magnetic ordering has been successfully ob- 
served under equilibrium conditions1-5 (in this paper we al- 
ways have in mind the hexagonal modification of praseody- 
mium). The ground state of the 4f shell of the praseodymium 
ion in the crystalline field is a singlet, and the exchange inter- 
action in the magnets under study is not strong enough to 
induce a magnetic moment by mixing the wave functions of 
the ground and excited states.&' Therefore, below a few kel- 
vins these substances are Van Vleck paramagnets with a 
temperature-independent magnetic susceptibility. At infra- 
low temperatures, however (from 56 mK for Pr to 0.4 mK 
for PrNi, ), the nuclear spins induce a moment in the elec- 
tronic subsystem through the hyperfine interaction, and, as 
a result, an electronic-nuclear spin ordering (ferromagnetic 
or antiferromagnetic) is established in the basal plane. 

A molecular field theory for such an ordering was first 
developed by M~rao .~ . "  However, as has recently become 
clear, this theory does not give a complete quantitative ex- 
planation of the properties of electronic-nuclear ferromag- 
nets. Recent experiments' ' have revealed that the saturation 
moment and the Curie constant are not related in the way 
predicted by molecular-field theory. The authors of Ref. 11 
regard this as proof that the system of nuclear spins under- 
goes strong quantum fluctuations, which are not taken into 
account by molecular field theory. 

It is shown in the present paper that although the quan- 
tum fluctuations of the electron spins can be strong and can 
substantially renormalize the susceptibility of the electronic 
subsystem, the quantum fluctuations of the nuclear spins are 
always small and cannot explain the effect observed in Ref. 
1 1  

tive understanding of the effect. For example, if the nuclear 
anisotropy is of the easy-plane type, this can suppress the 
nuclear ordering and sharply decrease the transition tem- 
perature. 

In this paper we also investigate how the electronic- 
nuclear phase transition is affected by a magnetic field per- 
pendicular to the basal plane. In particular, it turns out that 
in magnets in which the exchange interaction of the electron 
spins is close to the minimum value at which it can induce a 
moment, the transition temperature increases monotonical- 
ly with increasing magnetic field. This effect should be ob- 
served, for example, in the hexagonal modification of pra- 
seodymium. 

1. MOLECULAR FIELD THEORY 

We shall use the usual expression for the magnetic 
Hamiltonian of the system: 

1 
Z= v., - -x J*S,-A Z S , I , - ~ , ~  81. 

2 i, 1 

- p z  Hst+%Qa,. ( I  

Here VcJ is the Hamiltonian of the crystalline field acting on 
the total electronic moment S; of the ions, and ZQ is the 
Hamiltonian of the quadrupole splitting of the nuclear lev- 
els. The rest of the notation is standard. We shall consider 
uniaxial magnets with an easy-plane anisotropy. 

The ground state of the electronic moment of the ion in 
the crystalline field is a nonmagnetic singlet. As we know, 
the exchange interaction of localized spins leads to an in- 
duced moment due to the mixing of the wave functions of the 
ground and excited sublevels and gives rise to long-range 
magnetic order if it is strong enough: r] = I J , J X ; / ~ ~ >  1. 

11. 

The effect can be explained in the framework of molecu- Here Jo is the zeroth Fourier component of ~ ( r ) , - a n d  X; is 

lar field theory if allowance is made for the quadrupole and the transverse Van Vleck susceptibility of an isolated ion 

pseudoquadrupole (proportional to the square of the hyper- without allowance for the exchange interaction. We shall 

fine interaction energy) splitting of the nuclear spin levels. assume that r ]  < 1, SO that the ordering arises only at infralow 

It should be noted that in PrNi,, the substance studied temperatures on account of the hyperfine interaction. 

in Ref. 11, and in the other substances as well, the effective The effective Hamiltonian of the nuclear subsystem, 

nuclear anisotropy constant can be of the same order as or first introduced by Murao," can be put in the form 

even larger than the energy of the order-inducing indirect %,=pN ( zcz ) . -  y, ~p~az; -z IL$HaZ~~, 
exchange of the nuclei through the matrix, and allowance for a 11 

this anisotropy can therefore be important even for a qualita- a=x, y, z. (2) 
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The energy of the effective exchange interaction of the nuclei 
is proportional to the static inhomogeneous correlator of the 
electron spins: 

caa(m, r)= ) dt(TSoa(0)Sra(t) )exp[imtl, 
- m 

while the effective magneton is 

where G, (w,q) is the Fourier transform of G, (w,r), which is 
proportional to the total susceptibility of the electron spins, 
G za(w,q) = Xza(w,q)/p2. The correlators of the electron 
spins and, with them, the constants of the effective Hamilto- 
nian depend, of course, on the external magnetic field. 

The effective anisotropy constant of the nuclear spin is 

where Po is the quadrupole splitting constant andPA is the 
pseudoquadrupole splitting constant, given by 

pn='lzA2 [Ga (0=0, r=O) -G," (o=O, r=O)] , 
(6)  

GeL(o, r )  =G.=(m, r) =GgVu(m, r). 

Writing (6) in the form of an integral over the momenta q, 
we see that the q dependence arising through the quantity J, 
is unimportant up to order l/z (z is the number of nearest 
neighbors), so that 

i.e., PA and, hence, DN do not depend on 7. 
To estimate the constants of the effective Hamiltonian, 

let us take the correlators of the electron spins in the molecu- 
lar field approximation. Then 

We shall henceforth assume that X; <x:. 
Comparing (7)  and (8),  we see that for 7.4 1 we always 

have V,"" <PA. Therefore, if there is no cancellation between 
the quadrupole and pseudoquadrupole terms in the expres- 
sion for 0, (5),  we have ON$ Vza. However, even if such 
cancellation does occur, at small 7 the single-ion anisotropy 
term can be important at small 7. 

In the case of a strong exchange interaction J ( r ) ,  when 
is close to the critical value, the pseudoquadrupole anisot- 

ropy is small compared to the effective interaction of the 
nuclear spins, PA / Vga - 1 - 151 g 1. Because -PA in the 
substances under study, the single-site anisotropy in the ef- 
fective Hamiltonian (2) is unimportant in this case. 

Because the constant,BQ can be negative, the sign ofBN 
is determined, generally speaking, by the particular relation- 
ship of the parameters. Let us first assume thatPN > 0, corre- 
sponding to the actual situation in praseodymium and many 

of its compounds. We note that for integral spins I the 
ground state in the anisotropy field is again a singlet, and the 
interaction will lead to the induction of an electronic mo- 
ment only if it is sufficiently strong. The criterion for this is 

21(1+1) voL/pN>l. 

Since I = 5/2 in praseodymium, we shall henceforth be in- 
terested in half-integer I. In this case ordering arises regard- 
less of how small the interaction is. Assuming that the exter- 
nal field H is directed along the z axis and introducing a 
molecular field He with projections 

for the coefficients CL of. the expansion of the wave func- 
tions t,b, in the eigenfunctions (rn > of the operator 2" 

we obtain the system of equations 

Assuming H ;/PN < 1 and iterating with respect to this pa- 
rameter, we obtain the energy levels of the system: 

E*~I~='/LPNT~/~ {(Hez) 2f (Hz)' (If '12) 2)'br 
(12) 

Ek=pNk2-Hezk+O [ (Hex) '1, k#fi/,. 

The coefficients C k, that are nonzero to first order in H :/ON 
are 

Evaluating the matrix elements of the components of the 
nuclear spin with the aid of ( 13) and making use of the fact 
that the parameter H :/H: -0 as T- T, , we obtain the self- 
consistency equations 

1 
E = exp {?; ( I L ~ ~ - B , ~ ' )  }, 

k=- I  
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which, taken jointly with (9 ) ,  determine Tc .  
Let us first consider the phase transition in the absence 

of external field. In this case ( I Z  ) = 0, and Tc is determined 
by the second of equations ( 14). For I >  1/2, solution ( 14) 
depends on the relationship between VA and PN. If 
V; (I + 1/2)2(PN, we may limit consideration to the two 
lowest levels, and in the opposite limiting case we can expand 
the exponentials. As a result we obtain 

For I >  1/2, the expression for Tc does not depend on 
VA/&, and for the model with Vcf = B,D(S:)' it agrees 
with the expression obtained previously by M ~ r a o . ~  

The saturation moment per magnetic ion at H = 0 is 

and it depends even more importantly on the parameter 
Vh/PN than T, does. As the parameterVA/P, increases, it 
increases smoothly from the value 1/2(I + 1/2)pA, at 
V;/& 4 1 to the value I,:, at V;/&) 1. 

Since experiment shows that in praseodymium com- 
pounds 8, and PQ are of the same order of magnitude, it is 
quite possible that P, can be negative (easy-axis anisotro- 
py). Here, if the energy of the exchange interaction is not 
close to the critical value 77' - 1 and if flN 2 VA, then the 
state of the magnetic system depends on the particular struc- 
ture of the electronic sublevels. If this structure is such that 
xZz = O[e.g., in the model Vcf = ZiD(Sf ) 2 ] ,  then a moment 
is induced in the basal plane only if VA/flN is larger than a 
certain critical value of the order of unity. Otherwise, the is 
no ordering all the way down to T = 0. If, on the other hand, 

#O, then a spontaneous moment will arise along the z 
axis even for V A/PN < 1 (for Tc - V g ) . 

2. PHASE TRANSITION IN A MAGNETIC FIELD 

Let us find the change in the Curie temperature in a 
weak magnetic field p$H< Tc (H = 0). Solution of equa- 
tions (9) and (14) gives 

where 

For I >  5/2, we have Q, -0.02 when PN < VA. 
The first term in ( 16) describes the increase of the tran- 

sition temperature due to the effective decrease of the single- 
ion anisotropy of the electron spins when the field is applied. 
The decrease of the single-ion anisotropy is proportional to 
(x;H/p)' and arises as a result of the narrowing of the 
distance between the singlet ground state and the lowest Zee- 
man sublevel of the excited state of the praseodymium ion. 

On the other hand, the orientation of the nuclear and elec- 
tron spins by the field leads to a decrease of the component of 
the spins in the basal plane and, hence, to a decrease in Tc 
[the second term in ( 16) I .  To analyze the values of the two 
terms in ( 16 1, we use molecular field approximation ( 8 ) for 
the constants of the effective Hamiltonian. We then have 

The coefficient d In (H)/d(xAH /p)' is positive and of 
order unity; its numerical value is determined by the struc- 
ture of the electronic sublevels. The value of the coefficient y 
depends strongly on the particular parameters of the materi- 
al. This is because y, as we see from ( 17), is proportional to a 
high power ofA andx;. Furthermore, the factor ( 1 + k" ) 
can change the value of y by about two orders of magnitude, 
depending on the structure of the electronic sublevels, which 
determines the ratiox;/xA. Ifx;/xA 4 1 [e.g., X; = Oin the 
model with Vc,- = Z,D(S:)2], then y- 1-100. If, on the oth- 
er hand, x ~ / x A  - 1, then y will be two orders of magnitude 
larger for the same values of AX:. It is therefore impossible 
to reach any general conclusions as to the relative size of the 
first and second terms in ( 12). We see only that as .t;r ap- 
proach~ unity, the first term in ( 17) increases and the second 
term decreases, so that these would be the most favorable 
conditions for observing an increase in T, with field. 

The hexagonal modification of praseodymium exhibits 
an antiferromagnetic spin ordering. With the obvious 
changes in notation our results apply in this case as well. The 
experimental data 7, '2 .13, '69'7 for praseodymium give 
1 - 77 ~ 0 . 1 ,  Kzz ~ 0 ,  and KL z 100, from which we get 
y z  100, so that the first term in braces in ( 17) is two orders 
of magnitude larger than the second (hence, in praseody- 
mium the transition temperature should increase with 
field). 

In PrCu, we have K" =: 10 (Ref. 4).  Therefore, the sec- 
ond term in braces in ( 17) for this substance is two orders of 
magnitude larger than for praseodymium, and the two terms 
are approximately of the same order. The experimental data 
obtained for polycrystalline samples of PrCu, show a de- 
crease of Tc with increasing H, i.e., the second term in ( 17) 
is nevertheless larger than the first. It is possible that by 
applying pressure and decreasing the parameter 1 - 7 one 
could observe an increase of Tc with H. 

The behavior of Tc in stronger fields p S H X  Tc de- 
pends on the value of 7. If 7 is larger than a certain y-depen- 
dent critical value vl, then Tc increases monotonically with 
field all the way up to the field at which 

becomes equal to unity; T, (H,) is the order qf A .  At larger 
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FIG. 1. T, ( H )  for 7 < Vrl2 

fields the spins of the electrons and nuclei are directed paral- 
lel to the field. 

If q < q,  ( y) but larger than a certain q2 ( y) , then T ,  at 
first falls off with increasing field, then it reaches a mini- 
mum, and on further increase in field it grows on account of 
the growth of q (H).  

Finally, if q < q2 ( y) , then a field region arises in which 
there is no ordered phase: H,(q,y) <H<H2(q,y)  (Fig. 1). 
A numerical calculation shows that in the actual situation 
7, (y)  and q2(y) are very similar in value, so that the first 
and third types of dependence are the most likely to be ob- 
served in experiment. 

3. QUANTUM CORRECTIONS 

The role of quantum corrections in the electronic-nu- 
clear magnetism of praseodymium compounds was first dis- 
cussed in Ref. 11, where it was asserted on the basis of the 
experimental data of that study that the zero-point oscilla- 
tions of the nuclear spins rather strongly alter (by about 
30%) the ratio of the Curie constant C to the saturation 
magnetization M, in comparison with the value of C /M,  in 
the molecular field approximation. 

In view of the importance of the question of quantum 
corrections for the interpretation of the experimental data, 
let us calculate these corrections without using the approxi- 
mation of an effective Hamiltonian. To determine the Curie 
constant we consider temperatures higher than both T,  and 
the maximum splitting fl,Z of the hyperfine sublevels but 
much lower than the characteristic splitting A of the elec- 
tronic sublevels by the crystalline field. 

We calculate the transverse magnetic susceptibility 
x(w,q) (we drop the symbol 1 in this section) as the analyti- 
cal continuation of the functionx(w, ,q) given by the Kubo 
formula 

SIT 

x (on, 9 )  = d~ dar(T (pNZtz(~) 4- ~ S , = ( T ) ,  
0 

PNI?(O) + pSjr(0)) ) 

onto the real axis. 
In the paramagnetic phase we can take Vcf as the zeroth 

Hamiltonian. In the graphs for ~ ( w ,  ,q) we set apart the 

FIG. 2. The simplest graph of second-order in A for x(o, ,q). 

single-cell blocks joined by the interaction J ( r )  (Ref. 18). 
An example of a single-cell block arising in second order in A 
from the correlator of the electron spins in ( 18) is shown in 
Fig. 2. Here the points correspond to A, and the solid and 
dashed lines are the correlators of the electron and nuclear 
spins, G (w , ,q) and G O, (w , ,q), in which the averaging is 
done with the zeroth Hamiltonian Vcf .  For T) T, #,I2 

The correlator G: (a, ,q) is of order 1/A for w, 5 A and falls 
off with frequency as G: -- l/w: for w, )A. For example, if 
Vcf = D 2, ( S f  )', then 

To calculate x(o ,q)  in the molecular field approximation, 
which corresponds to the zeroth order of a perturbation the- 
ory in ( ~ / r , ) ~  (ro is the exchange interaction radius, which 
for now is assumed larger than the lattice constant a ) ,  we 
must replace the correlators G 9 in the graphs by the boldface 
correlators by summing the corresponding chain of solid ar- 
rows joined by the interaction J ( r )  : 

In the case Vcf = D 2 (Sf )*  we have 
i 

As a result, the homogeneous susceptibility x(o,O) comes 
out to be 

Here K1 is determined by relation (41, with the electronic 
susceptibility calculated in the molecular field approxima- 
tion substituted in, andx, (w,O) is the electronic susceptibil- 
ity calculated in the molecular field approximation. 

The corrections tox(w,O) arising in the next orders in 
( ~ / r , ) ~  can be of two types. First, there are graphs which do 
not contain a summation over the frequency which appears 
in the correlator of the nuclear spins. Clearly, these graphs 
make it necessary to substitute the total electronic suscepti- 
bility, renormalized by quantum fluctuations, into relation 
(4)  for K 1 .  If q is sufficiently close to unity, the quantum 
corrections tax, are large and, generally speaking, can sub- 
stantially alter the value ofthe sus~eptibility.~~ However, the 
relation [Eq. ( 4 ) ]  between the effective magneton and the 
electronic susceptibility is not altered. 
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FIG. 3. Example of a graph for x ( w ,  ,q) that contains a summation over 
the frequency of the nuclear spin correlator. 

There are also graphs in which there is a summation 
over the frequency of the correlator of the nuclear spins and 
which do not reduce to a renormalization ofx, (a, ,O). An 
example of such a graph is given in Fig. 3, where the wavy 
lines correspond to the effective interaction" 

However, owing to the delta-function dependence of G on 
one of the frequencies (over which we sum), the contribu- 
tion of such graphs to X, (a,O) is independent of tempera- 
ture and does not contain S ( o ) ,  i.e., it does not affect p,,, 
but gives a correction tox, (a,O) that is of no interest to us 
here. 

Thus, to second order in the parameter (AX; ) -0.01 
the quantum fluctuations do not alter relation (4) between 
K andx if the total electronic susceptibility is substituted in. 
This means that even in the case of strong quantum fluctu- 
ations of the electron spins, the fluctuations of the nuclear 
spins in the paramagnetic phase are always small. 

This conclusion depends essentially only on the differ- 
ent frequency dependence of G :: and G :  and has nothing to 
do with the value of the parameter (a/r,)? Therefore, it is 
valid even if (a/r,) - 1. 

Let us now turn to the saturation magnetization. We 
can evaluate it by differentiating with respect to the field the 
expression for the energy of the zero-point oscillations in an 
external field H, directed along the magnetization19: 

Here E ,  (q) is the frequency of the ith branch of excitations, 
and Ei is the energy of the ith sublevel in the molecular field 
approximation. Hamiltonian ( 1 ) gives three types of excita- 
tions. These are electronic spin modes, which exist in both 
the paramagnetic and ferromagnetic phases and have a fre- 
quency that remains unchanged to within (AX; )' upon the 
onset of ordering [these frequencies were calculated in Ref. 
9 for a model with Vcf = D Xi (S f  ) ', S = 1 1 .  It can be shown 
that these excitations make it necessary to  replace^^ and K 
in expression (4) by their true renormalized values. 

Excitations due to transitions between hyperfine levels 
split by the effective nuclear anisotropy fl, are also present 
in both the paramagnetic and ferromagnetic phases. As is 
easily verified, they are dispersionless and do not contribute 
to (25) or to M s .  

Only the gapless (in the absence of magnetic field) spin- 
wave branch which is due to the magnetization oscillations, 
contributes to M, , breaking down relation (4)  between M, 
and xe. In the case of a strong magnetic anisotropy of the 

nuclear spins,BN % VA (I + 1/21 ', these corrections are giv- 
en by 

where 

If, on the other hand, the single-site anisotropy of the nuclei 
is unimportant, /?, 4 VA , then the expression for AM, /M,  
differs from (26) in that it has a coefficient 1/21 and also in 
that formula (27) for U, is replaced by 

It is easy to see that our quantum correction is a maximum 
when V y  = 0 and the anisotropy 8, is strong, and in this 
case is given by 

An estimate for different types of crystal lattices shows that 
the maximum value of AMs /M, is not more than a few per- 
cent. 

4. DISCUSSION OF THE EXPERIMENTAL DATA 

The electronic-nuclear ferromagnetic ordering in PrNi, 
was studied in Refs. 3 and 11. The main result of these stud- 
ies is that the value of K1 = Kxx = KYY , found from the rela- 
tion 

after measuring the saturation moment, differs by 30% from 
the value obtained, using the relation 

from the measured value of the Curie constant C. In the first 
case K : = 1 1.2, while in the second case K = 15.1. Since 
classical correlation effects do not alter the ratio C / M ,  from 
its value calculated in molecular field theory, the authors of 
Ref. 11 concluded that PrNi, has strong quantum fluctu- 
ations of the nuclear spin, leading to substantial corrections 
to molecular field theory. By analogy with the result of Ref. 
14, it was assumed that the most important quantum correc- 
tions were the corrections to the Curie constant C. 

As is shown in the preceding section, this assumption is 
incorrect. To the order ofinterest here, i.e., to lowest order in 
AX; 5 0.01, there are no quantum corrections to C, while the 
corrections to M, are of the order of a percent and are also 
unimportant. 

On the other hand, the results obtained in Ref. 11 are 
explained by our theory in a very natural way. With 
allowance for their effective anisotropy, the saturation mo- 
ment of the nuclear spins is not given by formula (29) but, as 
we have mentioned, is always less than,ueffI and varies from 
1/2peff (I + 1/2) topeffIwith increasing parameter VA/fl,. 
Therefore, the use of formula (29) leads to an understated 
value of K1, while the use of formula (30) leads to an over- 
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stated value. Using for M, the expression 
M, = pN ( 1  + K1 ) ( P  ), we find that the results obtained in 
Ref. 11 can be explained if 

In PrNi, the quadrupole and pseudoquadrupole terms in the 
effective anisotropy of the nuclear spins largely cancel each 
other, so that pN is five to seven times smaller than PA.  
Because 7 ~ 0 . 1  in PrNi,, V and f l N  are of the same order of 
magnitude, so that the value ( P  )/I = 0.86 is entirely rea- 
sonable. 
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