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The dynamical properties of two-dimensional topological solitons (magnetic vortices) in a 
uniaxial antiferromagnet are analyzed. It is shown that, when the anisotropy energy has a 
certain form, the antiferromagnetism vector precession frequencies and the magnetic-vortex 
energy can have limiting values, the limiting energy values being dependent on the topological 
parameter of the vortex. The limiting values of the antiferromagnetic-vortex energy are found 
to be equal to those of the magnetic-vortex energy in a uniaxial ferromagnet. 

1. Recently there has been an upsurge in interest in the 
analysis of two-dimensional nonlinear perturbations in mag- 
netic materials, in light of the possibility of their experimen- 
tal detection.' A special place among localized nonlinear 
perturbations is occupied by two-dimensional topological 
solitons (magnetic vortices), whose properties in ferromag- 
nets have been described in fairly great detail.26 In the pres- 
ent paper we show that magnetic vortices in antiferromag- 
nets possess a number of properties similar to those 
possessed by vortices in ferromagnets. 

The basic equations governing the dynamics of a two- 
sublattice uniaxial antiferromagnet have been obtained by 
Bar'yakhtar and I ~ a n o v . ~  Under the natural assumption 
that the magnetization of the antiferromagnet is small com- 
pared to that of each of the sublattices, the dynamics of the 
magnetic material is described by the equations for the unit 
antiferromagnetism vector 

Let us consider the following localized axisymmetric 
solutions to the system ( 1 ) with H = 0: 

where r andx are the polar coordinates in the plane perpen- 
dicular to the preferred axis; v = 0, 1, 2, ... is the parameter 
playing the role of topological charge of the s ~ l i t o n , ~  and o is 
the precession frequency. To the soliton corresponds a solu- 
tion 9(r)  satisfying the boundary conditions 

The equations ( 1 ) possess two integrals of motion; the 
magnetization field energy 

I (sin 0 cos cp; sin 8 sin cp; cos 0) , 
and the number of spin deviations in the soliton: 

which, in the angular variables 8 and g,, have the formzg7 
N = -  2na:F2. j 2 sin2 0r dr. 

ii 
(5) 

The quantity N is proportional to the z component of the 
total magnetization of the magnetic material. In the formu- a w, 

- a s i n B c o s ~ [  ( V ~ J ) ' - ~ ( ~ - ~ H ) ~ ]  c2 -== 0, las (4)  and (5) a is the lattice constant. 
It is clear that the function 9( r )  is a solution to the 

axis (the z axis); c is a characteristic velocity equal, when 
H = 0, to the smallest spin-wave phase velocity in the linear 
theory: c = gM,(aA) '12/2; a and A are respectively the in- 
homogeneous and homogeneous exchange constants; g is the 
gyromagnetic ratio; W, is the anisotropy energy and which 
depends only on the angle 8 of the uniaxial antiferromagnet. 

If we introduce the new variable @ = g, - gHt, the 
equations ( 1 ) for the two scalar functions become invariant 
under the Lorentz transformation with c as the limiting ve- 
locity. Therefore, we actually have, when we find some 
steady-state solutions to the equations ( 1 ) , an entire family 
of solutions obtainable from the first Lorentz transforma- 
tion containing a velocity V <  c. Let us, bearing this in mind, 
limit ourselves to the analysis of the static soliton solutions 
for H = 0. 

2. In the simplest case, when the anisotropy energy den- 
sity in the uniaxial antiferromagnet has the form 

W. (0) = (812)  sina 8, p>0, (7 )  

Eq. (6)  can be rewritten in terms of dimensionless coordi- 
nates: 

d20 1 dB + - - -  v2 ( 1 + 7) sin 0 cos e + d  sin 8 cos tl-0, (8 
ax2 x ax 

where x = r/l,; 1; = a/P; x2 = ( o l ~ c ) ~ .  AS can easily be 
verified, for x - co we have 

O= (const x - '~ )  exp [-x (1-x2) "I. ( 9 )  

It  follows from (9) that Eq. (8) possesses the localized solu- 
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tions in question only when 0 < x2 < 1. 
It is impossible to solve Eq. (8)  analytically and obtain 

explicit solutions satisfying the boundary conditions (3); 
therefore, it was solved by numerical methods with the aid of 
a computer. The numerical integration of Eq. (8)  enabled us 
to find the solutions satisfying the boundary conditions (3 ) 
with m = 1 and v = 1,2, and 3. The dependence, construct- 
ed with their aid, of the parameter x2 on the number N of 
spin deviations is depicted in Fig. 1, where the abscissas are 
the values of the ratio N/N,, in which N, = 2?raaMiwl$/ 
(+k2). 

Analysis of the obtained soliton solutions and of the 
soliton parameters leads to the following conclusions. First, 
the solutions are functions of the dimensionless coordinate 
x, which are nonzero in a narrow interval around x = 0; 
therefore, they are, from the standpoint of the macroscopic 
description, not different from functions with a 6-function 
singularity. Second, the value of the derivative dN/dw > 0, a 
fact which, according to the results obtained in Ref. 7, may 
be evidence of the instability in the region 0 < x2 < 1 of the 
soliton solutions for an antiferromagnet with the anisotropy 
(7). 

For x2 = 1, Eq. ( 8) assumes the simpler form 

dZO 1 d0 v2 + - - - -  sin 0 cos 0=0. 
axz x dx x2 

The analytic solution to Eq. ( 10) with the boundary condi- 
tions (3) is 

0=2 arctg (Rlx) "1, (11) 

where R is an arbitrary parameter playing the role of soliton 
dimension. Let us, using ( 1 1 ) , compute the integrals of mo- 
tion (4) and (5): 

E=EO (4 lv 1 +BNIN,), Eo=naaMo2, (12) 

Equation (6),  expressed in terms of the dimensionless vari- 
ables, for the function 8 assumes, when ( 14) is taken into 
account, the form 

1 
~ + ~ ~ - ~ s i n 0 c o s 0 + Q s i n ~ o o s 0 - - s i n 4 0 = 0 ,  
dpZ P d~ pZ 4 

(15) 
where we have introduced the following notation: 

Naturally, Eq. (15) goes over into Eq. (8)  in the limit 
as b -0. To verify this, we should go back to the independent 
variable x, and then take the limit as b -0 (r, - m ), noting 
that 

I,' lim (Qlr,') =x2-1. 
b+O 

It is easy to verify that, as p -0, the solution to Eq. ( 15) 
which is of interest to us behaves like 

while as p -. m , 

The formula ( 12) gives the dependence of the soliton energy 
on the number of spin deviations. It follows from ( 12) and 
( 13) that the number N of spin deviations is infinite in the 
case when w = c/lo and v = 1. This dependence of x2 on N, 
or, more exactly, of w on N, is equivalent to the correspond- 
ing dependence for the magnetic soliton in a one-dimension- 
a1 antiferromagnet.' For v > 1 the quantities N and E tend to 
some finite limits as x2 - 1. 

3. Let us consider an antiferromagnet with an anisotro- 
py energy of the more general form: 

1 
x sinz 0 + - 4 sin2 20) dp, (18 )  

0=const p-'" exp [-p (1-Q)'"] 

To determine those admissible values of the parameter fi at 
which Eq. ( 15) can possess localized solutions, let us multi- 
ply ( 15) term by term byp2(de /dp) and integrate the result 
obtained over p in the range from p = 0 t o p  = m . 

Integrating by parts, we easily find that 

1 
Q Jsin2 0p dp = - s i d  2Bp dp. 

0 4 0 

The relation ( 16) can, after simple transformations, be rep- 
resented in the form 

(Q- i) J sinz dp = - sin4 Bp dp. (17) 

From the positiveness of the integrals in (16) and (17) it 
follows that soliton solutions of the type under investigation 
can exist only in the parameter range 0 < fi < 1. 

In the case considered by us the integrals of motion (4) 
and (5) can, when allowance is made for ( 14), be trans- 
formed into 

00 

FIG. 1. Results of the analysis of the dependence x2  ( N  /N, ). The number 
on the curve is the value of the parameter v. where N2 = 2 ~ @ / ( f f ( a , ~  - wz2) 1. 
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By computing the variation of the energy ( 18), inte- 
grating by parts, and using ( 19), we can easily show that the 
normal differential relation 

connecting E and N is satisfied for the antiferromagnetic 
vortex. The relation (20) coincides with the corresponding 
differential expression for the self-localized magnetization 
wave in a ferr~magnet.~ 

As has been noted b e f ~ r e , ~  the characteristics of the 
topological solitons manifest themselves in the region of 
small N (N(N2). To small N values corresponds a small 
localization length R (R gr,), a situation which leads to the 
appearance of a small parameter that allows us to carry out 
an analytic investigation of the properties of the solutions to 
Eq. ( 15). Let us carry out (order of magnitude) estimates of 
the terms entering into Eq. ( 15). The first, second, and third 
terms are of the same order of magnitude: 

Estimation of the fourth and fifth terms yields values of the 
order of unity; therefore, Eq. ( 15) can, in the leading ap- 
proximation in the small parameter (R /r,) g 1, be replaced 
by Eq. ( lo), which possesses the self-similar solution ( 1 1 ). 
Substituting ( 11 ) into the expression ( 17), we find, after 
simple transformations, that - m 

where y = (p/R)'Iv1 . Each of the integrals in (2 1 ) can be 
expressed in terms of a gamma function, and the properties 
of the latter lead to the following relation between the pa- 
rameters of the localized solution: 

The existence of limiting (as N+O) antiferromagnetism- 
vector precession frequencies follows from the formula 
(22). 

It is worth noting that, for Y = 1 and v = 2, the limiting 
values of 0 in the antiferromagnetic soliton are equal to 
those of the magnetization-vector precession frequencies in 
the ferromagnetic soliton, or ~ o r t e x . ~  The limiting preces- 
sion frequencies behave quite differently in the case of large 
values of the parameter v. Thus, for v-  CQ , in the case of an 

FIG. 3. Dependence of 0 on p for the magnetic soliton: l ) n  = 0.1; 
2 ) n  = 0.3; 3 ) n  = 0.5; 4 ) n  = 0.7; and 5 ) n  = 0.9 (the points indicate the 
maximum values of the function). 

antiferromagnet 0- 1/3, while in the case of a ferromagnet 
the frequency tends to zero. 

Substituting the solution ( 11 ) into ( 18), and taking ac- 
count of (22), we obtain the following expression for the 
limiting values of the energy: 

The formula (23 ) gives the soliton energy as a function of 
the number N of spin deviations up to terms of the order of 
(N/N2I2 in the case when N-0. As follows from (23), the 
soliton energy in an antiferromagnet tends, as N-0, to its 
limiting value E = 4.rraaM: ( v ( ,  which is equal to the limit- 
ing value of the soliton energy in the case of a ferr~rnagnet.~ 

4. The complete solution to Eq. ( 15) with the boundary 
conditions ( 3 )  was found numerically by the "shooting" 
method with the use of a computer and a qualitative analysis 
of the (p = CQ ) limiting integral curves in the phase plane 
(see Ref. 2).  From the magnetization distribution B(p) 
found we constructed for the cases m = 1 and Y = 1,2, and 3 
the dependence of the number of spin deviations in the soli- 
ton on the dimensionless frequency a. This dependence is 
depicted in Fig. 2, where the numbers on the curves are the 
values of the parameter Y Analysis of the solutions obtained 
and of the soliton parameters allows us to draw the following 
conclusions. First, the solution with Y = 1 goes over, as 
N-0, into a S-function linear singularity. Therefore, the nu- 
merical integration of Eq. (15) for the extremely small 
N(N-0) values corresponding to 0 - 1 meets with consid- 
erable difficulties. In view of this, the last point to the left on 
the curve 1 (Fig. 2) was obtained by us for the value 
$2 = 0.83. Second, as N-0, the value of the parameter a, as 

FIG. 2. Dependence of the parameter cR on N / N ,  (the points indicate the 
results of the numerical calculation). 

FIG. 4. Results of the analysis of the dependence 0 ( N / &  for rn = 0 and 
v = 0 (bottom curve); v = 1 (middle curve); and v = 2 (top curve). The 
points indicate the results of the numerical calculation. 
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given by the formula (22), tends to its limiting value, while 
the soliton energy tends to E = 4.rraaMi ( v ( ,  which agrees 
with the formula (23) for the limiting energy values. Third, 
the curves describing the N dependence of the parameter fl 
intersect each other. Let us note that the curves describing 
the corresponding dependence in the case of magnetic soli- 
tons in a ferromagnet do not intersect (see Fig. 1 in Ref. 6 ) .  

5. Finally, let us briefly discuss the solution with m = 0. 
Figure 3 gives some idea of the nature of the solutions to Eq. 
(15) that satisfy the boundary conditions (3)  in the case 
when Y = 1 and m = 0. As follows from Fig. 3, the maxi- 
mum value of the function @( p )  shifts to the left as fl in- 
creases in the range of values from 0.1 to 0.5, and shifts to the 
right as fl increases in the range 0.5 < fl < 1. 

As the parameter fl decreases in the region below 
fl = 0.1, the graph of the function @( p )  flattens out, and, as 
R-0, the value em,, tends to its limiting value n-/2 (curve 
1 ). As fl-+ 1, the solution @( p )  becomes delocalized. 

From the magnetization distribution function 8 ( p )  
found for the cases m = 0 and v = 0, 1, and 2 we constructed 
the dependence of the parameter fl on the number N of spin 
deviations. This dependence is depicted in Fig. 4. As follows 
from Fig. 4, as 0 - 1, the values of N tend to the following 
limiting values: N = 0.94N2 for v = 0, N = 3.8711: for v = 1, 
and N = 5.2211: for v = 2. Thus, the minimum number Nof 
spin deviations necessary for the generation of a soliton solu- 
tion increases with increasing topological charge v. The 
plots of the N dependence of fl for different v values in the 
m = 0 case, unlike the corresponding plots in the m = 1 
case, do not intersect in the region NSN,. 

In conclusion, let us note that, in the v = 0 case, we can, 
by replacing 8 by 8 /2, reduce Eq. ( 15) to the form 

d20 I a0 -+ sin 0 cos 0f SZ s in  8=0. 
dp2 P dp 

Equation (24) coincides with the equation, (3) ,  obtained in 
Ref. 10 for the magnetic vortex with v = 0 in a ferromagnet. 
The results obtained by us in the v = 0 case agree with the 
results obtained in Ref. 10 by integrating this equation with 
different admissible values of the parameter R. 

We are grateful to B. A. Ivanov for discussions. 
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