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A study is made of the dynamical properties of a one-dimensional quantum-mechanical solid- 
on-solid (SOS) model used to describe linear defects in quantum solids (steps, edge 
dislocations). The case considered is one in which the relationship among the parameters 
corresponds to a delocalized state of the defect at zero temperature. It is shown that the 
motion of the defect as a whole inevitably involves an energy dissipation that can be described 
phenomenologically as the onset of a frictional force. At a finite temperature one is dealing 
with a viscous (proportional to the velocity) friction, and the coefficient of friction has a 
power-law dependence on temperature. The exponent of the power law is determined by the 
relationship of the model parameters. The frictional force in question is not due to the 
interaction of the linear defect with the phonon gas of the medium but to the discreteness of 
the atomic structure of the crystal. The conclusions reached in this study also apply to the 
quantum XY model, to the isomorphic quantum SOS model, and to a model describing a 
regular chain of Josephson junctions. 

1. INTRODUCTION 

As was first noted by Andreev and Parshin,' a step on 
the surface of a quantum crystal at zero temperature can be 
in two different states: atomically smooth (localized) and 
atomically rough ( delocalized ) . In the atomically smooth 
state the jogs on the step are present only in paired form, as 
quantum fluctuations. The formation of a free (unpaired) 
jog involves the expenditure of a finite amount of energy. 
The amplitude of the fluctuations of the step with respect to 
some fixed position has a finite value, so that the transla- 
tional symmetry in the direction perpendicular to the step is 
broken. Upon an increase in the quantum fluctuations, a 
phase transition to the atomically rough state can occur,' 
restoring this symmetry. This state is a conglomerate of de- 
localized jogs, so that the addition of one jog (say, by a 
change of boundary conditions) no longer requires a finite 
expenditure of energy. The square of the zero-point vibra- 
tions in this case diverges logarithmically with the length of 
the step, and to leading order the correlation functions are of 
the same form as for a free string moving in a plane. 

The present study is intended to elucidate the differ- 
ences between the properties of the atomically rough step 
and those of a free string. Our primary focus is on the ques- 
tion of whether it is possible to have a nondissipative motion 
of the step as a whole; this question is examined both at zero 
and at finite temperatures (of course, we will always be talk- 
ing about a step on a face that is found in an atomically 
smooth state). It is shown that the macroscopic motion of a 
step found in an atomically rough state at zero temperature 
is always dissipative, and expressions are found for the veloc- 
ity and temperature dependence of the force of friction. 

If discussion is limited to jogs of minimum size, the 
Hamiltonian describing the step can be reduced to the Ham- 
iltonian of a chain of spin-1 quantum spins.2 For studying 
the questions of interest to us, however, it will be more con- 
venient to use a one-dimensional version of the quantum 
solid-on-solid (SOS) model, which was introduced in Refs. 

3 and 4 and studied in detail in Ref. 5. This model, which is 
the natural quantum-mechanical generalization of the clas- 
sical discrete Gaussian model,'.' is used in the two-dimen- 
sional case to describe interfaces and planar defects in quan- 
tum  crystal^.^-^ In the one-dimensional case its Hamiltonian 
can be written 

Here the integer variables nj represent the distance of the 
step from some fixed position (see Fig. 1 ), while the opera- 
tors ri,+ and a,-, respectively, describe the change in the con- 
figuration of the step upon the tunneling transition of an 
atom from the liquid to the crystal and the change due to the 
inverse process. The only nonzero matrix elements of the 
operators '?,+ and 2,- are 
(n, + ll'?,+ln,) = (n, - 112,-In,) = 1. 

The first term in braces in Eq. ( 1) represents the energy 
of a jog on the step and depends on the size of the jog. Of 
course, it would be more realistic to use a dependence of the 
form J In, - n, + , 1, but that would preclude the use of the 

FIG. 1 .  Schematic diagram of a step on the basal plane of a crystal with a 
simple cubic lattice (view from above). In the SOS approximation it is 
assumed that the configuration of the step can be specified by a set of 
integer variables nj which give the distance of the step from some fixed 
position. 
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analytical methods of study available to us. A numerical 
studys of two-dimensional classical SOS models, which are 
analogous in their properties to the one-dimensional quan- 
tum SOS models, shows that the transition to the atomically 
rough state occurs at parameter values such that the differ- 
ences between the values of n, at adjacent sites are almost 
everywhere equal to 0 or + 1, so that the dependence of the 
potential energy on the this difference at large values of this 
difference is in certain respects unimportant. Furthermore, a 
renormalization-group analysis of the two-dimensional SOS 
models shows that on the transition to large scales the inter- 
action becomes close to Gaussian even if the "bare" interac- 
tion is of a different form.9 

Let us assume that Hamiltonian ( 1 is supplemented by 
the cyclic boundary condition 

(in the thermodynamic limit N -  w ). Hamiltonian ( 1 ) is 
invariant with respect to the simultaneous shift of all the 
variables n, . 

An edge dislocation in a quantum crystal is an object 
that is very similar in its properties to a step on the surface of 
such a crystal. Its motion in the slip plane can also be de- 
scribed schematically with the aid of Hamiltonian ( 1 ) . In 
this case the variables n, should be taken to mean the number 
of the Peierls valley in which the given segment of the dislo- 
cation is located. In the rest of this paper we shall for the sake 
of definiteness discuss only the step. 

By introducing the phase variables pi, which are the 
Hamiltonian conjugates of the n, , we can rewrite ( 1 ) in the 
f ~ r m ~ - ~  

where li,. = - i (d  /dpj ); the q, representation turns out to be 
considerably more convenient for analysis of the case of in- 
terest here, viz., x = ( Y /J) ' I 2  $1. 

Hamiltonian ( 3 )  admits a transformation to yet an- 
other equivalent formulation, with an independent domain 
of application. If we make the change of variables 

then the first term in the Lagrangian 

with allowance for (2)  can be rewritten 

implying that the variables conjugate toe, ,!, are the variables 
n; = n,, , - n, [in Eq. (5 )  and everywhere below we as- 
sume fi = 1 ]. Hamiltonian (3)  can be rewritten in terms of 
the variables p,! as 

where%= -i(P/de,;). 
Hamiltonian (7)  is the quantum-mechanical general- 

ization of the classical XY model (for the case of an infinite 
spin in units of fi), and we shall call it the quantum XY 
model. The two-dimensional analog of (7)  was first intro- 
duced in Ref. 10 and was used in Ref. 11 for a qualitative 
description of the behavior of films of a superfluid Bose liq- 
uid with allowance for quantum effects. Under certain con- 
ditions (the presence of a strong capacitive coupling with a 
conducting substrateI2) Hamiltonian (7)  can be used to de- 
scribe a regular chain of Josephson junctions. 

States (3)  with nonzero average velocity correspond to 
states (7)  with a nonzero current along the chain. Therefore, 
in terms of the quantum XY model the question of whether 
the macroscopic motion of a step is dissipative or nondissi- 
pative goes over to the problem of assessing the possibility of 
the decay of the current states and the character of this de- 
cay, a question of undoubted interest. In view of the strict 
isomorphism of Hamiltonians (3)  and (7),  from here on we 
shall couch the exposition in terms of the one-dimensional 
quantum SOS model (3)  and return to (7 )  only in interpret- 
ing the results. 

2. INSTANTONS AND PHASE TRANSITIONS 

The partition function of model (3)  can be expressed in 
the form of the functional integra14p5 

where 

is the Euclidean form of the action, P = 1/T is the inverse 
temperature (in energy units), and 

is the Euclidean form of the Lagrangian, expressed in the 
conventional way in terms of qj and Here 

d k [ I - e x p i k ( j - l ) ]  -1j-11 U.-l--  , - I  - J- 
-IL 

2n u ( k )  = 21 ' 

We have used the lattice constant as the length unit, so the 
values of the momentum k range from - n to n. The inte- 
gration in (8) is over the functions pj ( T ) ,  which are contin- 
uous in time and take on values on the circumference. For 
T #O one should imposes on them cyclic (in the imaginary 
time 7) boundary conditions. We shall use different notation 
for the actual (real) time t and the fictitious (imaginary) 
time 7 used in evaluating the partition function. According- 
ly, in discussing two-dimensional [i.e., ( 1 + 1)-dimension- 
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all space-time, we shall use two terms: Rt space and RT 
space, depending on which time we are talking about. 

For J,T( Y the leading contribution to functional inte- 
gral (8 )  is from the classical trajectories (stationary points 
of the action) and small fluctuations about them. The abso- 
lute minimum of action (9) is reached on the trajectory for 
which all the pi ( T )  are zero. Ifwe expand the second term in 
( 10) to second order, Lagrangian ( 10) decomposes into the 
sum of the Lagrangians of harmonic oscillators having the 
spectrum 

In calculating partition function (8)  one must also take 
into account trajectories on which the action has a local min- 
imum. Such trajectories contain instantons, i.e., points at 
which some of the variables pass through maxima of the 
periodic potential - Y cos p, . For a classical trajectory 
containing a single instanton, the action diverges. In the case 
of two instantons of opposite sign, the expression for the 
action in the approximation introduced in Refs. 4 and 5 
(corresponding to the approximation of a periodic potential 
near the minima of the parabolas) is of the form 

n 

Here the integer R is the separation of the instantons in 
space, and T is their separation in imaginary time. 

From now on in this section we study the interaction of 
the instantons only for T = 0. For 0 = oo expression ( 11 ), 
after integration over k, becomes 

where H = ( Y / J )  ' I 2 ,  12, (x) is modified Bessel function of 
order 2R, and E,,  ( x )  is the Weber function of order 2R 
(see, e.g., Ref. 13). 

Since expression ( 1 1 ) is itself approximate, valid only 
for R,T+ UJ , we shall not use its exact value ( 12) but instead 
evaluate it by taking the k dependence of w, in the "hydro- 
dynamic" approximation (o, = R 1 k I ), obtaining as a result 

where 

Ein ( z )  = dzl 
0 

z 

is the exponential-integral function. 
The leading term in the asymptotic expansion of ( 13) 

for large values of R and T is 

SZE (R, T)  - 2 n ~  ln [ ( Q T ) ~ + R ~ ]  '. (14) 

If in evaluating the integral over the momenta in ( 11 ) we 
replace the lattice cutoff by the continuous cutoff 

then in place of ( 13) we get 

SzE (R, T) =nx In [ (l+xQz) '+ (nR) '1, ( 16) 

which also reduces to ( 14) for R,T+ oo . 
Thus, the interaction of instantons at large separations 

in RT space is logarithmic, i.e., they form a two-dimensional 
Coulomb gas. The properties of such a system are well 
k n ~ w n . ~ . " . ' ~  For x = x, =.2/.rr the system undergoes a 
phase transition, whereas for x > x, the instantons are 
bound in neutral pairs of small size ( a  "dielectric" phase), 
and for tt <x, they form a plasma with a finite screening 
radius. In terms of the original quantum SOS model ( 1 ) 
these phases are atomically rough and atomically smooth, 
respectively .' 

At room temperature for any x the step is found in the 
atomically rough state, since even for Y = 0 it will have un- 
paired jogs which have formed as thermal fluctuations. It is 
clear that the dynamical properties can be different in the 
cases x 4 1 (when we have a dilute gas of delocalized jogs, see 
Ref. 15) and x s  1 (when the n representation is inconve- 
nient for analysis, and the dilute gas is now the instanton gas 
introduced in the q, representation). The methods used in 
the present paper permit study of the second case only. The 
dynamical properties of linear defects in quantum crystals 
(viz., the absorption of sound by dislocations) have been 
studied by Markelovlh in the approximation of a dilute gas of 
jogs. The mobility of dislocations in quantum crystals was 
first studied by Petukhov and Pokrovskii17 for a model with 
continuous variables. Those authors, however, worked in 
the parameter region corresponding to localized disloca- 
tions. 

In terms of the one-dimensional quantum XY model 
( 7 ) ,  the phase transition at T = 0 between the atomically 
smooth and atomically rough states of the SOS model corre- 
sponds to a transition between normal and superfluid 
phases, i.e., between phases having exponential and power- 
law decays of the one-dimensional correlator 
(exp i (p;  - q, ;)) as a function of R = j - I. At T >  0 this 
correlator falls off exponentially for any relationship of the 
parameters. I' 

3. NONCONSERVATION OF THE MACROSCOPIC VELOCITY 
OF THE STEP 

By commuting Hamiltonian (3)  with the operators $, 
and 4, we find the equation of motion 

* * 
vj=dnj/dt=Y sin bj, (17) 

We will be interested in whether there can exist states for 
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which the velocity of the step as a whole (the macroscopic 
velocity) is nonzero: 

It follows from the form of (19) that in such a state the 
average values of pj must be nonzero. 

By differentiating ( 18) with respect to time and substi- 
tuting ( 17) into the result, we obtain a second-order equa- 
tion of motion containing only p: 

d$j/pjldt2=~~(sin~j+i-2sin ijf sin &-,). (20) 

If we consider only purely classical solutions, i.e., if we treat 
(20) as an algebraic equation rather than an operator equa- 
tion, then we easily see that in addition to the solution corre- 
sponding to a stationary step (all the pi = 0),  it also has 
solutions which correspond to a moving step: 

qJj=a)=const, (21) 

where the velocity is u = Y sin @. 
The existence of classical trajectories of form (21 ) with 

v#O can serve as a starting point for the hypothesis that 
Hamiltonian (3)  has eigenstates with u#O.  To check this 
hypothesis, we must study the role of quantum fluctuations 
on top of trajectories of form (2 1 ). Obviously, these trajec- 
tories are metastable, since they do not give an absolute min- 
imum of the Euclidean action (9) ,  ( lo) .  

Let us first consider quantum fluctuations of the small- 
oscillation type. In all of the subsequent analysis it is impor- 
tant that we have the following conservation law, obtained 
by summing all the equations of form (18) with allowance 
for boundary condition (2)  : 

Conservation law (22 ) exists because of the invariance of the 
initial Hamiltonian ( 1 ) with respect to the simultaneous 
shift of all the variables nj (the translational symmetry in n 
space). Consequently, the zeroth Fourier component for 
p, ( X j e  ) enters Lagrangian ( 10) with an infinite mass, so 
that conservation law (22) holds not only for the average 
values but also for all the trajectories which contribute to the 
functional integral [we have therefore dropped the operator 
sign in (22) 1.  

In considering small-amplitude quantum fluctuations, 
which do not include transitions to other minima of the peri- 
odic potential - Y cos pj, we need keep only the first terms 
of the Fourier expansion of this potential about the trajec- 
tory of interest, pj = @, setting, for example, 

Y cos @ - Y cos cpj=-Y cos @ + Y  s in  cD (qj-cD) $. - 
2 (9-@)" 

(23) 
(we are considering the case cos @ > 0) .  If we assume that 
the constant @ is chosen so as to satisfy the initial condition 

then upon the substitution of (23) into (10) the terms linear 
in pj - @ cancel. In approximation (23 ) it turns out that the 
absolute minimum of the action is reached on trajectory 
(21 ) [with allowance for restriction (24)]. Here 

where = Y exp( - 1/2( (p, - a)*). In the present paper 
we shall be interested in the region of parameter values cor- 
responding to the applicability condition for the instanton 
approximation ((pi - a)  2,  9 1 (which for cos @ - 1 is 
equivalent to J,Tg Y). In this case we can neglect the differ- 
ence between Y and y. 

The addition to (23) of the low-order anharmonicities 
(e.g., the third-order and fourth-order), which can be taken 
into account by perturbation theory, does not alter the finite 
character of the motion of each of the variables pj . Here, in 
the state with the lowest energy of the states which satisfy 
condition (24), the values of (pi) is only insignificantly dif- 
ferent from @ and, together with (v), remains finite. 

Thus if we consider only quantum fluctuations of the 
vibrational type, the macroscopic motion of the step is non- 
dissipative, i.e., the states with nonzero average velocity are 
eigenstates. The kinetic (in n space) energy of the step, 
k = - Y Xi cos p, , is thus conserved. Let us now consider 
the influence of processes in which the variables pi tunnel 
into the neighboring minima of the periodic potential (we 
emphasize that these tunneling processes are not related to 
the tunneling processes described by the operators rj,.+ and 
6,- ) . 

Let us consider a trajectory on which pj = @ for 
t-t - w and on which one of the variables (for example, 
pjo ) changes its value by 27-r over a certain finite time. In 
order for condition (24) and equation of motion (20) to 
hold as t-  w , the values of the variables p, must satisfy the 
following as t-+ + w : 

The total kinetic energy i? here changes by - 2irY sin @ 
(we have dropped the terms which vanish in the thermody- 
namic limit N +  w ), while the average velocity v changes by 
2irY cos @/N. The energy released should go over into the 
vibrational degrees of freedom. 

We see that the instantonic trajectories can lead to a loss 
of kinetic energy. Granted, for a single instanton the action 
diverges. For pairs of instantons of unlike sign, however, 
separated from each other by an imaginary timer (but locat- 
ed, say, at the same lattice site), the action is (to leading 
order) 

S," (T) =2nx cos'" @ In (QT) -2nY (sin cD) T (25) 

and with increasing r it increases only up to a finite limit, and 
then it decreases. This means that in the functional space of 
trajectories, the classical trajectories pj = @ and 
fi = @ - 2ir/N, although they represent different local 
minima of the Euclidean action, are separated by a barrier of 
only finite height and cannot be treated as belonging to dif- 
ferent independent states. Therefore, the step velocity v does 
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not remain constant (as would be the case when only small- 
amplitude quantum fluctuations are taken into account), 
but its evolution is determined to a large extent by tunneling 
processes between neighboring minima of the potential 
- Y 2, cos fi. Let us now turn to a study of these processes. 

4. SELF-CONSISTENT "SINGLE-PARTICLE" 
APPROXIMATION 

For a preliminary analysis, let us assume that the tun- 
neling processes occur independently at each of the lattice 
sites. We keep the explicit form of the potential - Y cos pj 
for some one of the lattice sites (e.g., for the site with j = O), 
while for the other sites we use expansion (23) (with arbi- 
trary a). After such a substitution, action (9) ,  (10) be- 
comes quadratic in all the variables except p,, so that almost 
all the integrations in functional integral ( 8 )  can be done 
exactly. As a result, we have to within a constant factor 

where 
B I Z  

8.; = drVeff  (cpO (r) ) +T GI: (as)  (TO) (90) . 
-812  o,=ZxTs 

(27) 
Here 

V,,, (cp,) =-Y cos cp,- (Y sin @) cp, (28) 

is the effective potential for the coordinate p,, and 

is the propagator for its motion in the absence of a potential 
(n = ( J Y ) " ~ ) .  

The problem thus reduces to a familiar one. An analo- 
gous effective action is obtained when the interaction of a 
particle with a medium is simulated by an interaction of the 
particle with an infinite set of harmonic oscillators (heat 
bath) by the Feynman-Vernon method.'' In this case the 
total Lagrangian of the system is assumed to be of the form 

The integration of the oscillator variables leads to a nonlocal 
effective action for p,, of the form in (27), with 

and 
CO 

m. do pet! ( a )  
~ . , ' ( a . ) = - u . z + L - j  -- 

2 X , W 0.1+a2 ' 

where 

is the effective density of the oscillator distribution. I' 

One can introduce a coefficient of viscous friction 7 for 
describing slow motions under the condition 

which can be satisfied'' if the functionp,, ( o )  at small o is of 
the form vo. Such an approach ("nonlocal dissipation") 
was first used by Caldeira and LeggettI9 for studying the 
influence of dissipation on the tunneling decay of metastable 
states into the continuum and has since come into wide- 
spread use. In formulation (30) our propagator (29) corre- 
sponds to a particle of mass 

m. = lim [o,-'G-' (0,) I =  (2-7) -', 
0 

interacting with a set of oscillators distributed with an effec- 
tive density 

Here, according to (31), the coefficient of viscosity is 
77 = x/2. Thus effective action (27)-(29) describes the mo- 
tion of a particle with mass m. = ( W ) - '  and viscosity 
7 = x/2 in a periodic potential - Y cos pO under the influ- 
ence of a force f = Y sin @. 

Returning to the original problem, we note that when 
approximation (23) is used for the kinetic (in n space) ener- 
gy, the consistent definition of the velocity u, is not ( 17) but 

Here expression ( 19) for the average (over sites) velocity 
goes over to 

1 
v = Y {sin @ + - L (sin rp, - sin m) - cos @ (q,-8) I} . 

N 
(32) 

In Eq. (32) we must keep the terms proportional to 1/N, 
since we shall later want to take into account the contribu- 
tion to &/at from the tunneling processes at all N sites. 

It follows from the form of (32) that the evolution of 
the average velocity u is uniquely determined by the charac- 
ter of the motion of the coordinate p,,. The motion of a quan- 
tum particle in a periodic potential with dissipation has been 
studied by S ~ h m i d , ~ "  Bulgadaev, 'Is"  and Grabert and 
we is^.'^ In the case when the periodic potential has deep 
minima, this motion can be treated as consisting of a series of 
tunneling processes between adjacent minima, and its prop- 
erties can be explained on the basis of the properties of tun- 
neling in a double-well potential. 

Tunneling with dissipation in a double-well potential 
has been studied by various methods in a number of pa- 
per~.'~-"' It has been shown that if the value of the so-called 
dimensionless viscosity a = 7 q : / 2 ~  (where go is the dis- 
tance between the minima of the potential) is greater than 
unity (in our case q,, = 277 and a = TX), then the individual 
tunneling events occur practically independently of one an- 
other, and the process as a whole is incoherent (purely expo- 
nential relaxation) ."-" For wells of equal depth, the relaxa- 
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tion rate 2vT (twice the tunneling frequency) goes to zero as 
T+O in accordance with the 

2v*-Pa-'. (33) 

At T = 0, under the same assumption a > 1, tunneling is pos- 
sible only if the wells are of different depth and occurs in one 
direction only (corresponding to a decrease of energy), with 
a frequency 

v,=e2"-', (34) 

where E is the difference of the well 
Dependence (34) can be found2' by the conventional 

method of calculating the rate of decay of a metastable state 
from the imaginary part of the free energy3Is3' by a proce- 
dure analogous to that which was used in Ref. 19 for decay 
into the continuum. In the given case the action on the two- 
instanton trajectory 

S ~ ( T )  =?.a ln(l+o,z) - s z  

reaches a maximum (for r > 0)  at r = r. = 2a&-' - w; I ,  

so that exp( - Sf(r. ) )  C O E ' ~ .  The additional factor in 
(34) arises in the Gaussian integration in the neighborhood 
of r.. This same result has been obtained using the instanton 
technique in real time.29.30 

The independence of the individual tunneling events 
permits the conclusion that for a > 1 and cP = 0 the motion 
of the coordinate p, in neglect of small-amplitude vibrations 
is a purely diffusive process, which can be described with the 
aid of a diffusion ~oeff icient~~ 

D=qo2yT 

(recall that in our case q, = 277). For finite cP this motion 
occurs against the background of a drift at the constant ve- 
locity u, = (dp,/dt ), which at small @ is linearly related to 
the "force" f = Y sin @ through the mobility A: 

uo=hir 

where A can be expressed in terms of D with the aid of the 
Einstein relation: 

3L=D/T=qo2vT/T. (35 

A more formal derivation of the temperature dependence of 
the mobility can be found in Ref. 22. 

In terms of the original SOS model, f coincides with the 
average velocity v of the step, while according to (32) the 
drift velocity u, = (dp,/dt ) determines the average contri- 
bution to dv/dt from tunneling processes occurring at the 
site under consideration (the zeroth site) : 

dv/at=- YAVIN. (36) 

Summing over all N sites under the assumption that the tun- 
neling processes occur independently at the different sites, 
we get 

dv/at=-K-'v, K-'=4nZYvT/T. (37) 

We stress that because we are taking into account the contri- 
butions from a macroscopic number of independent pro- 
cesses, relation (37) holds exactly, unlike relation (36), 
which was obtained by considering the tunneling at one of 
the sites and holds only on the average. 

Thus the combined influence of tunneling processes on 

the macroscopic motion of a step can be reduced to the ap- 
pearance of a viscous frictional force, with a coefficient of 
friction that depends on temperature as T2ffx-2 and goes to 
zero at T = 0. 

In an analogous way, but using ( 34) instead of ( 33), we 
find that for T = 0 the macroscopic motion is also dissipa- 
tive, but in this case the force of friction has a nonlinear 
dependence on the velocity even at low velocities: du/ 
 at,^^^^-^. 

Let us now turn to a more formal description that does 
not involve any apriori assumptions about the independence 
of the processes at different sites. 

5. TRANSlTlON TO INSTANTON GAS IN Rt SPACE 

Quantum tunneling with dissipation in a double-well 
potential has been s t ~ d i e d ~ ' - ' ~ , ~ ~  by the construction of a 
functional integral describing the evolution of the density 
matrix (see also Ref. 33). The variables on which the density 
matrix is assumed to depend (it is averaged over all the re- 
maining variables) in this case are simply the number of the 
well, which here, of course, takes on only two values. It turns 
out that this functional integral is of the form of the partition 
function of a one-dimensional instanton gas (distributed 
along the real time axis t )  with a binary instanton interaction 
S2 ( t )  which can be obtained as the analytical continuation of 
the instanton interaction in imaginary time and is no longer 
purely reaL2' 

For a $1 the typical trajectories giving the main contri- 
bution to the functional integral under study contain com- 
paratively long segments on which the system is found in a 
diagonal state, separated by short "blips" into nondiagonal 
states. The short duration of these latter segments is due to 
the fact that the real part of the interaction of their ends 
(instantons), Re S2 ( t )  , increases logarithmically with in- 
creasing t (for T> 0 the interaction grows even faster). One 
can say that the instantons are bound into pairs of small size. 

Each tunneling event (between diagonal states) corre- 
sponds to a pair of instantons, each of which corresponds to 
a change of one of the arguments of the density matrix. Since 
different bound pairs of instantons are far apart and interact 
weakly, the different tunneling events occur practically in- 
dependently, so that the tunneling is incoherent. If we ne- 
glect the interaction between instanton pairs, the tunneling 
frequency is determined directly by the interaction of the 
instantons2': 

m 

Such an approach can be extended to the quantum SOS 
model considered in the present paper. The evolution of the 
density matrix in this case can be described with the aid of 
evolution operators expressed in terms of the functional inte- 
grals: 

p({cp(t)), { q l ( t ) ) )  
#I 
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where {p) denotes the whole set of variables pi, which here 
range from - P to P, and 

P- 1 01 

-W (tp)-2nmj (tp) ) + Y A ~  ( I  - cos s (1.) ) I} (39) 

(cf. Ref. 5) .  Here At = ( t  - to)/P, t, = to +pAt. The vari- 
ables nj ( t ,  ) are continuous and assume values from - co to 
+ UJ , while the variables mj (t, ) are integers. The variables 

appearing in the functional integral that determines T r  
({p '(t)), {p '(to))) will be denoted by the same letters as in 
(39), but with a prime. Sincep, runs between the limits - P 

and P in the sum over m, (t, ), we can assume that the only 
nonzero terms are those with m, (t, ) = 0; + 1. 

For u< Y 

where for J, T< Y the quantity differs only insignificantly 
from Y. Since we have gone over to the reduced variables pi 
defined on the interval ( - P,P), 2,pj can change by jumps 
of 2a; here, for M = ( 1 / 2 ~ )  2, pi we will have 

In analyzing the behavior of u, we will be interested in a 
density matrix (38) in which only the dependence on 
2,pj ( t )  and 2,p; ( t )  is kept and an averageis taken over the 
remaining variables. With allowance for substitutions of the 
type in (39), expression (38) becomes a sum over m and m' 
and a functional integral over n, n', p and p '. The integration 
over n and n' is Gaussian and can be done in a trivial way. 
The integration over p and p ' will be done by the method of 
steepest descent after Y( 1 - cos pi (t, ) ) in (39) is replaced 
by (Y/2)p f(t, andp((p(tO)),  {p1(t0))) is replaced by 
the equilibrium thermalized density matrix of the set of har- 
monic oscillators to which the system goes when an analo- 
gous substitution is made in the Hamiltonian: 

Here pO is a normalization constant, and p, and p ; are the 
respective Fourier transforms (along the chain) consecuti- 
vely of pi (to) and p;(tO). 

If in the calculation of the integrals by the method of 
steepest descent we keep only the action which enters the 
system on the steepest-descent trajectory and drop the pre- 

exponential factors, then we obtain 

where the sum over mj (t, ) and m; (t, ) includes only those 
terms which satisfy the conditions 

and where 

dk 
= (Y/2) 1 Z; oil cw kR[c th  (Po J2) cos ort+i sin okt]. 

-n 

Expression (40) (in which one easily perceives the si- 
milarity to the Feynman-Vernon influence functionallx) is 
of the form of the partition function of a two-dimensional gas 
of instantons with charges Qj (t, ) = m, (t, ) - mi (t, ) and 
with an interaction 

where the sign of the imaginary part also depends on 
mj(tp) + m;(t,). 

The action corresponding to a solitary instanton di- 
verges; it is finite only in the case of a pair of instantons 
having charges of opposite sign or for some set of such pairs. 
The expression for the action corresponding to a configura- 
tion consisting oftwo instantons with charges Q = + 1, sep- 
arated from each other by a distance R (in space) and t (in 
time), 

8, (R, t) =4n2[Go' (0) -GRt (t) FiGRrJ (t)] 

agrees here with the analytical continuation of the expres- 
sion for the interaction of instantons in imaginary time ( 1 1 ) : 

S, (R, t )  =SZE(R,  *it). (41 
The incoherent tunneling regime corresponds to an in- 

stanton-gas phase (in Rt space) in which the instantons are 
bound into pairs of small size, located far from one another 
(cf. Ref. 27). To see that this is actually the case for x) 1, we 
should study the interaction of the instantons in real time or, 
more precisely, its real part Re S, (R,t). Let us do this at zero 
temperature first. 

Considering the asymptotic expression for the interac- 
tion of the instantons in R r  space ( 14) and substituting the 
imaginary value T into it, we can see that the most problema- 
tical element is the existence of a sufficiently strong attrac- 
tion of the instantons in the case of the "diagonally" oriented 
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(in Rt  space) pairs (R = a t ,  even if the distance between 
instantons X= (R + R2t 2)1'2 is large then). 

Therefore, for analysis of the case R E  f Rt we must 
turn to the more accurate approximation ( 13). Substituting 
into ( 13) T = f iR / a ,  we obtain 

Re S2 (R ,  *R/Q) =jtxCin ( h R )  , (42) 
where 

1 - cos z' 
Cin z = J dzl 

a z' 

is the cosine-integral function. For R )  1 we have 
n-x Cin( 2rR ) z n-x In R. This same asymptotic form for 
Re S2(R, + R /R ) is found by using expression ( 16), which 
was obtained in the approximation of a continuous momen- 
tum cutoff, in which case 

It follows from (42) and (43 ) that Re S2(R,t) satisfies the 
condition 

Re S2(R, t )  >nx In [R2+Q2t2]"', 

the right-hand side of which differs from expression ( 14) for 
Sf(R,t)  only by a factor of 1/2. 

Since for x > x, z 2 / ~  the instanton gas in RT space 
consists of bound pairs, the instanton gas in Rt space for 
x > 2x, will certainly break up into pairs of instantons, with 
the interaction between pairs being of practically no impor- 
tance. It is extremely probable that this approach applies in a 
qualitative way for x, < x < 2xc as well. 

Using ( 1 1 ) and (41 ) , one can show that a nonzero tem- 
perature will lead to an additional positive correction to 
Re S, ( T,t) that at low Tgrows as 

(n2J/T)max (IRI, Q l t l )  

and is dominant at large R and t. This clearly will only im- 
prove the compliance with the incoherent tunneling condi- 
tions. 

6. CALCULATION OF THE FORCE OF FRICTION 

Thus, for x &  1 one can calculate (40) by taking into 
account independently the contributions from the different 
instanton pairs, just as in Ref. 27. Each tunneling event for 
the variable M corresponds to a bound pair of instantons. 
The physical meaning of the condition that the instantons 
forming a pair have zero total charge is that on both sides (in 
time) of the bound pair the density matrix is in a state that is 
diagonal in the variable M. 

We stress that the instantons forming a pair can belong 
to different lattice sites, i.e., if in a given tunneling event the 
change of M by unity is due to a change of p, by 2a, then the 
change ofM ' can be due to a change of the p ; with I #j. This 
is due to the equivalence of values of g, and p ' which differ by 
2 ~ .  The tunneling probability (per unit time) is 

v =  Q.' j d r e x p [ - ~ ~ ~ ( ~ , r ) l ,  

where R, = Rg(x,T) is a characteristic frequency which 
can be calculated only with allowance for the pre-exponen- 
tial factors in (40). At low temperatures we have to leading 
orderg(x,T) =g(x) .  

In the approximation considered in Sec. 4, each tunnel- 
ing event is assumed to be localized at some site. This corre- 
sponds to taking into account only those pairs of instantons 
which are located at the same site, i.e., to allowance for only 
one term of the sum over R in (44). Since here too we are 
working in an approximation in which we are ignoring the 
mutual influence of the individual tunneling events, we can 
as before use formulas (37) for the coefficient of friction, but 
now with (44) substituted in instead of (33). 

At a finite temperature the integration over T in (44) is 
conveniently done after first shifting the path of integration 
in such a way that it crosses the real T axis at the point where 
S f (R , r )  has a maximum, i.e., at the point r = 8/2 .  

In the expression for 

SzE (R, B/2f i t )  

dk th (pok /4 )  + l - cos kR cos ok t  
= 2 n 2 ~  J -[-- . 

-IT 
2n O A  ~k ~ h ( P d 2 )  I 

where we shall henceforth assume w ,  = silk I, it is only in 
integrating the first term, which does not depend on R and t, 
that we must take into account the presence of a quasimo- 
mentum cutoff, which we take to be of form ( 15) ; we get 

(really it is only the coefficient in front of the logarithm ofp  
that is important for us, and it does not depend on the form of 
the cutoff). Here and below we assume T<R. In integrating 
the second term we can shift the limits of integration to infin- 
ity and get 

dk 1 - cos (kH) cos (Qkt)  
2nau 5% 

- -- k sh (gQk/2) 

After substituting for S;(R, P /2  + it) the sum of (45) and 
(46) and replacing the summation over R by an integration, 
we get 

Assuming, as is commonly believed,34 that the dimension- 
less factor g (x )  in the pre-exponential factor R, is propor- 
tional to the square root of the action on the instantonic 
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trajectory, g ( x )  we find that the coefficient of fric- 
tion in (37), given to within a nriaerical factor by 

K- 'my  (TIB) ', 0=2nx-3, (48 

is only weakly dependent on x. 
We can also calculate the tunneling probability at 

T = 0, but for a nonzero velocity v. Adding to ( 16) a term 
linear in t due to the difference in the depths of the adjacent 
wells [cf. Eq. (25) ] and replacing the summation over R by 
an integration, we obtain 

m m 

v. = B.' J ~ R  Jdt[ (l+inRt)'+ (nR)']-n'exp(2nivt) 

which implies that at low velocities 

a ~ l a t w -  ( V / B ) ~ * - ~ .  (50) 

We emphasize that for R % 1 the integrals over r in (47) and 
(49) cannot be done by the method of steepest descent. 

The exponents in (48) and (50) differ by 1 from those 
found in Sec. 4 in the cruder "single-particle" approxima- 
tion. Relation (50) also holds at low but finite temperatures 
for velocities satisfying the condition T< u < R. 

7. CONCLUSION 

We have found that in the framework of the quantum 
SOS model ( 1 ) the macroscopic motion of delocalized linear 
defects in crystals is dissipative. From a phenomenological 
standpoint the influence of irreversible processes can be de- 
scribed as the appearance of a force of friction, which for 
T = 0 depends on the velocity in a nonlinear way but which 
for finite temperatures is linear in the velocity at low veloc- 
ities (viscous friction). The coefficient of friction then has a 
power-law dependence on temperature [see Eq. (48 ) 1, with 
an exponent 8 that depends on the relationship of the param- 
eters J and Y and, in the case of dislocations, for example, 
can change with pressure. 

The calculation in Sec. 6 was done under the assump- 
tion that T g  R. In this case the force of friction under consi- 
deration is small in the sense that it determines a rate of 
relaxation that is small compared to the characteristic fre- 
quency R; this is consistent with the necessary condition for 
applicability of the method used. 

It was assumed in the derivation that the mutual influ- 
ence of the instanton pairs is unimportant; this becomes a 
better assumption as x increases. It is extremely probable 
that a power-law dependence of the form in (48) will hold 
not only for x~ 1 but also in the physically more interesting 
region x - 1 (most likely all the way tox, ), with some renor- 
malization of the exponent 8. In the self-consistent approxi- 
mation, without allowance for renormalizations, x, = 2 ~ -  ' 
and 8 > 1. The combination 2 ~ x  appearing in the expression 
for 0 is the pre-logarithmic factor in the interaction of the 
instantons. If we assume that when the renormalizations are 
taken into account the same relation will still hold, but with 
renormalized values of 2 ~ x  and 8, then for x > x, we will, as 
before, have 8 > 1. 

The frictional force under consideration is due to the 
discreteness of the atomic structure of the crystal, which is 
manifested in the discreteness of the variables n, which de- 
termine the position of the step (dislocation). When the dis- 
crete variables n, in ( 1 ) are replaced by continuous variables 
and the kinetic energy is changed accordingly, we obtain the 
Hamiltonian of a discrete free string, whose motion is non- 
dissipative and whose velocity as a whole is a conserved 
quantity. The discreteness of the variables n, leads to the 
possibility of tunneling processes which violate the conser- 
vation of the velocity of the macroscopic motion, so that the 
kinetic energy of the motion of the step as a whole is irrevers- 
ibly converted into vibrational degrees of freedom. Since the 
variables p, are the quasimomenta (in n space), these tun- 
neling processes are nothing but umklapp processes. In this 
sense the dissipative nature of the motion of the step has the 
same cause as the low-temperature electrical resistance of an 
ideal crystal according to Landau and Pomeran~huk. '~  

A competing dissipation mechanism is friction against 
the phonon gas. In the case of dislocations the anharmoni- 
city-caused scattering of phonons by the slowly decaying 
stress field of the dislocation gives rise to a force of friction 
proportional36 to ( T/T, ) ( TD is the Debye temperature), 
while the reemission of phonons by induced vibrations of the 
dislocation (fluttering) gives rise to a force of friction pro- 
~or t iona l~ '  to (T /TD )3. Comparison with (48) shows that 
there is a region of parameter values in which our "zero- 
phonon" part of the force of friction should dominate at low 
temperatures. 

The Granato-Lucke3' theory of the absorption of sound 
by dislocations in crystals is based on the assumed existence 
of a temperature-independent coefficient of viscous friction 
for the motion of dislocations. Our analysis can thus serve 
(to the extent that the SOS model applies) as justification for 
applying the Granato-Lucke theory to quantum crystals (in 
the case x > x,  ). 

Experimental studies of the ~ e l o c i t y ~ ~ . ~ '  and absorp- 
tion4L-43 of sound in 4He crystals, with the data processed in 
accordance with the Granato-Liicke theory on the assump- 
tion that the coefficient of friction depends on temperature 
as T e ,  give values for the exponent 8 which lie basically in 
the range 8 = 1.5-3. The theory proposed in the present pa- 
per can explain both the difference of the exponent 8 from 3 
and its change with pressure. 

Wolf et made an experimental study of the rate of 
growth of 4He crystals at low temperatures. The observed 
character of the dependence of the rate of growth on the 
applied chemical-potential difference permitted those auth- 
ors to conclude that for faces parallel to the sixfold axis the 
growth is due to the motion of steps terminating at screw 
dislocations. This in turn permitted determination of the 
temperature dependence of the mobility of the step from the 
temperature dependence of the rate of growth. The observed 
temperature dependence of the mobility ( T - ' , 0 ~ 2 )  can- 
not be attributed to friction against the phonon gas, but indi- 
cates the presence of another dissipation mechanism such as 
that considered in the present paper, for example. 

It should be kept in mind, however, that the quantum 
SOS model considered here applies only in a schematic sense 
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to the description of linear defects in quantum crystals, since 
it does not take into account their interaction with the crys- 
tal through the elastic stress field or the motion of the liquid 
that invariably accompanies the motion of a step along an 
interface between a quantum crystal and quantum liquid of 
different densities. An attempt at a more detailed descrip- 
tion of such objects will, generally speaking, require a mo- 
dernization of the theory. In this sense model ( 1 ) is most 
realistic for describing a step on a planar defect in a crystal 
(e.g., on a domain wall in a magnet or on a twinning bound- 
ary). 

As we mentioned in the Introduction, the quantum SOS 
model (1)  is isomorphic to the quantum XY model (7), 
which is used to describe a regular chain of Josephson junc- 
tions. In terms of the XY model the conclusions of this study 
reduce to the absence of undamped current states in such a 
system (the current corresponds to the velocity of the step as 
a whole). At a finite temperature the volt-ampere character- 
istic is linear at small currents, and the resistance has a pow- 
er-law dependence on temperature. In terms of the XY mod- 
el the tunneling processes responsible for energy dissipation 
represent the usual phase slip, which occurs in this regime as 
quantum fluctuations, and evidently have a more transpar- 
ent meaning than in the quantum SOS model. 

If each of the junctions in a regular chain of Josephson 
junctions is assumed to be shunted by a finite Ohmic resis- 
tance, then this leads only to a certain increase in the expo- 
nent in the power-law temperature dependence of the resis- 
tance of the chain as a whole. 

In the quantum XY models of higher dimensionality 
(e.g., the two-dimensional case), which are used to describe 
granulated supercond~ctors ,~~ a decrease of the current due 
to the analogous localized phase slips is impossible for pure- 
ly geometric reasons. Similarly, it is also impossible in the 
quantum SOS model for the free surface of a ~ r y s t a l , ~ . ~ ~  
where the potential (in the p representation) energy is of the 
same form as in the XY model. Therefore, in such systems, 
even at finite temperature, there can exist a real superfluid 
phase in which the current (or the mass current) is nondissi- 
pative. 

I wish to thank S. V. Iordanski'i and S. V. Meshkov for 
discussion of this study and helpful comments. 
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