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We develop a method of self-consistently describing equilibrium spatial structures and the 
small-oscillation frequency spectrum corresponding to those structures for a one-dimensional 
quantum system of atoms in an external spatially periodic field. We find numerically the 
commensurable, incommensurable, and chaotic equilibrium structures and determine the form 
of the frequency spectrum of the dynamic excitations of such structures. We give a comparison 
with the classical case. 

1. INTRODUCTION 

When studying possible structures arising in systems of 
interacting atoms and spins the method of discrete maps 
normally used in the theory of dynamic systemsi-' has 
turned out to be rather successful. The use of that method 
has enabled us to construct solutions which describe com- 
mensurable, incommensurable, and chaotic structures and 
to elucidate the main conditions necessary for their realiza- 
tion. 

It was shown in Refs. 8,9 that the method of discrete 
maps, when applied to the analysis of various kinds of struc- 
ture, can also be developed in the framework of the quan- 
tum-mechanical approach. The basis of the method of Refs. 
8,9 is to obtain discrete maps for the stationary component 
of the average positions of atoms and spins in coherent 
states. It thus turns out to be possible to have a limiting 
transition to classical equilibrium structures which are de- 
termined by the stationary points of the corresponding clas- 
sical equations of motion and to take quantum corrections, 
including non-stationary ones, into account. In such an ap- 
proach the structure is determined as the solution of the 
quantum maps obtained. The result of the quantum-me- 
chanical treatment is a renormalization of the particle inter- 
action potential. One can classify the solutions obtained in 
the different regions of the parameters of the initial Hamilto- 
nian by using the additional condition for the minimization 
of the average energy in the class of employed coherent 
states. The structures thus obtained are, even under the con- 
dition of minimization of the average energy, in general me- 
tastable states and the method itself is, with respect of the 
ground state, one of the modifications of the mean field 
method. The study of such structures is, however, interest- 
ing since it becomes possible to use quantum-mechanical 
maps which decribe commensurable, incommensurable, and 
chaotic structures in discrete quantum systems of interact- 
ing atoms and spins and thus to determine the role of quan- 
tum effects and to study the conditions necessary for transi- 
tions between different phases. 

Since, however, the spatial structures considered are 
defined on a class of coherent states, the problem arises of 
their dynamic stability. In general the analysis of the dynam- 
ic stability of such structures encounters great difficulties 

and can be performed only for the case of small oscillations. 
The small-oscillation spectrum then obtained depends sig- 
nificantly on the properties of the realized equilibrium struc- 
ture, and was considered for classical discrete systems in 
Refs. 1 0 , l l .  We note that the analysis of the small oscillation 
spectrum is possible only with the aid of numerical methods, 
as the class of realizable equilibrium structures is rather 
complex even for the simplest one-dimensional systems. '." 

We construct in what follows a self-consistent theory 
which allows us to obtain solutions for possible spatial struc- 
tures in one-dimensional discrete quantum systems, taking 
the spectral properties of these structures with regards to 
small oscillations into account. The method is based upon 
obtaining a self-consistent set of equations which connects 
the equilibrium average positions of the atoms in the system 
with the small-oscillation frequency spectrum. We consider 
the possible structures in the appropriate coherent states, 
whose parameters themselves depend on the realizable 
structures. To a certain degree the method considered is 
close to the method of the self-consistent theory of anhar- 
monic crystalsi2 (see also the references given in Ref. 12), a 
theory in which the small-oscillation spectrum of a quantum 
lattice in contact with a thermostat is determined self-consis- 
tently. 

In section 2 of the present paper we formulate a method 
for self-consistently considering possible equilibrium struc- 
tures of a quantum-mechanical system of interacting atoms 
and the small-oscillation spectrum corresponding to these 
structures. Our consideration uses as an example Frenkel' 
and Kontorova's discrete quantum model. l 3  We describe in 
section 3 a scheme for constructing a self-consistent solu- 
tion. We give in section 4 the results of a numerical experi- 
ment on the analysis of various equilibrium structures and 
the small-oscillation spectrum corresponding to them. 

2. FORMULATION OF THE METHOD 

We obtain in this section a set of equations for a discrete 
quantum model which allows us to determine self-consis- 
tently equilibrium structures of arranging the atoms in co- 
herent states, taking into account the stability of such struc- 
tures against small oscillations. It is convenient to expound 
the essence of the method proposed below by using a specific 
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model, with a subsequent indication of ways of generalizing 
it to more general cases. 

We consider Frenkel' and Kontorova's quantum mod- 
ell3 with the Hamiltonian 

Instead of the coordinate operator 3, we have introduced in 
(2.1 ) the operator of the displacement a, of the nth atom 
relative to the external potential: 2, = 6, + nu; q, = 2r/a0 
(a, is the spatial period of the external field); S = (a  - a,)/ 
a, ( - 1 < S < co ); a is the equilibrium distance between the 
atoms of a free chain ( V, = 0); [ii, 9,. ] = iG,,,. ; m and y 
are, respectively the mass of an atom and the elasticity con- 
stant. The index n in (2.1 ) takes on discrete values in the 
range S ,  : - co < n < co . For the following analysis we 
choose formally a finite system of N atoms with n varying in 
the region of S, : 1 <n (N. 

For a system of N atoms we change from the 2N opera- 
tors ;,, $, to the 2N operators ci,. ,4+ using the formulae 

ttmlojl " 
n ( 1  i ( )  e (n 1 j) (G,+ (t) -aj (t) ) . 

1- t 

In (2.2) e(n b) is the n-th component (n = 1, ..., N) of thejth 
eigenvector ej with the eigenvalue wj of some eigenvalue 
problem which will be defined below. The components of the 
vector e, satisfy the following relations: 

The expressions (2.3), (2.4) are the orthonormality condi- 
tions of the eigenvectors ej . From the properties (2.3), (2.4) 
we have [4 ,6,7 ] = Sj,i. . The operators 6,+ and 6, have the 
meaning of creation and annihilation operators. We intro- 
duce at time t = 0 the coherent states la, ): 

We also define the state 

Averaging the Heisenberg equations of motion for the opera- 
tors ;, ( t )  and$, ( t )  over the state (2.6) we get 

miin (t) =r [un+t (t) -2un (t) +u,-t (t)] 

-Voqo(alsin qoU. (t) la), (2.7) 

where 

~~(t)==<al&,(~) ({i+, d), t)  1 a ) ~ u n ' ~ '  ({a', a), t) ,  
Pn (t) ==<a1 pn(N' ({a+, (i), t) I a ) = ~ n ' ~ '  ({a*, a )  9 t), 

{ri+, a)=(cit+, dt; . . . ; &N+, i ~ ) ,  (2.8) 

{a*, a ) =  (at*, a t ;  . . . ; an*, a ~ )  . 
In (2.8) tj+, ci,. , a?', a, are, according to (2.5 ), defined at 
t = 0. The upper index (N) indicates that the corresponding 
operator is written in the normal ordering form with regards 
to the operators 4+ and ci,. . The average of the operator func- 
tion sin[q,ii, ( t )  ] can be written as a series: 

m 

h 

where the operator Q has the form 

The power of q,u, ( t )  in the I th term on the right-hand side 
of (2.9) is equal to 21 + 1. The arrow in (2.10) indicates the 
direction in w$ch the differential operator acts. In (2.9) 
each operator Q acts on the closest function u, ( t )  which 
stands to the right and on all functions u, ( t )  which stand to 
the left. One can obtain Eq. (2.9) using the rule for normal 
ordering of functions of non-commuting boson operators, 
and its derivation is given in Appendix 1. 

Using (2.9) we can thus write Eq. (2.7) in the c-num- 
ber form: 

mii,(t) =r[u,+, (t) -2un(t) +u,-~ ( t ) ]  -Voqo sin [qou,(t)Q1. 
(2.11) 

The spatial structures of the system (2.1 ) which correspond 
to the stationary component of the solution u, ( t )  
(ti, (0)  = 0, p, (0)  = 0) were studied in Refs. 8,9. It is 
shown in Refs. 8,9 that such a method of consideration leads 
to the standard map for the time-independent average posi- 
tions of the atoms while quantum effects in that approxima- 
tion reduce to a renormalization of the potential V,,. By such 
an approach one can find the solution of discrete quantum 
maps corresponding to the commensurable and incommen- 
surable phases and to structural chaos. 

In the general case the solution of the Cauchy boundary 
problem for Eq. (2.1 1 ) can formally be written in the form 

un({a8, a ) ,  t)=unO({a', a))+p, ( (a* ,  a ) ,  t ) ,  (2.12) 

In (2.13), (2.14) a, =ii, Q = 0);  (m)  is an eigenfunction of 
the Hamiltonian (2.1 ): H Im) = Em Im) (wmtmZ = (Em, 
- Em> ) / f i )  and the amplitude c, is the coefficient in the 

expansion of the coherent state la) of (2.6) in the functions 
Im): la) = 2,cm Im). 

The explicit form of the functions u: and p, ( t )  in 
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(2.12) can only be approximately determined. We shall in 
what follows consider a self-consistent theory to determine 
possible equilibrium structures in (2.1 l ) ,  taking into ac- 
count their small dynamic excitations. We look accordingly 
for a solution of Eqs. (2.11) in the form (2.12) where the 
function u: is time-independent and determines the equilib- 
rium structure while the functionp, ( t )  describes small dy- 
namic excitations in the system. We shall assume in what 
follows that the condition 

is satisfied which means that the amplitude of the oscilla- 
tions (2.14) is small relative to the u: of (2.13). Using 
(2.12), (2.15) we get, to first order inp, ( t ) ,  

sin (qoun ( t )Q)  =sin [qo (uno+pn(t) ) Q] 

--sin (gnuno?) +gapn ( t )  cos (9aunoQ) 

In (2.16) we neglected the dependence ofp, ( t )  on {a*,a): 

which corresponds to dropping terms containing the deriva- 
tives dp, /aa, dp, /da*. This approximation corresponds to 
the mean-field theory method. According to (2.12) we have 
at time t = 0 

where u, = u, (0)  is the initial value of the function u, ( t )  in 
(2.11 ). Using (2.2), (2.18) we can write down the initial 
conditions for a,, aj*: 

where a: and ap* correspond to the functions ujl and ti, (O), 
tij* (0)  to the functions p, (0).  Ii is convenient for what fol- 
lows to change in the operator Q from differentiating into 
respect to a,, a: to differentiating with respezt to a;, a?. 
According to (2.19) we have for the operator Q of (2.10) in 
the approximation (2.17) 

Substituting (2.16) into (2.11 ) and using (2.15) we get a set 
of equations which determines the equilibrium structure u: 
and the excitationsp, ( t ) :  

~ ~ + ~ - 2 u ~ " + u ~ . - , -  (Voqaly) exp (-An2) sin(qounn) =0, (2.21 ) 

(p,,. ,-2p,,+p,,-,) -T'oqa2 exp (--A,,') p,, (gaunn). 
(2.22) 

The quantities A are determined in Appendix 2 and have 
the form 

N 

3. CONSTRUCTION OF THE SELF-CONSISTENT SOLUTION 

We describe the scheme for constructing a self-consis- 
tent solution of the set of Eqs. (2.21), (2.22) which will be 

used in what follows for a numerical analysis. 
In the linear substitution of the operators in (2.2) the 

quant i t ies~j  and e(n b) were shown in $2 to be the jth eigen- 
value and the nth component of the corresponding j-th ei- 
genvector of the eigenvalue problem: 

h 

where the operator L can be specified by an N ~ N m a t r i x .  Of 
course, in the framework of the approach considered here, 
there is a rather large arbitrariness in the choice of the prob- 
lem (3.1 ) and, hence, in the solutions {wj,iJ ) obtained. In 
that sense the substitution (2.2) is not unique in the general 
case and this leads to ambiguities in the choice of the quanti- 
ties 2, in (2.23)-to each set {wj,eJ) there corresponds a 
definite value A, and, accordingly, a definite class of solu- 
tions of the Eqs. (2.21), (2.22). Such an ambiguity is con- 
nected with the fact that the equilibrium structure uz and its 
excitations p, ( t )  are considered in well defined coherent 
states la) (2.6), the construction of which itself is based 
upon the solutions of the Eqs. (2.21) and has considerable 
leeway. All solutions of this kind with possible values of A, 
are metastable and amongst them one can select those which 
lead to stable solutions of the dynamic Eqs. (2.22). In that 
sense such solutions are locally stable metastable solutions 
and may be of independent interest. 

However, in what follows we restrict our considerations 
to only those solutions of the set (2.2 1 ), (2.22) in which the 
quantities A, are self-consistently determined by the eigen- 
frequencies of the dynamic equations (2.22). The eigenvalue 
problem (3.1) is thus uniquely determined. In the physical 
sense the choice of such solutions can be justified in the 
framework of the temperature approach (with the subse- 
quent transition T-+O), in which a structure and its excita- 
tions are constructed not in coherent states of the kind con- 
sidered here but by using a statistical averaging over a 
temperature-dependent density matrix. l 2  This problem goes 
beyond the framework of the present paper and will be con- 
sidered later on. 

We write down a scheme for constructing a self-consis- 
tent solution of the set (2.21), (2.22) of the kind indicated 
above. First of all we write the set (2.21), (2.22) in dimen- 
sionless variables: 

Zn+i=Zn+Mn sin cpn, (3.2) 

cpn+i=cpn+Zn+i, (3.3 

d"nld~"En+i-2En+gn-i-MnEn cos 9.9  (3.4) 

where 

Equations (3.2), (3.3) are equivalent to Eq. (2.21 ) and de- 
termine the equilibrium structure; Eq. (3.4) describes the 

1219 Sov. Phys. JETP 63 (6), June 1986 Beloshapkin eta/. 121 9 



small dynamic excitations. In (3.2) to (3.5) we have intro- 
duced dimensionless parameters K, vj , a'. The only dimen- 
sionless quantum parameter is a2. In this form the parameter 
2 arose when we construct spatial structures of a system 
with the Hamiltonian (2.1 ) in coherent single-particle 
states, with the additional condition that the average energy 
of the system be minimi~ed'.~ (see also Ref. 2 where a similar 
parameter arose from dimensional considerations). 

We construct a self-consistent solution of the set (3.2) 
to (3.4) as follows. We shall assume that the dimensionless 
frequencies v, occurring in A, are determined by the solu- 
tion of the eigenvalue problem (3.4). In that case the substi- 
tution leads to the diagonalization of a quadratic form corre- 
sponding to Eqs. (3.4) which determine the small oscillation 
spectrum of a system of atoms near their equilibrium posi- 
tions p, . The first step in the iteration procedure consists in 
a choice of quantities R Lo' (e.g., R Lo' = 0, n = 1, ..., N which 
corresponds to the classical limit ti = 0). We substitute A y' 
into (3.2), and specifying I, and p,, we determine the corre- 
sponding equilibrium structure {p p'). We further substi- 
tute R r', p P' into (3.4) and find the eigenvalues (vjO')' 
and the eigenvectors ejO' corresponding to them 
( j = 1, ..., N). If the eigenvalues (Y;")~ are positive, we pro- 
ceed to the second step of the iterations. To do this, we sub- 
stitute vjO' and e"'(n (i) into the expression forA, from (3.5) 
and we get R A": 

We then substitute R !,I' into (3.2) and find the modified 
equilibrium structure {p L"). We substitute R LL', p A" into 
(3.4) and find the modified spectrum ( ~ 1 " ) ~  and ej". If the 
quantities ( Y ; ' ) ) ~  are positive we go to the next step, and so 
on. The convergence of such an iteration process leads to the 
construction of a self-consistent solution for an equilibrium 
structure and the spectrum of small oscillations near the 
equilibrium positions. One must note that each step in the 
iteration with the set {vjm', ejm)) can be considered as an 
independent substitution of Eqs. (2.2). From that point of 
view each step in the iteration creates independent solutions 
of the set (3.2) to (3.4). Moreover, as the quantities p Lm' in 
(3.4) are assumed to be explicit functions of the number n of 
the atoms and of the initial conditions IO and pO the functions 
p, ( t )  depend, as we showed above, explicitly only on the 
atom number n and the time t .  We now turn to a numerical 
analysis of the set of Eqs. (3.2) to (3.4). 

4. RESULTS OF A NUMERICAL EXPERIMENT 

It is clear from (3.2), (3.3) that the character of the 
equilibrium solution {I, ,p, ) is determined by the param- 
eters 

M,=K exp (--An2) (4.1) 

of a standard type map" with one difference, however, in 
that the quantities M, are functionally connected with the 
variables {I, ,pH ). This property of the set (3.2), (3.3) leads 
to non-canonical variables {I, ,p, ) and one of the conse- 

quences of this is the non-conservation of the phase volume 
in the (1,p)-plane under the action ofsuch a transformation. 
In this connection before we proceed to describe the results 
of a numerical experiment with the set (3.2) to (3.4) we note 
that we have also performed a numerical calculation of a 
simpler set of equations in which the quantities A which 
enter in (3.2) to (3.4) via M, [Eq. (4.1) ] were replaced by 
the average value R 2: 

N N 

where A = 2'I2a2. This simplification leads, firstly, to the 
variables {I, ,p, ) becoming canonical and, secondly short- 
ens appreciably the time of the calculation as it obviates in 
each step of the iteration the need for calculating the eigen- 
vectors ejm'. In that case the set of Eqs. (3.2) to (3.4) 
changes to the following: 

I,+i=In+ M sin cp,, vn+i=vn+In+t7 
(4.3) 

d2gn/d~'=En+i-2&+En-i-MEn cos Vn. 

It is clear from (4.3) that the simplification (4.2) causes the 
equilibrium solution {I, ,p, ) to be characterized in this ap- 
proximation by the dimensionless parameter M. 

while the frequencies v, in R of (4.2) are the eigenfunctions 
of the small oscillations determined from the last equation in 
(4.3). Numerical calculations show that such a simplifica- 
tion does in fact not change the shape of the solutions for I,, 
p, , vj. We shall discuss this "crudeness" of the set of Eqs. 
(3.2) to (3.4) further in the Conclusion. 

When M, % 1 the structures generated by the map 
(3.2), (3.3) turn, as a rule, out to be ~nstable' . '~ and corre- 
spond to chaotic states. The instability of most of the trajec- 
tories of the map (3.2), (3.3) at M, % 1 leads to the fact that 
any small perturbation of the initial conditions (IO,po), how- 
ever small, causes an exponential growth of the computer 
rounding-off errors in a numerical study of chaotic struc- 
tures generated by such trajectories. It is therefore impossi- 
ble to use an iteration of the maps (3.2), (3.3) to obtain 
sufficiently long dynamically stable chain sections which 
correspond to chaotic structures. '".' ' As a rule the computer 
rounding errors at M, 2 1 for unstable trajectories become 
important already after a few tens of iteration steps of the 
map (3.2), (3.3). Because of this we used for the analysis of 
chaotic structures a gradient method first employed for this 
purpose in Ref. 10 and applied also to a study of structural 
states of spiral systems in external fields.' ' The idea of that 
method is that to find dynamically stable configurations one 
solves a set of ordinary differential equations 

where Z is the Hamiltonian generating the right-hand side 
of (4.5). The set (4.5) was solved with free boundary condi- 
tions: pO = p,; p,+ I = p,. The solutions {p, (7)) deter- 
mined by the set of Eqs. (4.5) tend, when the time T in- 
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creases, to stationary solutions determining the stable 
equilibrium positions. In the numerical experiment we 
solved the set of Eqs. (3.4), (4.5) by an iteration method. In 
the first step we put M, = M iO' = K (A A'' = 0) and solved 
the set of Eqs. (4.5). Using next the equilibrium positions 
found {p Lo'), we evaluated the frequencies {vjO') from the 
set (3.4) with M, = Mi0' = K. Then we calculated the 
quantities 

N 

and again solved the set of differential Eqs. (4.5), and so on. 
To solve the set (4.5 ) we applied Hamming's fourth-order 
method. All calculations were performed with double accu- 
racy (seventeen significant figures). The criterion for the 
ending of the iteration process for the solution of the set 
(4.5) was given by the smallness of the quantity A: 

N 

In our calculations we terminated thd iteration process when 
the quantity A of (4.7) reached values A- lo-'' to 10-lo. 
Using the iteration process described above we obtain the 
sets: {p, } determining the equilibrium positions of the 
atoms, and {?) which is the spectrum of the small oscilla- 
tions of the chain. We succeeded by the method indicated to 
show the existence of solutions of the set (3.2)-(3.4), (4.5) 
corresponding to chaotic structures, to a regular soliton lat- 
tice, and to a commensurable phase when all particles are 
distributed in points commensurable with the period of the 
external field a, (e.g., p, = 0, x, = a,n). 

We show in Fig. 1 the way the dimensionless difference 
yn = qO(xn - X, - ) = 2~ +In in the positions of the 
atoms depends on the site number n for a chaotic structure 
obtained by solving the set (3.4), (4.5). The random nature 
of the change in the quantity y, is very clear. We give in Fig. 
2 the small-oscillation spectrum for the structure shown in 
Fig. 1 (lower "curve"). As the wave vector is not well de- 
fined in the case of an irregular lattice, we arranged the fre- 
quencies Y, in Fig. 2 in ascending order so that when we went 
over to a commensurable structure this curve would change 
into the dispersion curve of the commensurable phase. For 
comparison we give in Fig. 2 (upper "curve") the spectrum 

FIG. 1.  The n-dependence of y, = 2a + I , ,  corresponding to a random 
soliton structure obtained when solving the set of Eqs. (3.2)-(3.4): 
K = 6.1; A = 0.99; N = 89. 

FIG. 2. Small-oscillation spectrum of a random soliton structure for 
K = 6.1 and N = 89: R 6 = 0.99: lower "curve"; R 6 = 0: upper "curve." 

of the corresponding classical chain (A 2, = 0). From a com- 
parison of these two curves in Fig. 2 it is clear that quantum 
fluctuations lead to a lowering of the small-oscillation fre- 
quencies of the system. In Figs. 3 and 4 (lower "curve") we 
show the way y, depends on the site number n for the regular 
soliton lattice, and the small-oscillation spectrum corre- 
sponding to that structure. For comparison we give in Fig. 4 
(upper "curve") the small-oscillation spectrum of the corre- 
sponding classical lattice (A 2, = 0).  It is clear that just as in 
the case of the chaotic phase, taking quantum fluctuations 
into account lowers the small-oscillation frequencies of the 
system. One can easily see from (3.2) to (3.4) that there 
always exists a solution corresponding to a commensurable 
phase x, = a@ (p, = 0). Therefore there is in that case no 
need to solve Eqs. (3.2) and (3.3), since the equilibrium 
positions of the atoms are given. The small-oscillation spec- 
trum of this structure can be determined from (3.4): 

.... vna=2[1-cos (2nn/N)]+Mn,  n=l, N, (4.8) 

where the A, are given in (3.5 ) . Since the A, depend on the 
Y,, the set (4.8) can be solved by an iteration method. In the 
first step of the iteration process we chose A, = 0 and evalu- 
ated the spectrum of the commensurable phase (Y)"), neg- 
lecting quantum corrections. After that we calculated the 
A !,I) and again evaluated the spectrum, and so on. Depend- 
ing on the magnitudes of K and A : = 2L12u2, the iteration 
process converges to the set {v, } in which the zero frequency 
is either contained or not. If the spectrum contains Y = 0, the 
quantities A 2, become infinite and this causes the quantities 
M,, in (4.8) to vanish. In that case, therefore, quantum fluc- 
tuations suppress the external field and the commensurable 
phase turns out in that approximation to be unstable for the 
given parameters. Indeed, the occurrence of low frequencies 
Y lead to large mean square fluctuations of the quantities p, 

FIG. 3. The n-dependence ofy, corresponding to a regular soliton struc- 
ture for K = 6.1; /1 = 0.99; N = 89. 
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FIG. 4. Small-oscillation spectrum of a regular soliton structure for 
K = 6.1 and N = 89: A = 0.99: lower "curve" and /1 = 0: upper 
"curve." 

and to violation of the condition (2 .15 ). The diagram depict- 
ed in Fig. 5 thus determines only the region of the linear 
instability of the commensurable structure considered. If, on 
the other hand, there is no zero frequency in the spectrum 
{v, the quantities A  5, turn out to be finite and there occurs 
merely a renormalization of the amplitudes of the external 
field. In that case the atoms are arranged in the minima of 
the external field with period a,. The curve of Fig. 5  deter- 
mines in the plane of K and A  ; the boundary for the exis- 
tence of the commensurate phase considered. In the region 
above that curve quantum fluctuations lead only to a renor- 
malization of the amplitudes of the external field. Below the 
curve, quantum fluctuations lead to a suppression of the ex- 
ternal field ( A ,  - W ,  M, - 0 )  and to instability of the com- 
mensurable phase. 

5. CONCLUSION 

The method considered above allows us to obtain a 
whole class of self-consistent solutions describing commen- 
surable, incommensurable, and chaotic structures and the 
spectrum of the dynamic excitations corresponding to them. 
All solutions considered are metastable in the general case, 
since coherent states are the basis of their construction. 
Since the structures are studied at zero temperature, there 
arises the problem of how much the solutions obtained in the 
coherent states are close to those structures (I, r (Olii, (0) ) 
which Te, say, realized in the ground state 10) of the Hamil- 
tonian H of (2 .1  ). In that connection we must note that one 
of the main effects of the quantum-mechanical consideration 
of the system (2 .1  ) at zero temperature is the existence of a 

FIG. 5 .  Curve determining the boundary for the existence for a commen- 
surate phase obtained by numerically solving the set of Eqs. (4.8) .  

critical value of the magnitude of the quantum fluctuations 
a, above which there occurs the instability of the commen- 
surable pha~e.~~' '~ '*  Such an instability is caused by the en- 
hanced role of the long-wavelength component of the quan- 
tum fluctuations which lead in final reckoning to a 
renormalization of the effective potential for the interaction 
of the atoms with the field. This effect can also be described 
for the system ( 2 . 1 )  in well chosen coherent states. It was 
shown in Ref. 9 that the use of collectivized coherent states 
of some effective system with a quadratic Hamiltonian and a 
variable magnitude of the gap in the frequency spectrum 
gives a value of a, that agrees with Refs. 2,17. In this case the 
structures were defined in Ref. 17 as the solutions of stan- 
dard-type quantum maps for the functions (2.18) with the 
additional conditions 4, ( 0 )  =ji, ( 0 )  = 0 ,  while quantum 
fluctuations which are explicitly time-dependent and con- 
tained inp, ( t )  in ( 2 . 1 4 )  were neglected. From the consider- 
ation given above it follows that taking quantum fluctu- 
ations approximately into account when constructing a 
self-consistent solution in coherent states also leads to the 
existence of a region of instability of the commensurable 
phase which is caused by the appearance of low frequencies 
in the spectrum of the self-consistent oscillations of the 
structure. The actual cause of this instability is that when 
one varies the parameters some of the energy levels E, of the 
initial Hamiltonian (2 .1  ) become degenerate and the corre- 
sponding frequencies in Eq. ( 2 . 1 4 )  vanish. This, in 
turn, leads to the need to include this time-independent term 
fromp, ( t )  in the structural part of the solution u: of ( 2 . 1 2 )  
and this leads to a renormalization of the structure: ujl - E:. 
In that sense the instability of the commensurable phase in 
the approximate approach given here means only that the 
initial commensurable structure itself is unstable. 

The method given above allows us to study numerically 
the different kinds of structure of one-dimensional discrete 
quantum systems, taking their stability against small oscilla- 
tions into account. In this connection one should note that 
the iteration scheme given here for constructing a solution is 
rather stable even in the case when one considers chaotic 
structures-it turns out that 3  to 5  iterations are sufficient to 
arrive at a stationary regime when an equilibrium structure 
and the small-oscillation spectrum corresponding to it are 
determined. Moreover, we have noted above that the solu- 
tions obtained in the numerical calculation process turn out 
to be not very sensitive to the procedure of approximating 
the set ( 3 . 2 )  to ( 3 . 4 )  and to the transition to the set of Eqs. 
(4 .3  ). This means apparently that the zeroth approximation 
obtained in that way is to a certain extent stable and that one 
can use a mean-field type of approximation method. As the 
main effect of the quantummechanical consideration one 
must apparently consider the effective lowering of the inter- 
action potential as compared to the classical case: it follows 
from ( 3 . 2 ) ,  ( 3 . 5 )  that M, < M,, = M ( f i  = 0 )  = K .  Such an 
effect was noted before in Refs. 8,9 in a somewaht different 
approach (see also Refs. 2,171. It is possible that such a 
lowering of the potential when quantum fluctuations are 
taken into account is a general property of quantum-me- 
chanical considerations and is not connected with the use of 
coherent states. However, this problem requires further 
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study. Such a quanta1 lowering of the interaction potential 
for a chaotic phase means that the realization of chaotic 
structures in an essentially quantum case requires more rigid 
conditions as compared to the classical limit. 

In conclusion we note that a generalization of the meth- 
od considered to the case of more complex one-dimensional 
quantum systems is possible both in the case where one needs 
to take into account the non-linearity of the chain and for a 
more complex form of the interaction potential. 

APPENDIX 1 

In deriving Eq. (2.9) we use the well known rule for the 
normal ordering of operator functions of boson operators. 
We first consider thz singl~particle case. Let there be given 
operator functions A and B depending on the creation and 
annihilation operators!+, 8, yith commutator [ii,ii+] = 1. 
We shall assume that A and B are normally ordered in the 
operators ii+ and ii-all operators ii+ stand to the left and all 
operators ii to the right: 

R ( d + ,  d )  =z 7, ,. (6+) ' (d) m-A(N),  
1.m 

h 

For the nzrmal ordering ~(""'9'""' of normally ordered 
functions A'""' and B("") we use the equation15 

h 

where the operator N indicates that all operators inside the 
braces must be arran~ed in the normally ordered form ac- 
cording to the rule N{(b)" (a+  )P ) = ( B +  )P (t)" . Using 
(Al . l ) ,  (A1.2) we have 

Expression (A 1.3 ) is convenient for finding averages in a 
coherent state: 

(alfff)l~>=(alA(~)B(~)la>=A'~) (a*, a) QoB(N) (a', a ) ,  

h h 

Choosing, e.g., for A and B the functions 2,  =CAN' and suc- 
cessively applying the ordering process for products of oper- 
ators ii;""', one easily gets Eq. (2.9) with allowance of gener- 
alization of the formulae to a set of N operators &+, ij,. 
satisfying the commutation relation [ij,. ,ii,;' 1 = Sfl. 

APPENDIX 2 

We write sin(q,u;& in the form ofthe series (2.9). We 
consider a term such as 

where a i s  given in (2.20) while u: is connected with a;, ap 
through the formulae which follow from (2.2): 

h 

Since the operator Q acts to the right only on the nearest 
function, we have from (A2.1) 

C 

a 
[ q O ~ n ' ~ ] " + ' = [ q o ~ n ~ ( s " ,  a?') ] [ qoun( a4 + 7)] . . . 3% 

Using (A2.2) and (A2.3) we have 
N 

(A2.4) 

In that case 

.,. - - exp (-A,') sin ( q o u n o )  . (A2.5) 

Similarly 
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