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Formulas are obtained for calculating the effective anisotropic kinetic Hall and Seebeck 
coefficients. It is shown that the decrease of the anisotropy of both the electrical conductivity 
and the Hall effect can be described near the threshold by two new critical exponents, which 
characterize the transitions to the quasi-two-dimensional and quasi-one-dimensional states. 
The anisotropy of the thermopower is characterized by the same exponents as for the 
conductivity when the components have similar thermal conductivities, but at large thermal- 
conductivity ratios the anisotropy of the thermopower does not fall off on the nonmetallic side 
of the transition. The transition from the quasi-two-dimensional state to the two-dimensional 
state occurs at a two-dimensional threshold, while the transition from the quasi-one- 
dimensional to the one-dimensional state occurs at the punch-through threshold, which 
depends on the size of the sample. 

It is natural to begin a study of the galvanomagnetic and 
thermoelectric properties of anisotropic systems by consid- 
ering the simplest model of uniaxial anisotropy: a geometri- 
cally isotropic distribution of the components, one of which 
is characterized by a tensor 

while the other is characterized by a scalar cr, (a  is the an- 
isotropy parameter). 

The first paper on anisotropic percolation was the study 
by Shklovskii,' which was based on the model of a "single- 
core" superlattice in which a critical exponent R was intro- 
duced: 

where G :'(a, p )  and G;'(a, p )  are the effective normalized 
conductances along the directions of the coordinate axes; Y is 
the exponent of the correlation length, which characterizes 
the straight-line distance between sites of the superlattice for 
the case of an infinite cluster, g is the exponent of the macro- 

joining sites of the superlattice along the cluster. The 
main result of Ref. 1 is that the anisotropy falls off faster than 
the conductivity as the threshold is approached; here R > 0 
and depends only on the dimensionality of the space and not 
on the type of lattice or on the anisotropy parameter. It is 
known that in a three-dimensional space v3 = 0.8 and g3 = 1 
(Refs. 2 and 3), and therefore A, = 0.2 (the subscript gives 
the dimensionality of the space), whereas in a two-dimen- 
sional space Y, = 1.33 and 6, = 1 (Ref. 3 ), leading to a con- 
tradiction: A< 0. Kirkpatrick4 conjectured that no model 
that applies to a three-dimensional space and not to a two- 
dimensional space can be correct. However, the fractal mod- 
el that Kirkpatrick considers preferable suffers from the lack 
of a principal characteristic of disordered systems-the ele- 
ment of randomness, Renormalization-group calculations 

in the fractal model gave R2/v2 = 0.64 (Ref. 5) and A,/ 
Y, = 0.306, R3/v3 = 0.263 (Ref. 6); Vinogradov and Sary- 
chev7 obtainedR,/~, = 0.75 andR3 = 0.3; Straley8 calculat- 
ed R = 1 for a Cayley tree, which gives R = 3 in the high- 
dimensional limit. 

As we see from these published data, the estimated val- 
ues of the exponent R vary widely and are in need of refine- 
ment. The problem of the thermopower in metal-insulator 
composites was considered in Ref. 9. In Ref. 10 it was shown 
that the thermopower calculated in Ref. 9 is equal to the 
thermopower for a pure metal, and therefore the conclusion 
that the exponents of the anisotropy of the electrical conduc- 
tivity and thermopower is not justified. The problem of the 
Hall effect in composites has not been considered in the 
framework of percolation theory. In the present study the 
electrical conductivity and the Hall and Seebeck coefficients 
are calculated by the same computer program for a 
20 x 20 x 20 simple cubic lattice. The uncut and cut bonds 
were modeled with the aid of a random-number generator; 
the uncut bonds are assigned a conductivity according to 
formula ( 1 ). The system of Kirchhoff equations was solved 
for the potential differences along the x and y axes, and peri- 
odic boundary conditions were imposed on the other faces. 
The anisotropy parameter was varied over the range 
0.001 < a  < 1000. 

The Hall coefficients were calculated using Eq. ( 1 ) of 
Ref. 11, which is valid in weak magnetic fields in three-di- 
mensional space and in any classical magnetic fields in two- 
dimensional space1, (ol/cr2- oo ) and which in the aniso- 
tropic case assumes the form 

R "(a, P) 

where j(a,r) and jl(a,r) are the currenidensities obtained 
from the solution of the equation div[a(r)VU] = 0 with 
potential differences U, and Uy specified, respectively, at 
the boundariesx = 0, x = L, and y = 0, y = Ly of a parallel- 
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epiped with sides L,, L,, L,; &r) ,  R ( r )  are the local values 
of the conductivity and Hall coefficient, H llz is the magnetic 
field, and L, is the length of the sample along H. In a two- 
dimensional space the Hall coefficient can be expressed ex- 
plicitly in term of the conductivity [see Eq. (38) of Ref. 131, 
but in this equation an indeterminacy arises at ulXuly 
= u2,a2, and makes it inapplicable in the limit of strong 

anisotropy a,, -0, whereas Eq. (3)  is freefrom this short- 
coming and is more general. 

The thermopower was studied for composites with a 
tensor character of the thermal conductivity x ( r )  and with 
Seebeck coefficients a, and a, for components 1 and 2, but 
component 2, in contrast to Ref. 9, was described by the 
scalars u,#O and x,#O. On the assumption that the tem- 
perature field of the external source in the sample is not 
changed by the thermocurrents, formula ( 1) of Ref. 10 as- 
sumes in the anisotropic case the form (i = x, y j )  

a? "'(a, b, P) 

where jn,i (US) is the projection of the current density onto 
the normal to the intercomponent surface S; T(b,S) is the 
temperature on this surface (b = x,, /x,, ) as obtained from 
the solution of the system of Kirchoffs equations with 
boundary conditions T = TI at x = 0 and T = T, at x = L, ; 
L, is the length of the sample along the electric field. In the 
case when the anisotropy of the electrical and thermal con- 
ductivities are the same, this formula implies 

x$"(a, b, p ) /G ;ff (a, p )  -x  Jar 
a;5 (a, b, P) =at+ (az-ail 

x ii/uii- x*/u2 t 

The isotropic analog of this formula is also obtained in Refs. 
13 and 14. 

The calculated family of functions A(a,p) is shown in a 
log-log plot in Fig. 1. The property that the anisotropy de- 
creases as a -+ 1 is reflected in the fact that all the curves 
converge to the coordinate origin. As the concentration 

FIG. 1. The function A(o, p )  versus0 for various parametersp: 1 ) 0.36,2) 
0.4,3)0.5,4)0.6,5)0.7,6)0.8,7) 0.93,8) 0 . 3 4 9 0 3 6  10)0.4, 11) 0.5, 
12) 0.55, 13) 0.6, 14) 0.8. 

changes fromp, to unity and at small anisotropy, the func- 
tions A(a,p)  are straight line segments with slopes that 
change gradually from 0" to 45" for a > 1 and from 180" to 
225" for a < 1. As the anisotropy increases, two new regulari- 
ties appear: The curves flatten out, but they remain inclined 
to the abscissa nearp - 1. These features can be explained on 
the basis of an infinite-cluster model, but because there is at 
present a parallel development of several models in percola- 
tion theory, one naturally wonders which of them to believe, 
since each gives a plausible explanation for the decrease in 
anisotropy at the threshold. Each of the models was created 
for solving a definite group of problems. For example, the 
fractal model lends itself well to renormalization-group cal- 
culations, while the model of a single-core superlattice is 
suitable for calculations of the effective kinetic coeffi- 
c i e n t ~ , ' ~ , ' ~  magnetic alloys," etc. in cases where one must 
use local values to calculate an effective value. The value of 
these models is that they permit an asymptotic solution of 
many problems which would require a great deal of comput- 
er time, and in the anisotropic-conductivity problem they 
have provided a framework for the numerical calculation. 
The question of which of the models gives a good description 
of disordered systems must be answered by experiment, e.g., 
computer modeling. 

It is more correct to speak not of the topology of the 
infinite cluster in general terms but of the topology from the 
standpoint of some particular problem. Studies of the distri- 
bution functions of the contributions of the volume elements 
to the kinetic  coefficient^'^-*^ have shown that the electrical 
conductivity "sees" only the hot points (the bottlenecks 
between finite clusters of the conducting component) and 
"suspects" nothing of the active points of the Hall emf (the 
parts where the large longitudinal and transverse currents 
intersect), whereas both kinds of points participate in the 
Hall effect. Active points of the thermopower appear in the 
case when the thermal conductivities of the components are 
sharply different, and vanish when they become similar. Evi- 
dently, the other kinetic coefficients, for which the current 
percolation processes are nonuniform over the sample, also 
"see" their own singular points. Because the critical interval 
is small and the wide parts of the infinite cluster can change 
little on passage through it, all the changes are due to the 
singular points whose volume fraction goes to zero at the 
threshold and which are spaced a distance equal to the corre- 
lation length of the infinite cluster. The singular points can 
exist only because the wide segments which connect them 
into the superlattice do not contribute to the kinetic coeffi- 
cients. 

Figure 2 shows a schematic of the joint superlattice 
formed by the two superlattices of the longitudinal and 
transverse conductivities. Each of the latter contains its own 
hot points (the filled-in circles), and the macrobonds have a 
variable width. At the bottlenecks where their macrobonds 
intersect are the active points of the Hall emf (the open cir- 
cles). The joint superlattice for the conductivity, Hall emf, 
and thermopower contains at its sites the active points of the 
Hall emf and on its bonds the hot points of the conductivity, 
which coincide with the active points of the thermopower. In 
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FIG. 2. Schematic of the "backbone" of an infinite cluster. The horizontal 
and vertical hatching indicates the superlattices for the longitudinal and 
transverse current, the filled-in circles are the hot points, the wavy lines 
are the macrobonds at whose intersections (at the bottlenecks) are found 
the active points (the open circles). 

the case when there are no active points of the thermopower, 
the phase transition occurs without a superlattice. In com- 
paring the result of Refs. 18-20 with the older papers,2s3 it 
should be noted that the single-core situation is replaced by a 
hot-point resistance described by other critical exponents, 
but instead there is now no contradiction in connection with 
the dimensionality of the space: the model is valid for spaces 
from two to six dimensions (six is the critical dimensionali- 
ty). While Refs. 2 and 3 discussed only one side of the transi- 
t i o n , ~  > p,, for which all the other cited "backbone" models 
were also developed (the backbone is the part of the infinite 
cluster with the "dead ends" deleted), now a unified picture 
is obtained for both sides of the threshold. The "singular" 
points consist of component 2 below the threshold and com- 
ponent 1 above the threshold, and they are located in ap- 
proximately the same places. 

At the threshold there remains, in a finite volume, a 
single hot point, which then goes over from component 2 to 
component 1, and an infinite cluster forms. Here G zff (a, p )  
and G;'(U,~) are equal, since they are determined by this 
point. In the isotropic case the number of hot points grows 
with distance from the threshold, while in the anisotropic 
case a deformation of the superlattice occurs: the number of 
hot points grows more slowly for a > 1, since along the an- 
isotropy axis they become "cold" and go out of play, but for 
a < 1 they grow faster still. The increase or decrease in the 
number of hot points is due to a rearrangement of the current 
paths corresponding to the segments of the sloping straight 
lines which converge at the origin in Fig. 1, whereas the 
plateau effect is due to a stabilization of the current paths 
and to the fact that an anisotropic superlattice has formed. 
Because there is a scatter in the Joule heat evolved by the hot 
points, the closer one is to the threshold the faster the pla- 
teauing occurs-there are fewer hot points; conversely, the 
farther one is from the threshold the longer the rearrang- 
ment goes on-there is a larger number to choose from. We 
can introduce the limiting value of the aoisotropy param- 
eter, a,,,,, ( p) ,  beginning with which the anisotropic cluster 
is completely formed. We see from Fig. 1 that the curves in 
the first and third quadrants are asymmetric; this leads to 

two universal curves characterizing the transition to the 
quasi-two-dimensional and quasi-one-dimensional states: 

f i  ( P I  -1 + c o n s t ( p - ~ ~ ) ~ ~ ,  a>a,,,,(p), 
P )  - 1 - const ( P - p c )  'la, ~ < a ~ , , ~  ( p )  , ( 6 )  

where A,, = 0.45 * 0.1 and A,, = 0.15 + 0.1 are the expo- 
nents of the quasi-one-dimensional and quasi-two-dimen- 
sional transitions, respectively. In a two-dimensional space 
there is only one exponent A,,, but the number of anisotropy 
exponents increases with increasing dimensionality. The 
scatter in the value of A in the literature cited is due to the 
fact that A was calculated for small anisotropy (for example, 
in the renormalization-group calculations a = 1 is the point 
of stability of the solution), where there is no universal con- 
ductivity function and where a critical exponent should ap- 
parently not exist at all. 

Let us now return to the second regularity observed in 
the functions A (a, p )-to the fact there is no plateau at con- 
centrations close to unity. Such a change in the behavior of 
the curves might be due to internal causes, e.g., the appear- 
ance of a new threshold. For a-0 the two types of behavior 
of the curves are separated by a two-dimensional threshold, 
at which the transition from the quasi-two-dimensional state 
to the two-dimensional state occurs, while for a + UJ a new 
threshold appears, which, unlike the usual thresholds, is not 
universal, since it depends on the volume of the sample. 
When the volume of the sample goes to infinity, one can find 
a finite cluster consisting of component 2 such that the 
straight line joining the opposite contacts along the anisotro- 
py axis passes through the cluster. This means that the elec- 
trical current must bend around this cluster, and the influ- 
ence of the smaller conductivity, which leads to the plateau 
effect should show itself. Thus, in infinite samples, all the 
curves at concentrations less than unity are bounded and 
flatten out, while in finite samples there is a threshold which 
we shall call the punch-through threshold. At this threshold 
a transition from the quasi-one-dimensional to the one-di- 
mensional state occurs. Although this threshold is not uni- 
versal, it is important in physical effects which depend on the 
size of the sample: in thin films and inp-n junctions." 

The effective-medium has been developed 
only for an infinite sample. Furthermore, to use this theory 
one must solve a transcendental equation in concentration at 
every point in the intervalp, < p < 1. Only nearp- 1, where 
the linear approximation is valid, are explicit formulas ob- 
tained in the limit of strong anisotropy; the formulas ob- 
tained in all three of the papers cited agree to within con- 
stants: 

These formulas agree qualitatively with our calculations, al- 
though a quantitative comparison nearp - l cannot be made 
because our system lies above the punch-through threshold 
p,. Formulas (7) imply that at smaller anisotropies the 
functions A(a,p)  increase linearly with a. At larger a the 
curves flatten out, but the transition between the asymptotes 
of formula (7)  has not been obtained. It is known that the 
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effective-medium approximation gives a good description of = R ;'(a, ), and a formula analogous to ( 6 )  is valid: 
the kinetic coefficients over the entire range of concentration 
except the critical. Here again there is surprisingly good p) = iff (a ,  p ) lR,  (a7 p) 
agreement of the ordinates of the plateaus with the numeri- 
cal calculations over a wide range of concentrations, -1 I 4- const ( P - - ~ ~ ) ~ ~ I ,  a+w, 

0.5 < p < 1, i.e., where the linear approximation is no longer 1 - c ~ n s t ( p - p , ) ~ ~ ' ,  a+O, (9 )  

applicable. 
The anisotropic conductivity as a -. co is characterized 

by two mechanisms: one, which dominates for p < p,, con- 
sists of a transition between filaments and leads to a plateau, 
while the other, which dominates for p > p,, characterizes 
the conductivity along the filaments and can be described by 
an exact formula. For this we denote by N the number of sites 
along the directionsx andz and by k the number alongy. The 
probability that there is a line consisting of conducting sites 
along the anisotropy axis is pk, and in an area of N sites 
there are N 'pk such lines. The punch-through threshold oc- 
curs when N 2P,k = 1, and consequently, p, = N -'Ik. The 
following formula takes both mechanisms into account: 

Nearp, this formula describes a slope to the plateau that is 
smaller the closer the concentration to the punch-through 
threshold. 

The first question that arises in the problem of the an- 
isotropic Hall effect is how many independent limiting effec- 
tive Hall coefficients can be obtained in the case of a uniaxial 
anisotropy with conductivity tensor ( 1) and local Hall coef- 
ficients R,  and R, for components 1 and 2. It is easy to show 
that by virtue of the symmetry of formula ( 3 )  with respect to 
the x and y axes, one can obtain four limiting independent 
effective Hall coefficients: (R iff (0, p ) ,  R iff ( co , p )  ) when 
the magnetic field is parallel to the anisotropy axis, and 
(R '," (0, p ) ,  R Iff ( co , p )  ) when it is perpendicular to it. Be- 
cause only one active point of the Hall emf remains in a finite 
volume at the threshold for quasi-two-dimensional and qua- 
si-one-dimensional states, we have R ;iff (a, p, ) 

whereg,, = 0.2 + 0.1 andg,, = 0.1 + 0.1 describe the tran- 
sitions to the quasi-one-dimensional and quasi-two-dimen- 
sional states, respectively. 

In the isotropic case there are four exponents of the Hall 
coeffi~ient.'~ We shall call these exponents the first-order 
exponents, in distinction to g,, and g,, (and A,, and A,,), 
which we shall call the second-order exponents, because 
they describe a small correction to the kinetic coefficients. 
Figure 3 shows the concentration dependence of the Hall 
coefficients for quasi-one-dimensional and quasi-two-di- 
mensional systems; the curves imply that R ;"(a, p )  
>R;'(a,p) f o r a > l  a n d R P ' ( ~ , ~ )  > R ; ~ " ( U , ~ )  f o r a < l .  
The decrease of B(a, p )  can be explained with the aid of an 
anisotropic superlattice, as was done for the conductivity, 
only here one should add that the quasi-one-dimensional 
(i = 1) and quasi-two-dimensional (i = 2)  superlattices are 
characterized by their own exponents: v3i is the exponent of 
the correlation length, 13i is the exponent of the hot points, 
e3i is the exponent of the active points of the Hall emf, and 
m3i is the exponent of the active points of the thermopower. 
Because the first-order exponents do not vary with anisotro- 
py, the relationsZ0 among them become 

where f is the critical exponent of the Hall coefficient, h is the 
exponent of the thermopower, and d is the dimensionality of 
the space. 

In the quasi-two-dimensional case there is one more 
transition that occurs when the concentration reaches the 
two-dimensional threshold p,,: for p < p,, new critical ex- 
ponents arise for the first-order kinetic coefficients, while for 
p > p,, the familiar exponents of the two-dimensional prob- 
lem remain. This transition is also characterized by its own 
correlation length, which differs from the correlation length 
at the three-dimensional threshold. For p < p,, the current 

FIG. 3. Concentration dependence of the effec- 
tive anisotropic Hall coefficients R  i u ( a , p )  and 
R', ' (a ,p)  for a >  1 (a)  and a <  1 (b) :  1) 
R i K ( 2 0 0 , p ) ;  2 ) R i R ( I , p )  = R ; R ( l , p ) ; 3 ) R ?  
( 2 0 0 . p ) ;  4) Ryu(O.Ol,p);  5 )  R' , ' ( l , p )  
= R i R ( l , p ) ;  6 )  R;Iu ( 0 . 0 1 , ~ ) ;  7 )  

R ;lu(O.OO1, p ) .  
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FIG. 4. Concentration dependence of the effective anisotropic Seebeck 
coefficient aeu(a,b,p) : a = 0.033, b = 2; 2) a = 0.1, b = 2; 3) a = 30, 
b=0.5; 4) a =  10, b =0.5, u,/min (u,,,u,,,a,,) =0.01, x2/min (x,,, 
x,,, x , , )  = 0.05. 

flows mainly through two-dimensional clusters, and it is 
only at the hot points consisting of component 2 that it 
jumps over into the adjacent plane through the poorly con- 
ducting component-1 part. For p > p,, hot points of con- 
ducting component 1 form at these same places, and there- 
fore the correlation lengths (the average distances between 
these points) above and below the threshold are equal. 
Therefore, the difference in the exponents of the kinetic coef- 
ficients below and above the threshold are related to the ge- 
ometry of the singular points. This is especially pronounced 
in the Hall effect: for p < p,, the coefficient R iff (a, p) ,  
grows with increasing distance from the threshold, while for 
p >p, it remains constant'2s24 (see also curve 7 in Fig. 3b). 

Let us assume that the local electrical and thermal con- 
ductivities of components 1 are tensors of the type in Eq. 
( 1 ), while those of component 2 are scalars, as are the See- 
beck coefficients a, and a, of components 1 and 2. It was 
shown in Ref. 10 that the critical exponents of the thermo- 
power exist only in two limiting cases: when the thermal 
conductivities of the components are about the same, and 
when the thermal conductivities of the components are 
sharply different. In the first case the first-order expo- 
nents-those of the electrical conductivity and thermo- 
power-are equal, and their anisotropy exponents A,, and 
A,, are therefore also equal. In the second case the coefficient 
a'" (a,b,p) for p < p, is equal to a constant and does not 
depend on the electrical conductivity; therefore, there is no 

decrease of the anisotropy near the threshold. Forp > p, the 
thermal and electrical percolation begins, and these two pro- 
cesses cause the anisotropy at the threshold to decrease still 
faster. The problem of evaluating these anisotropy expo- 
nents requires additional calculations and remains an open 
question. Figure 4 shows the concentration dependence of 
the effective Seebeck coefficient ad(a,b, p) /  (a2 - a,  ). 
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