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The anomalous texture current in 3He-A, which does not fit into the framework of superfluid 
hydrodynamics, has the same nature as the chiral anomaly in (2 + 1 )-dimensional QED, 
where the magnetic field gives rise to a vacuum charge density. In 3He-A the role of the 
magnetic field is played by the texture of the orbital angular momentum vector of Cooper 
pairs. The current has its origin in the existence of an asymmetric branch of the spectrum of 
fermions which intersect the Fermi surface. The fermions occupying this branch have an 
uncompensated momentum which gives rise to a finite fermion vacuum current in the texture. 
The intersection of this branch with the Fermi surface leads to a finite density of states on the 
Fermi surface, and to the presence of a density of the normal component at T = 0, the 
magnitudes of which have been calculated for weak and strong twist textures. 

1, INTRODUCTION 

The low-temperature behavior of 3He-A exhibits a se- 
ries of peculiarities which strongly distinguish this fluid 
from such "classic" superfluid systems as He-11, 3He-B, and 
the electron pair fluid in ordinary superconductors (see the 
review article Ref. 1 ) . These peculiarities are tied to the exis- 
tence of zeros in the spectrum of fermionic excitations in the 
A-phase, which begin to manifest themselves for tempera- 
tures T( T, . One of such consequences is the anomalous 
current in 3He-A. 

For T = 0 the expression of the current in 3He-A, 

contains, in addition to the superfluid currentpv, usual for a 
superfluid (v, is the superfluid velocity, p the density of the 
fluid), also orbital currents. The latter are related to the fact 
that the Cooper pairs have an orbital angular momentum 
equal to fi  and are consequently subject to a rotational mo- 
tion around the vector of the direction of the angular mo- 
mentum 1. In the presence of a texture, i.e., a spatial variation 
of the vector 1, the rotational motions of the Cooper pairs 
stop compensating each other and a macroscopic orbital 
current arises. The second term in Eq. ( 1 ) is characteristic 
for any system with an angular momentum, whereas the 
third term in the current: 

jan=- (li/2m,) Col (1 rot 1) , (2)  

where C,, is close top, turns out to be anomalous: it does not 
fit into the framework of superfluid dynamics of a fluid at 
T = 0, since it violates both Galilean invariance and the mo- 
mentum-conservation law.' In order to reestablish these 
conservation laws one would have to admit the existence at 
T = 0 of a normal componentp, which could consist of exci- 
tations which accumulate in the texture because of the gap- 
less character of the spectrum.2 The existence of a nonvan- 
ishing density of states in the texture and with it of ap,  (at 
T =  0) was proved in the papers of Combescot and 
D~mbre. ' .~ 

Combescot and D ~ m b r e ~ . ~  have demonstrated that the 
spectrum of Fermi excitations near zero energy, in the pres- 
ence of a texture, is analogous to the spectrum of a charged 
Dirac particle in a magnetic field B, the role of which in the 
texture is played by curl 1 for more details see Sections 1 and 
2 of the present paper); the zeroth Landau level is located 
exactly on the Fermi surface, therefore the density ofstates is 
nonzero, since it coincides with the density of states on the 
zeroth Landau level. In addition, investigating the dynamics 
of excitations with zero energy, they have shown that in the 
low-frequency dynamics the normal component does indeed 
reestablish the momentum conservation law and Galilean 
in~ariance.~ 

While the appearance of the normal component 
p, ( T  = 0) has been cleared up, the physical reason for the 
origins of the anomalous current has remained obscure. In 
Ref. 5, where the so-called gradient expansion approxima- 
tion was used, the anomalous current was related to a nonre- 
movable topologically nontrivial singularity in the phase of 
the order parameter which is always present in 'He-A, and 
which leads to zeros in the spectrum of the Fermi excita- 
tions. However, the approximation itself loses its validity 
near the singularity. A similar approximation was used by 
Stone et a/.,' who related the anomalous current, in the pres- 
ence of a texture playing the role of a topologically nontrivial 
configuration of the boson field 1, to the appearance of a 
fractional fermionic charge in the presence of this field.' A 
major step forward was the paper by Ho et al." They deter- 
mined exactly the spectrum of the Fermi excitations in a 
topologically nontrivial texture (soliton). And observed the 
spectrum asymmetry that led to a nonzero excitation current 
at T #O. 

Later Combescot and D ~ m b r e , ~  by calculating the cur- 
rent variation, pointed out the possibility that the spectrum 
asymmetry leads not only to excitation current, but also to 
an anomalous current in the ground state. This hypothesis 
was proved in Ref. 9, where it was shown for the simplest 
structure curl 1\11 that the anomalous current is the conse- 
quence of the chiral anomaly well known in (2 + 1 ) electro- 
dynamics."'." Namely, parity violation in the spectrum of 
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charged Dirac fermions, which is produced in a magnetic 
field, leads in the case of 3He-A to a vacuum current directed 
along the "magnetic" field B = curl 1. This "chiral" current, 
made up by uncompensated momenta of particles located on 
a zero Landau level, is in fact the anomalous current (2).  

In this paper the chiral anomaly is considered in detail 
(see Sec. 3 ). In Sec. 4, the anomalous current is investigated 
for a larger class of textures, when the Dirac equation is no 
longer applicable. From the analysis of the Bogolyubov 
equation (using some properties of s ~ ~ e r s ~ m m e t r ~ ' ~ . ' ~ )  it 
follows that the chiral anomaly is related to a definite topo- 
logical characteristic of the spectrum which is preserved for 
a more general texture, namely to the presence ofa branch of 
the spectrum which intersects the Fermi surface. The vacu- 
um fermions on this branch of the spectrum at T = 0 form a 
normal subsystem in the superfluid 3He-A (in distinction 
from the superfluid subsystem of Cooper pairs), since this 
branch does not exhibit a gap. This subsystem has a finite 
density of states which is responsible for the nonzero normal 
component at T = 0. The quantity p, ( T  = 0 )  depends, 
however, on the details of the spectrum near zero. Its depen- 
dence on the "magnetic field" B is considered in Section 5. In 
Appendix A we discuss the symmetry of the Bogolyubov 
equation and the corresponding Dirac equation for fermions 
to it. The violation of this symmetry leads to the anomalous 
current in the vacuum. In Appendix B we prove, for the case 
of an arbitrary twist structure, and making use of qualitative 
theory of differential equations, that there exists a branch of 
the spectrum which intersects the Fermi surface and has no 
gap. 

1. TEXTURE AS A MAGNETIC FIELD FOR FERMIONS IN 'He- 
A 

The majority of the exotic properties of the A-phase of 
quperfluid 3He which distinguish this liquid from all other 
superfluid and superconducting Fermi systems is a conse- 
quence of the fact that the energy of the Fermi excitations 
vanishes at two points of the Fermi surface. The energy spec- 
trum of the quasiparticles in 3He-A is the same for fermions 
which spin "up" and "down" (see the review paper, Ref. 1 ) : 

where E is the energy of the fermions in their normal state, 
reckoned from the chemical potential p ;  k, is the Fermi 
momentum; 1 is the orbital angular momentum vector of the 
Cooper pairs; A, is the amplitude of the gap in the spectrum 
in the sequel we shall, for simplicity, use for E the ideal-gas 
approximation: E = k '/2m3 - p .  The spectrum ( 1.1 ) has no 
gap for k +  = k,l and k-  = - k,l on the Fermi surface. 

The zeros in the spectrum of the A-phase are topologi- 
cally stable and do not disappear for small deformations of 
the order parameter which take the fluid out of the A-phase 
state5: for generic deformations which lift the spin degener- 
acy, each of the zeros only splits into two 
(k + , ,k - , ,k - , ,k - , ), corresponding to the two spin projec- 
tions. Since we will only be interested in orbital currents, we 
fix the spin state of the A-phase, and therefore the quasiparti- 
cle spins remain outside our considerations. 

The zeros are also conserved for a spatially nonhomo- 
geneous order parameter, i.e., in the presence of textures. 
Therefore in the A phase there are always states with arbi- 
trarily small energy E and they determine the properties of 
the fluid for T<  A,. 

For quasiparticles with small energies E the texture of 
the vector 1 plays the role of an effective "magnetic" field.3.4 
For the case of a classical motion this is easily seen if one 
makes use of the Hamiltonian equations of motion of the 
quasiparticles'4 

For low-energy states we introduce the small parameter 
p = k - ek,l, where e = + 1, depending on the zero near 
which the excitations are considered. In terms of these mo- 
menta the equations ( 1.2) take the form 

The equations ( 1.3) describe the classical dynamics of rela- 
tivistic massless particles with charge e = + 1 and an aniso- 
tropic velocity tensor 

(we have neglected the higher powers ofp).  The vector po- 
tential A appears on account of the inhomogeneous shift of 
the momentum of the quasiparticle in the texture; we have 
also introduced the scalar potential A,, in order to take into 
account the superfluid velocity field v,: this leads to 
E- E + k-v, . The classical approximation is valid for values 
of p which are large compared to the reciprocal cyclotron 
radius (eB / f i )  ' I 2 .  For small momenta the quasiparticle dy- 
namics is governed by quantum mechanics. The wave func- 
t i o n ~  of the fermionic excitations in superfluid systems is a 
Bogolyubov spinor and is described by the Bogolyubov 
equation. 

2. THE BOGOLYUBOV EQUATIONS FOR PARTICLES IN A 
TEXTURE 

In 3He-A the particles with spin "up" and those with 
spin "down" are paired independently and therefore the 
model Hamiltonian can be written down separately for each 
of the spin projections. If \V,? is the creation operator for a 
particle with spin "up", then the BCS Hamiltonian for tri- 
plet pairing has the following form: 

After the introduction of the quasi-average for the operators 
with spin "up" 
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and similarly for spin "down," we obtain an effective Hamil- 
tonian, which is quadratic in Y, Y+, in which the spin index 
has been omitted: 

The diagonalization of (2.3) is achieved by means of 
the unitary transformation 

V = [u8(r ,  t)a8+veo(r, t ) a s + l ,  (2.4) 
8 

where a, a+ are the annihilation and creation operators of 
the Bogolyubov quasiparticles, and us,  v, form the spinor 

which is an eigenfunction of the Bogolyubov equation 

where we have introduced the operator 

The order parameter in 'He-A (more precisely, its orbital 
part) A, is a complex vector': 

where e , ,  e2, and 1 = e ,  X e, are the basis vector of the orbital 
coordinate system. 

In the texture the position of the basis vectors changes 
in space. The orientation of the basis can be defined by three 
functions corresponding to the three Euler angles, functions 
which we denote by A,/k,, A,/k,, @. Assuming that these 
functions are small, we have 

If momenta close to ek,l are important, then the operator V' 
in (2.6) may be replaced - iek,d, , and in the small terms in 
the antidiagonal one may set - id, = ek,. In this case the 
substitution of (2.8) into Eq. (2.5) leads to an equation of 
the Dirac type for massless anisotropic charged fermions: 

Here the Pauli matrices have been denoted by T in order to 
distinguish them from the o matrices corresponding to the 
usual spins of the quasiparticles, which are not considered 

here. The scalar potential in Eq. (2.9) equals A,  = tkFd, a, 
and the vector potential is A = (k,Gl,(r), k,Sl,,(r), 
k, ( r  ) ), corresponding to the classical limit ( 1 . 3 ~ ) .  Thus, 
the equation (2.9) is a natural generalization of the classical 
equations ( 1.3) to the quantum case (the distinction from 
the usual Dirac equation lies in the coefficient e in front of 
the second term 1. 

3. THE ANOMALOUS CURRENT IN THE WEAK TWIST 
TEXTURE 

The similarity between the equations for the fermions in 
3He-A and those of quantum electrodynamics suggests the 
existence of 3He-A of an effect similar to the chiral anomaly, 
which leads to the appearance of a current directed along the 
magnetic field in the fermion vacuum and thus to a violation 
of parity. We shall show that the anomalous current in 'He- 
A is related to just such a chiral anomaly. Since the sought- 
for anomalous current (2)  is proportional to l(l*curl I), we 
choose for simplicity a twist texture where curl 1111. In this 
case the magnetic field is directed along the z axis and the 
quantization of motion takes place in the transverse plane. 

We note that the equation (2.9) is valid only in the case 
when the reciprocal cyclotron radius (eB /ii) ' I 2  is sufficient- 
ly small, so that for the classical energy E in Eq. ( 1.3d) and 
for the operator 2 in Eq. (2.6) one may restrict oneself to the 
terms linear inp, i.e., when 

Substituting this equation into the square of the transverse 
momentum in the ground state, ( p: ) -CieB, we obtain the 
condition of validity of Eq. (2.9): 

We shall designate a texture for which this condition is 
satisfied as a weak texture. The opposite case of a strong 
texture, where 

will be considered in Section 4. The upper bound on B in 
(3.3) ensures the condition that the characteristic scale of 
variation of the texture exceeds the coherence length 
6 = iiuF/A(y 

After these remarks we find the particle current in the 
vacuum state which appears in a weak texture. Locally the 
"magnetic field" B created by the texture is constant, there- 
fore the problem reduces to a determination of the vacuum 
fermion current which appears as a result of a constant mag- 
netic field. We choose the vector potential in the form 

Since Bll;, the projection k, on the momentum onto the z 
axis - is a good quantum number, and after the substitution 
x = x exp(ik,z) the Bogolyubov equation (2.5) coincides 
with a (2 + 1)-dimensional Dirac equation for isotropic 
charged fermions placed in a magnetic field: 
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The charge of the fermions depends on k, and equals 

e (k,) =k,/kF=kl/kF, (3.6) 

which reduces near the Fermi surface to the old definition 
e = + 1. The fermion mass also depends on k, : 

The current in the direction of the magnetic field can be 
expressed in terms of the eigenfunctions of the Dirac opera- 
tor (3.5) as follows: 

Here S labels the two-dimensional states, and in the last 
expression the sum is extended also to positive energies Es. 
In a magnetic field with a gauge (3.4) a state S is character- 
ized by the momentum k,, and by the number n of the Lan- 
dau level. The energy spectrum of the Dirac fermions in a 
magnetic field has the form 

The eigenfunctions of the Hamiltonian (3.5) depend on the 
sign of eB: 

kg= exp (-iE,t)exp(ik,y) [ 0 (-eB) (i;2:7i1) 

where 0 is the step function, 2 = x - ky /eB, f, ( 2 )  are the 
normalized harmonic oscillator eigenfunctions with fre- 
quency a= leB I, f-, = 0, and the parameters a, and fl, 
have the form 

We note that a, andfl, vanish respectively for E,/M < 0 and 
E,/M> 0. This leads to a spectral asymmetry: the zeroth 
Landau level is present only for eB /ME < 0 (see Fig. 1 ). 

The spectrum of Fig. 1 exhibits the following proper- 
ties. First, it is symmetric with respect to charge conjugation 
C (see Appendix A)  : CE = - E, Ce = - e, i.e., it is invar- 
iant under the simultaneous substitution E+ - E, e+  - e. 
Second, there is invariance with respect to a combined time 
reversal TPM (Appendix A)  : e - - e, M- - M. Third, if 
one excludes the zeroth Landau level, the remaining spec- 
trum has an additional anomalous symmetry with respect to 
each of the operations E- - E, eB+ - eB, M +  - M sepa- 
rately. In (2 + l )-dimensional electrodynamics this corre- 
sponds to the conservation of two-dimensional spatial parity 
in the vacuum (Appendix A).  This parity is violated by the 
zeroth Landau level, which leads to the anomalous current 
both in 3He-A and in (2 + 1)-electrodynamics. 

FIG. 1. The spectrum of Fermi excitations in 3He-A in the presence of a 
twist texture and in (2  + I )-dimensional electrodynamics in the presence 
of a magnetic field. With the exception of the branch corresponding to the 
zeroth Landau level the spectrum is symmetric with respect to each of the 
transformations: E- - E, M -  - M, eB- - eB. The level with n = 0 
violates this symmetry. The violation of the eB- - eB symmetry leads to 
the appearance of the anomalous fermion current (2) in 3He-A, and the 
violation of the E- - E symmetry by the same level leads to the appear- 
ance of a nonzero charge density in the vacuum of (2  + I )-QED. Figure a 
corresponds to eB < 0; figure b corresponds to eB > 0. 

Let us consider the current (3.8). The contributions 
from the nonzero Landau levels to the current cancel on 
account of the odd character of the current under the substi- 
tution e-. - e. Therefore, only the parity-violating contri- 
bution from the zero Landau level remains, as a result of 
which there appears an uncompensated vacuum fermion 
current. For E<O, lu,/' contributes to the current, being 
nonzero for eB < 0 and M < 0, whereas for E > 0, lvol con- 
tributes, being nonzero for eB > 0 and M < 0. As a result, we 
obtain 

dk, 
j (k.) =-r sign (eB) 8 (-M) 5 - 1j012. 

2n 
(3.12b) 

Taking into account the fact that Jdk, I f ,  1' = leB I, we ob- 
tain 

j (k,) =- (e2B/2n) 0 (AM) (3.13a) 

and substituting into (3.12a), we get the final expression for 
the chiral vacuum current: 
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where p = k ;/3?rZ is the density of the 3He, in agreement 
with Eq. (2). 

The same spectral asymmetry leads to the appearance 
of a vacuum charge Q in (2 + 1 )-electrodynamics (see, e.g., 
Refs. 10, 11). The operator Q has the form 

where x is expressed in terms of the electron and positron 
operators: 

Then the excess vacuum charge 

appears on account of the violation of the same separate 
symmetry e -  - e, E -  - E, M -  - M  due to the zeroth 
Landau level. Only in this case it is important that the sym- 
metry under E- - E  is violated. As a result, the difference 
between the number of positive and negative levels is non- 
zero: 

N,-N,=-sign (MeB) , (3.17) 

and we obtain for the charge density 

(3.18) 
This expression is completely analogous to the expres- 

sion (3.18a), and the differences are related to the different 
physical definitions of the current in 3 H e - ~  [Eq. (3.8) ] and 
in (2  + 1)-electrodynamics [Eq. (3.14) 1, although the fer- 
mions are described by the same Dirac equation ( 3.5), and 
the anomalous current appears as a consequence of the viola- 
tion of the same symmetry. The expressions (3.13a) and 
( 3.18) would coincide if the matrix 7, were not present in the 
definition of the 'He-A current, Eq. (3.8). 

4. THE ANOMALOUS CURRENT IN AN ARBITRARY TWIST 
TEXTURE AND THE TOPOLOGY OF THE SPECTRUM 

We have determined the anomalous current (3. lb)  in 
the limit when the Bogolyubov equations (2.5) reduce to a 
Dirac equation and the anomaly coincides with the chiral 
anomaly in QED. In reality the result holds also in a more 
general case, since it is topologically stable and does not 
change under a weak modification of the Dirac equation. 
The anomalous current (3. lb )  is determined by the topol- 
ogy of the spectrum in Fig. 1. Indeed, the vacuum current 
(3.lb) can be obtained from simple considerations relative 
to Fermi occupation of levels. The levels with E<O are 
filled, levels which are below the Fermi surface, i.e., have 
M < 0. Each level in a magnetic field has the same density of 
states Y = 12eB 1/27 (taking spin into account) and there- 
fore the total momentum of the Fermi excitation equals 

b 

dk, to 1 j. 10)- J zkzvN<. 
- k r  

The expression (4.1 ) is different from zero if the number 
N ,  is different for positive and for negative k,, which is 
indeed true for the spectrum of Fig. 1. The branch of the 
spectrum which intersects the M axis (or the E axis) contrib- 
utes to Eq. (4.1 ) and this leads to Eq. (3. lb)  . Thus, for the 
existence of an anomalous vacuum current it is necessary 
that one or several branches of the spectrum should intersect 
the abscissa axis, and this property of the spectrum is stable 
under small deformations of the Dirac equation. The num- 
ber of intersections (more precisely, their algebraic sum) is 
thus a topological invariant. The particles which occupy this 
branch do not have a gap in the spectrum and therefore form 
a normal Fermi system, which carries a current even in the 
ground state. 

In the limiting case of a weak texture, when the Bogo- 
lyubov equation reduces to the Dipac equation (2.9) for an 
electron in a magnetic field, the passing through zero of one 
of the branches of the energy spectrum is a consequence of 
the supersymmetry of the Dirac equation in the case when 
the magnetic field is directed along one of the axes and de- 
pends on the other two coordinates: B, =By = 0, 
B, = B(x, y) ,  the branch being infinitely degenerate if the 
magnetic flux is infinite (see Ref. 13). 

Moving away from the limiting case we must take into 
account the fact that the operator (2.6) contains differentia- 
tions. We consider again the texture (3.4), (2.8) with 
@ = 0, when k, and ky are good quantum numbers, and b 
has the form 

At the same time we obtain from (2.5) in place of the Dirac 
Hamiltonian (3.5) the following Hamiltonian 

which no longer exhibits supersymmetry. We shall show 
nevertheless that the topological character of the spectrum 
of Fig. 1 is preserved in this case also, i.e., the number of 
intersections of the spectrum with the B axis is equal to one, 
and thus the anomalous current (3. lb)  does not change. 

For this it is convenient to go over in Eq. (4.3) to the 
momentum representation 

As a result of this the Hamiltonian (4.3) takes the form 

We consider first the case of a weak texture (3.2). In this 
case the term quadratic inp can be considered as a perturba- 
tion, so that the correction to the energy of the zeroth Lan- 
dau level equals 

and the energy of that level 

Eo=- (€4- 1 eBI/4m,) sign (eB)  (4.6) 

vanishes for C = - leB 1/4m, (Fig. 2) .  
Thus, in distinction from the erroneous assertion in 
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FIG. 2. Deformation of thespectrum in a weak twist textureon account of 
the deviation of the Bogolyubov equation from the Dirac equation. The 
spectrum is shown for eB < 0; the spectrum for eB > 0 is obtained by the 
substitution E-. - E, on account of charge conjugation (see Appendix 
A).  The branch of the spectrum corresponding to the zeroth Landau level 
intersects the Fermi surface for O = E* = - (eB 1/4m,. The topology of 
the spectrum does not change compared to Fig. 1,  therefore magnitude of 
the anomalous current (2) does not change. 

Ref. 9, no gap appears in the spectrum. Moreover, near zero 
the spectrum remains infinitely degenerate (there is a set of 
values of k, and k, for which Eo = 0),  just like the spectrum 
of charged particles in a magnetic field. This leads to a non- 
vanishing density of states for E = 0 and to a finite magni- 
tude of the density of the normal component for T = 0; 
p, ( T = 0) # O  (see the following section). 

We go over to the case of a strong texture (3.3) and 
verify whether as the field B is increased there does not ap- 
pear a bifurcation, leading to a change of the topological 
character of the spectrum. In a strong texture the term linear 
inp in the Hamiltonian (4.4) is small compared top2/m,, on 
account of the inequality (3.3). In this case one may use 
perturbation theory: 

H=HO+H', 
HO=zlW (p) -z2Biap, H1=c,zsp, (4.7) 

W(p) - - ~ + p ~ / 2 m ~ ,  B=c,eB. 

For convenience we have carried out a unitary transforma- 
tion of the Hamiltonian (4.4)-an isospin rotation by ?r/2 
around the r2 axis. The unperturbed Hamiltonian H O is su- 
persymmetric; indeed, there is a superalgebra with genera- 
tors Q, and Q,: 

Qt=HO, Qz--izsHO, {Q,, Qj)=6,(H0)2, i, j=l, 2, (4.8) 

where 

(H0)z=W2 (p) -BzdP2-~sB3W/ap. (4.9) 

On account of the supersymmetry the spectrum of the Ham- 
iltonian is symmetric under the transformation E+ - E for 
all t. Indeed, if there is a state $, with energy E, i.e., 
H O$, = E$,, then the state Q,$, has energy - E: 
Hoe2$, = - Q2H O$, = - EQ2$, . However, the unper- 
turbed Hamiltonian does not have a zero level for any 2, 
since the solution 

FIG. 3. The spectrum of E in the supersymmetric potential U- (Eq. 
(4.11)), formed in a strong twist texture. Each of the wells is harmonic 
and leads to an oscillator spectrum. The level with n = 0 in the right well 
has zero energy. Taking into account tunneling between the wells has the 
effect that the energy of this level becomes nonzero, albeit exponentially 
small. The spectrum is shown eB > 0; for eB < Oone must replacep by - p. 

is not normalizable, since it grows without bound either as 
p - GO or asp -. - m , depending on the sign of 3. Therefore 
the Witten c o n d i t i ~ n ' ~ * ' ~  is violated, according to which a 
zero mode exists if the superpotential W(p)  has different 
signs forp- UJ. In other words, supersymmetry is spontan- 
eously broken. Therefore, at a first glance, it might seem that 
the topological characteristic of the spectrum has changed in 
an extremely strong texture. We shall see, however, that this 
is only a property of the limit Hamiltonian H O. Switching on 
an interaction H I, no matter how weak, restores the charac- 
ter of the spectrum, i.e., the bifurcation occurs in the limit 
B -  m, which is never realized, on account of the upper 
bound (3.3) on B (See Appendix B ) .  

Let us find the value of t for which the energy vanishes. 
For this we consider the spectrum of the ~amiltonian H O for 
large negative Z. For this purpose it is more convenient to 
look for the spectrum E of the Hamiltonian (H012, Eq. 
(4.9), which reduces to the spectrum of the one-dimensional 
Schrodinger equation 

For large negative .F the potential U- represents a double- 
well potential with almost independent wells (Fig. 3), slant- 
ed on account of the weak "electric" field 3 :  U- = W2 - Pz 
( 5 > 0 i n  ~ i ~ .  3). 

Neglecting tunneling, the spectrum in each of the wells 
is given by 

and E = 0 is obtained to all orders of perturbation theory 
in 121- ', when the potential U- is expanded near the bottom 
of the right well (3 > 0). Since the energy of the zeroth level 
cannot be exactly equal to zero on account of the violation of 
the Witten condition, this means that the energy E of the 
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zeroth level is not analytic in reciprocal powers of 121 and 
consequently is exponentially small. On account of this the 
wave function $, near the right well can be taken as a solu- 
tion of the equation (4.11) for E = 0, i.e., 
(gap + W) go = 0, and the function can be continued to val- 
ues of p  for which $, still falls of on the left, i.e., to 
p- - (21E1)112 (m, = 1): 

I$~=C exp [- ( e p + ' / , p 3 ) / B ] ,  p>- (21 ~ 1 ) ' " .  (4.13a) 

On the other hand, far from the well, one may use for 
p  < (2161 ) ' I2 the WKB approximation: 

Since far from the well 

the expression (4.13a) and (4.13b) coincide everywhere 
where W>O and W2$-BW', i.e., the matching of the solu- 
tions (4.13a) and (4.13b) takes place practically in the 
whole region (2121) ' I 2  < p  < (2161 ) ' I2 .  

Substituting the wave function (4.13) into the energy 
functional 

and recognizing that the contribution to the energy from the 
region p  > - (2121 ) ' I 2  vanishes on account of 
(Bdp + W)$,  = 0 for p )  - (21~1) 'I2, we obtain that the 
contribution to the energy comes from the region 
p < - (2161 ) ' I 2  where the wave function (4.13b) is expon- 
entially small compared to $,(2121 ) ' I2 )  : 

Eo2 - - @ $  d p  4W2 ( 171 d p  I + I 2  
-m 

(~1-i )'IS 
2 ' 1 2  1 g r 1 1  - exp [- $ S d p ~ ? ]  - exy (- - -) . 

-(21Zl)~l: 3 B  

(The case ?j < 0 is discussed similarly.) This is nothing but 
the "instanton" exponential which describes the tunneling 
between the wells. The generic form of the spectrum of the 
Hamiltonian H is shown in Fig. 4, a. 

We now consider the influence on the energy of the level 
with n = 0 of a perturbation H ' to first order of perturbation 
theory: 

This supersymmetry-violating correction simultaneously 
moves both levels E(, = f (E ) ' I 2  down by the same 
amount for eB < 0 (or up for eB > 0), levels which before the 
perturbation were symmetric, and therefore the positive 
branch of the spectrum intersects the horizontal axis (Fig. 
4b), when E, +SEA = 0, i.e., for 

FIG. 4. The spectrum of Fermi excitations in a strong twist texture for 
eB < 0. a) The spectrum of Eq. (4.4) neglecting the term linear inp corre- 
sponds to the spectrum in the supersymmetric potential on Fig. 3. The 
supersymmetry ensures a twofold degeneracy of the spectrum of E 2,  i.e., 
symmetry under the interchange E- - E. However, the spectrum van- 

'ishes nowhere on account of the violation of the Witten condition, al- 
though for 2+ - m the energy tends to zero according to the law 
E oc exp( - ~s l~ / * /& .  b) Taking into account the small term linear inp, 
c, 7, p in Eq. (4 )  by means of perturbation theory has the effect that one of 
the branches with n = 0 intersects the abscissa axis. Thus, the topology of 
the spectrum in a strong texture is the same as in a weak twist texture 
(Figs. 1 and 2).  Therefore the magnitude of the anomalous current is 
conserved. The density of states is, however, different for the weak and the 
strong textures (see Eq. (5.3)) .  

Thus the character of the spectrum does not change in a 
strong texture. It is shown in Appendix B that the topology 
of the spectrum is preserved also in intermediate textures. 
Consequently, the anomalous current (3.13b) is conserved 
in any twist texture. 

5. THE DENSITY OF STATES FOR E=O 

The infinite degeneracy of the levels near E = 0 should 
lead to a finite density of states for E = 0 in any twist texture 
and, consequently, to a finite density of the normal compo- 
nent for T = 0. However, whereas the magnitude of the 
anomalous current does not depend on the details of the 
spectrum and is determined by its topological characteris- 
tics, the magnitude of the density of states depends on the 
details of the spectrum near E = 0 and therefore has a differ- 
ent form in strong and weak textures. 

Only the branch of the spectrum which intersects the 
horizontal axis contributes to the density of states at E = 0: 
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dk dk, 
N (0) = 2 j  $1 l xo (r-0) l 2  6 (Eo). 

Sincex, depends on x only via the combination R = x - ky / 
eB the integral with respect to ky of I x , ~  yields leB I, hence 

Substituting Eo from Eqs. (4.6) and (4.16) + (4.17), for 
weak and strong textures, respectively, we obtain 

N (0) = I  1 rot 11 f (q) /2n2, (5.3a) 

where 

q= 11 rot 11 upkp2/Ao2. (5.3b) 

For the case of a weak texture (1 ( 1) this result was 
derived in Ref. 4. Although the density of states grows rapid- 
ly in a strong texture (1% 1 ), it still remains small compared 
to that which appear in a texture where curl 1 is parallel to 1, 
when, according to Ref. 3, 

1 ~ P V F  N ( O ) = - -  
4n2 A. 

1 [l, rot 11 I .  

The contributions of the textures to the density of states be- 
come equal for 

i.e., in order to observe the strong non-analyticity created by 
the twist texture, the latter must be very pure, i.e., contain a 
small admixture of a texture of a different kind with 
lXcurll#O. 

A finite density of states N(0) must lead to a nonvanish- 
ing density of the normal componentp, ( T = 0) = k :N(O) 
and a linear specific heat C( T )  = N(0) T. 

6. CONCLUSION 

Until now the Co-anomaly (2 )  in the current, related to 
the existence of zeros in the quasiparticle spectrum, has been 
studied starting from an approximate description of the type 
of a gradient expansion (Refs. 5,6, 15). In that approach a 
fundamental role is played by the phase @(k,r) of the order 
parameter, which depends both on coordinates and mo- 
menta, 

A (r) k= 1 A (r) kl exp [i@ (k, r) ] (6.1) 

(in the general case of an order parameter which depends on 
spin this is the phase of the determinant of the order param- 
eter). In 3He-A this phase has a topologically nonremovable 
vortex singularity on the Fermi surface; going around this 
singularity on the Fermi surface changes the phase by 277, as 
a result of which in the core of this singularity the order 
parameter vanishes, and with it the gap in the excitation 
spectrum. This vortex singularity is not removed from the 
texture and leads to the anomalous current (3.13b), which is 
wholly concentrated in the core of the singularity (Refs. 5, 

1 
jan = -z kn(k, I) (6'.6'k-akar) (3 (k, r)  (6.2 

k 

(where n(k,r) is the quasiparticle distribution function), 
although at the singularity proper the gradient expansion 
does not work anymore. Near the singularity one must solve 
the exact quantum-mechanical problem of the quasiparticle 
spectrum near zero energy, a task which was accomplished 
in the present paper. Our results have shown that the result 
for the anomalous current was not changed. The topological 
invariant which had guaranteed the existence of an anoma- 
lous current in the gradient expansion (the accumulation of 
phase near the singularity) has been converted in the quan- 
tum-mechanical problem into a topological characteristic of 
the spectrum in the Bogolyubov-Dirac equation for fer- 
mions in a magnetic field, thus guaranteeing the existence 
(and texture-type independence) of the same current, but 
now in the form of a chiral anomaly. 

Although the correspondence of these two (in principle 
different) topological characteristics was established in this 
paper, the reason why one of them (the change of phase by 
277 on going around the vortex singularity) implies the exis- 
tence of the second (the number of intersections of the quasi- 
particle spectrum with the horizontal axis equals one) is not 
clear for the moment. Moreover, the gradient expansion 
leads to a complete expression ( 1) for the current in the 
texture, whereas in the quantum case considered here all 
quasiparticle levels with n # O  do not contribute to the cur- 
rent. Therefore, either the other terms in the current ( l )  
appear when one takes into account levels with high quan- 
tum numbers, i.e., in the quasiclassical approximation, or 
the expression for the current may be essentially different 
from Eq. ( 1 ), expression obtained by means of the gradient 
expansion, e.g., it could be nonlocal (see note added in 
proof). 

Further, the same topological characteristic of the spec- 
trum which ensures the intersection of one of the branches 
with the zero-energy axis also leads to a nonvanishing den- 
sity of states N(0) .  Here there is also a qualitative agreement 
with the result of the gradient expansion, which shows that 
the energy spectrum has the form 

E= (e2+bo2 [k, 11 2/kp2) 'A+'/zkV@ (k, r) . (6.3) 

In this case the energy vanishes on a two-dimensional sur- 
face, which leads to a nonzero density of states N(0)  and, 
consequently, to a nonvanishing density p, of the normal 
component for T = 0.2 

However, although the nonvanishing of N(0)  and 
p, ( T = 0 )  is in itself topologically stable, the magnitudes of 
these quantities are no longer topological characteristics (in 
distinction from the value of the anomalous current) but 
depend on details of the fermion spectrum near zero energy. 
Therefore the results for p, ( T = 0 )  in the exact quantum- 
mechanical problem turned out to be different from the re- 
sult predicted in the framework of the gradient expansion 
(N(0)  -B 2/A: for a twist texture). 

We note that in those superfluid phases in which the 
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zeros of the spectral gap are unstable with respect to small 
"stirrings" (deformations) (for instance, a polar or a planar 
phase), the fermion spectrum may in principle acquire a gap 
in definite textures, and in these textures the chiral anomaly 
must be absent from the current (on the magnitude of 
p, ( T  = 0) in the polar phase, see Ref. 17). 

The existence of an anomalous current carried by vacu- 
um fermions situated in the gapless part of the spectrum 
must lead to a reconsideration of the dynamics of 3He-A as 
T- 0. These vacuum fermions form an additional subsys- 
tem in 'He-A, the interaction of which with the remainder of 
the superfluid and with the excitations which form a normal 
fluid must still be investigated. In particular, one must deter- 
mine whether there exists a characteristic time T which sepa- 
rates the hydrodynamic (low-frequency) regime from the 
collision-free (high-frequency) regime at T = 0, when the 
gapless subsystem either manages, or does not manage, re- 
spectively, to follow the superfluid system. In the latter case 
the anomalous current becomes a dynamical invariant in the 
equation of superfluid dynamics, as discussed in Ref. 15. 

The authors express their gratitude to S. P. Novikov 
and S .  B. Khokhlachev for valuable discussions. 

APPENDIX A 

Symmetry in 'He-A and in (2+1)-QED 

The symmetry of the equations for the fermionic excita- 
tions of the vacuum, described by the spinor X, and for the 
bosonic variables A = k,S1, which describe the deviations of 
the order parameter from the equilibrium vacuum state 

is determined by the symmetry of this vacuum state. The 
following are the symmetry operations to which the vacuum 
state (A. 1 ) can be subjected. 

I. Com bined gauge-rotational symmetry U 'Ornb( l ) .  Each 
element 0, U,,, of this group is a combination of the rota- 
tion 0, U,,, by an angle a around the z axis with the simul- 
taneous gauge transformation U,,, of the fermions, which 
for the two-fermion order parameter (2.2) consists in multi- 
plication by exp(ia). The transformation 0, U,,, does not 
change the vacuum state 

Therefore, under such a transformation the Bogolyubov 
equation forx and the hydrodynamic equation for A do not 
change, whereas the variables themselves transform under 
,yornh ( 1 ) in the following manner: 

In the case when the Bogolyubov equation reduces to the 
Dirac equation (3.5 in (2 + 1 ) dimensions, Vomb ( 1 ) coin- 
cides with the normally defined rotations in the x( y-plane 
which are part of the Lorentz group. The conservation of the 
Noether current in 'He-A and in (2 + 1)-QED which fol- 
lows from invariance with respect to the continuous group 
vomb ( 1 ) corresponds to the conservation of the projection 

of the angular momentum onto the z axis. 
2. The parity F. The Cooper pairing in 3He-A occurs in 

the oddp-state, therefore parity P itself is not conserved, but 
only its combination with a gauge transformation Ur,*, 
which also changes the sign of the order parameter: 

P=PU,,2, PA(")=A('). (A.4) 

The variables x and A transform in the following manner: 

In (2  + 1 )-QED (3.5) the transformation F is a special case 
of Vomb ( 1), namely a rotation by an angle n-. The lack of 
correspondence between the definition of parity for A in 
3He-A and in QED is compensated by a change of sign of the 
charge in Eq. (3.6): 

3. Charge conjugation C, 

does not change the order parameter (2.2), according to Eq. 
(2.4). This transformation is completely equivalent to 
charge conjugation in QED, since under complex conjuga- 
tion the momentum k, of the spinorx changes into its oppo- 
site, which corresponds to a change of sign of the charge 
(3.6): 

4. Combined temporalparity. In 3He-A the symmetry with 
respect to the operation T of time reversal is violated, since 
the vacuum state (A. 1 ) changes under this transformation 
into its complex conjugate. However, time-reversal com- 
bined with a rotation 0 ",y T around the x axis: 

Under the action of 0 ",nd T the variablesx and A undergo 
the following transformations: 

TX (r, t )  = i ~ ~ x *  (r, -t) , 
TA(r, t)  =-A(r, -t), 

Te=e, 

0 ,"~  (r, I )  = i ~ , x  (Onxr, t) , 
OnXA (r, t )  =OnXA(O,"r, t) . 

5. Particle-hole symmetry, In going over the quantum elec- 
trodynamics (3.5) we can make use of yet another symmetry 
in 'He, which holds only approximately: the symmetry 
between particles and holes near the Fermi surface where SE 
is small. We denote the operation interchanging E and - E 

(orMby - M )  by P,; then for small I E J  g~, the symmetry 
T, breaks up into two separately conserved combined sym- 
metries: T, = TPM and P, = 0 ",.,, . Under the action of the 
transformation 

P2=0,"P, (A. 10) 
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the variables transform according to Eq. (A.9). For 
( 2  + 1 )-QED moreover, the fermion mass but not its charge 
is subject to a transformation (the latter being a scalar) : 

For those quantities which are invariant under M- - M the 
symmetry 0 3 s  exact. Under the transformation T2 

Tz=TP,, (A. 12) 

x and A transform according to the laws (A.8 ), and in QED 
we have in addition 

6. Spatial and temporal parities for (2+ 1)-QED. For mass- 
less fermions ( M  = O), 0 ",nd Tare separately conserved, 
and 0 3epresents ordinary parity in (2  + 1 ) -QED, since it 
corresponds to a sign change of one of the two space compo- 
nents. In the chiral anomaly it is exactly the parity 0 ",which 
is violated (this violation is also accompanied by a violation 
of Tor  P,, since the combined forms 0 ", and 0 7, are 
always conserved). Although for massive fermions 0 3 s  
not a symmetry of the Dirac equation, one might expect that 
in the fermion vacuum parity is conserved, i.e., that the spec- 
trum of the fermions is invariant with respect to eB- - eB 
[T-invariance, see (A.8)],  and separately with respect to 
E- - E ( CT-invariance). As can be seen from Fig. 1, the 
zeroth Landau level does not support this symmetry. This 
proves that the separate symmetries are violated in the vacu- 
um, among them P M .  Indeed, such characteristics of the 
vacuum as the susceptibility of the chiral current (3.18), 
(e2/4n-)signM changes sign under the substitution 
M -  - M. 

APPENDIX B 

Qualitative theory of differential equations for the 
Bogolyubov Hamiltonian 

In this Appendix we make use of the qualitative theory 
of differential equations to prove that there exists a solution 
of the Bogolyubov equations (4.4) with E = 0 for some val- 
ue of E ,  and that its solution exists for any twist texture. It 
will be seen from the arguments that this level is infinitely 
degenerate, since Z. depends on two well-defined quantum 
numbers k,  and k,: Z(k, ,k, ). The equation (4.4) has the 
form 

We introduce the complex-valued function w = u + iu. 
Then the eigenvalue equation takes the form 

qw'=Eiw+ (cp+iW)@, (B.2) 
w'=aw/dp, F=u-iv, W (p) =e+pZ/2. 

Writing Eq. (B.2) separately for the real and imaginary 
parts of the function w = r exp(ip) we obtain the system of 
two equations: 

qrl=t;pr cos 2q~I-  Wr sin 2q3, (B.3a) 

FIG. 5 .  The phase portrait o f  the system (4 .4)  asp2- m. The phase trajec- 
tory ( u (  p ) ,  u( p )  ) corresponding to a normalizable wave function x is 
shown schematically: arg(u + iu) = ?r/4 as p-  - m and 
arg(u+iu) = - 1 ~ / 4 a s p -  + m. 

qqf=E-cp sin 2q+ W cos 2q. (B.3b) 

In what follows we investigate Eq. (B.3b) since it involves 
the energy E. As regards the absolute value of the function w: 
I w I  = r, the requirement that the wave function should be 
normalizable can be satisfied by setting, e.g., 
p ( p =  - c o ) = T / ~ ,  p ( p =  + c o ) =  - - ~ / 4 ;  then 
r(  + co ) = 0. Indeed, the phase portrait of the dynamical 
system (B. 1)  forp2- co has the form represented in Fig. 5. 
We also note that Eq. (B.3b) is invariant under the transfor- 
mation p- - p ,p -  -p. 

We consider qualitatively the behavior of the solution 
of Eq. (B.3b), in its dependence on the parameters. For this 
purpose we introduce the function p,(E,d) = p( p = 0). 
Since p( p = - co ) = 77/4 is an unstable point, it follows 
that the solution of (B.3b) satisfying this boundary condi- 
tion is unique. One can prove the following obvious proper- 
ties of p,. 

1 ) For fixed C the function p, increases monotonically 
with E. 

2) For E = 0, with growing C the function p, increases 
monotonically. It is easy to show that for E = 0 

whence, on account of the single-valuedness of the solution 
of (B.3b) and the continuity of the dependence on param- 
eters, it follows that for f $0 there exists a single trajectory 
which for some C = E* passes through the point p, = 0. On 
account of the symmetry of Eq. (B.3b) with respect to the 
substitution p - - p ,  p - - p this trajectory automatically 
satisfies the boundary conditions at p =  +CO:  
p( + C O )  = - ~ / 4  (See Fig. 6).  

Thus, for any 5 #O there exists a solution of equation 
(B.3b) with E = 0. For f = 0 the point E* of intersection of 
the line representing the spectrum for n = 0 with the C axis 
goes off to - co , as shown in Fig. 4. 

Starting with Eq. (B.3b) we now calculate the point E* 

for which E = 0. We shall assume that f is sufficiently small 
and that E)11213 (see sec. 4) .  Then, forp < 0 we consider two 
regions in Eq. (B.3b). 
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( tg  cp+l+EIe) ( tg  cp-I-Ele) - '=e2~P1n.  03.9) 

Then, for E(5, p - - (215) ) 'I2, joining the solution (B.9) 
to the asymptotic solution q,( p - - rn ) = 71/4 we obtain 

E-la1 exp [ - l e l " q - ' O ( i ) ] .  (B. 10) 

In the argument of the exponential of (B. 10) we have writ- 
ten the order of magnitude O( 1 ) since one cannot determine 
the constant in (B. 10) by this method. For f = 0 the energy 
does not vanish anywhere, although it is exponentially 
small, which points to a spontaneous breaking of the super- 
symmetry. Thus, the point ( = 0 is a bifurcation point for 
the equation (B.3b). However, this point corresponds to 
B = and consequently, in a real texture the bifurcation is 
absent, and the anomalous current exists for all twist-tex- 
tures. 

Note added in proof (April 17, 1986). A more exact dis- 

FIG. 6. a )  c ZO. There exists a point E* where q, = 0. This implies the 
cussion, making use of the Atiyah-Singer index theorem for 

existence ofa level with E = 0. b) The point g = o is abifurcation point for an elliptic operator, shows that both curl terms in the cur- 
the Hamiltonian (B. l ). In this limit there is no level with E = 0 (see Fig. rent ( l ) are consequences of the chiral anomaly. 
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