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We study the problem of stochastic wave fields in first and second sound in superfluid helium 
when there is random pumping of wave energy. We find exact scale-invariant solutions of the 
kinetic equations for the pair correlators of the complex amplitudes in the stationary isotropic 
case. Using the solutions obtained we calculate the damping and dispersion of sound waves 
propagating in helium containing random wave fields. 

Following Ref. 1 we call an ensemble of interacting, 
mutually uncorrelated acoustic waves acoustic turbulence 
(AT). Let there be a source of wave energy (an instability 
mechanism may, e.g., serve as such) which produces har- 
monics with characteristic wave numbers of order k, .  As a 
rule the value of k+ will be of the same order of magnitude as 
the reciprocal size of the system, k+ Z L  - I .  Due to the non- 
linear interactions there occur in the system harmonics with 
larger values of k  and these, in turn, generate even higher 
harmonics. For very large values of k  of the order of k -  the 
viscous terms in the equations of motion come into play, and 
waves with momenta k  2 k -  are rapidly damped. Ultimately 
a wave distribution is established in k space and is character- 
ized by an energy flux from large- to small-scale motions. 
This scenario is typical of turbulent phenomena and, since 
we are dealing with sound waves, it is called AT. 

In the present paper we study AT in He 11, whose dis- 
tinctive feature is that apart from the interaction between 
waves described there is also a cross-interaction between 
first and second sounds. We obtain in the first section a sta- 
tionary scale-invariant solution of the kinetic equations 
(KE) for the pair correlators of the complex amplitudes 
(vide infra). In the second section we describe the acoustic 
properties of turbulent He 11. The last, third, section is de- 
voted to a discussion of the criteria used and to numerical 
estimates. 

We study the wave fields in Hamiltonian variables 
a; ( t )  which are alternatively called the complex sound am- 
pl i tude~.~ The upper index Y = + 1,2 identifies the wave 
mode, the minus sign indicates complex conjugation. The 
equations of motion of superfluid helium have in the vari- 
ables a; ( t )  the following form:" 

aakv/at-i sign v ( t iH/ t i~k -~)  =0, v=* 1 ,  2. (1)  

Up to terms of third order (which corresponds to the 
quadratic approximation in the equations of motion) the 
Hamiltonian H has the following form: 

v-1,2 v ~ ~ v ~ , v ~ - * l , Z  
(2) 

x 6 (x kj sign a) a8. 
j 

Here w; = c, k are the first and second sound frequencies. 

The quantities V ;: 2 2 are called the matrix elements or ver- 
tex parts (vertices) of the nonlinear processes. We shall not 
write down the cumbersome expressions for the quantities 
V;:  2;;: but merely note the fact, which is important for the 
following exposition, that they have the following identical 
structural dependence on the arguments k,, k,, k,: 

v,v,v. v t w *  kikz v,wv, kzk, V~Y:;= (kik2k8) 'la [ P I +Pz - + P ,  - ( 3 )  
kik2 kzks 

i.e., they are homogeneous functions of power 3/2. For the 
various forms of nonlinear processes we shall use the termin- 
ology introduced in Ref. 2. If two indices v out of three equal 
+ 2 we call such processes decay processes. If two of the 

indices Y are equal to * 1 we call the corresponding pro- 
cesses Cherenkov processes. Finally, if all indices are equal 
to 1 or to * 2 we call such processes nonlinear eigenpro- 
cesses in the first or second wavemode. 

The regular approach to describe random wave fields is 
based on Wyld's diagram technique3 which was developed 
by him for hydrodynamic turbulence. The canonical variant 
of this technique described in Ref. 4 is more convenient for a 
study of waves. Following Ref. 4 we introduce for the de- 
scription of random wave fields the following averages: the 
spectral density tensor n,';: and the Green tensor G;:;; 
which we define as follows: 

<a: a:>=n:::6 (ql sign vI+qz sign va), (4) 

< 8 a ~ / 6 f ~ ) = G ~ ~ 6  (q, sign vI+ql sign va).  (5)  

Here q = ( k , ~ )  is a four-dimensional wave vector, a,' is the 
temporal Fourier component of the complex amplitude a;, 
and f,' the Fourier component of the external random (Lan- 
gevin) force f (see Ref. 4). The renormalized quantities 
(taking the interactions into account) n,';:, G ,':,': satisfy a 
Dyson set of equations: 

VtVI VIV' V'V" v0'vI 
nq4m =Gq,(l* @q,q@l  Gql)m . (7)  

Here G& is the bare Green function equal to 
G& = (W - W~ + iyk sign v )  - ' where y; is the viscous 
damping. The mass operators 2,': 2 and @,": 2 can be written 
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in the form of the following diagram series 

The wavy lines depict n:; and the straight lines G l;j%. 
Assuming that there is a low level of nonlinearity and 

specifically requiring that the nonlinear frequency shift Aw; 
be much smaller than any of the frequencies, the Dyson 
equations can in the usual way be reduced to a set of KE for 
the quantities n; = $nl;b- vdw-the single-time correlator of 
the complex amplitude (see Refs. 4, 5).2' In the stationary 
and spatially homogeneous case the set of KE has the follow- 
ing form: 

WIYI YI n V I  n I dk,  dk2{Dt t r , (n t ,  nt.  -ntvnt, -nt"nt. ) 

Here 

Equations ( 10) are the same as the KE used to describe 
phonon systems (see Refs. 5, 6) with the difference that we 
have dropped spontaneous processes in them (formally be- 
cause n; ) f i )  . 

One can check in the usual way (see, e.g., Ref. 7) that 
Eqs. ( 10) have solutions of the form 

nr'=T/c, 1 k 1, nt2=T/c21kl, (12) 

where is a constant which has the meaning of a tempera- 
ture. The solution ( 12) is an equilibrium Rayleigh distribu- 
tion and is characterized by the absence of any fluxes (in k- 
space); it is accordingly not suited for a statement of the AT 
problem. 

1. NON-EQUILIBRIUM SOLUTION OF THE KE 

In a non-equilibrium situation the statement of the 
problem of finding the spectra n; assumes, apart from an 
equation, the presence of a source and a sink for waves. In 
general, the solution n; depends on the actual choice for the 
form of the source (and the sink). However, as often hap- 
pens, the regions where the source and sink are important 
are widely separated in k-space, i.e., k+ ( k - .  In that case a 
distribution n; which is independent of the shape of the 
source (and the sink) can be established in a range of wave 
numbers which is far from both k +  and from k -  (i.e., 
k+ ( k  & k -  ), i.e., in the so-called inertial range (IR). The 
role of the source and the sink is then reduced to some kind of 

boundary conditions which select from the ensemble of solu- 
tions those which guarantee that the flux of some physical 
quantities-in our case, the energy-is constant. 

The problem of finding the spectra is thus reduced to 
finding such solutions of the KE ( 10) which guarantee that 
the energy flux is constant. This problem is very complicat- 
ed, as it is connected with solving a set of nonlinear integral 
equations. Even in the simplest case of a single wave mode 
one can find an exact solution only in the isotropic situation 
and under very rigid restrictions on the form of the functions 
o;, V;:  I;: 2 ,  namely, under the requirement that these quan- 
tities are homogeneous functions of their arguments. This 
requirement, as well as the condition k+ &k- by virtue of 
which one can put k+ = 0 and k -  = ao , leads to the assump- 
tion of a seale-invariant problem, i.e., to the absence of char- 
acteristic scales for k.  This enables us to assume that the 
solution n, has a power-law form: n, = AK . The power 
index s is then evaluated using the so-called Zakharov-Kats- 
Kontorovich transformations (for details see Ref. 7).  Using 
these transformations the two last terms in the braces in Eq. 
( 10) can be reduced to the form of the first term with a factor 
which is a function of k,, k,, k,, and the parameters, i.e., the 
integrand can be factorized. One of the factors leads to the 
Rayleigh distribution n ,  a k - I, the other leads to a distribu- 
tion n ,  a K which is characterized by a nonvanishing ener- 
gy flux. In particular, Zakharov and Sagdeev' found in this 
way the AT spectrum in a classical fluid. They found that 
s = - 9/2 and evaluated the connection between the ampli- 
tude of the spectrum A and the power P of the source of the 
wave energy. 

Because of the presence of several kinds of nonlinear 
interactions in He I1 onercannot factorize the collision inte- 
gral directly. Nonetheless, we shall now show that the set of 
KE (10) has an isotropic scale-invariant solution of the 
form 

with the same power index s. 
To prove that statement we can proceed as follows. If 

we substitute the spectra ( 13) into the KE ( 10) and evaluate 
all integrals occurring in it the following important fact 
emerges. By virtue of the identical degree of homogeneity of 
all vertices V;:  I;: 1;: and also of the linearity of the dispersion 
w;, the external argument k occurs in all terms in the form of 
a factor k + ". As a result, after canceling k + ,", the KE 
reduce to a set of algebraic equations for the quantities A and 
B: 

The quantities X and Yare evaluated from the corre- 
sponding terms occurring in the KE; they are functions of 
the parameters. As the set of Eqs. ( 14), ( 15) is homogen- 
eous (in A, B )  it has a solution only for some well defined 
values of s which play the role of eigenvalues. We show be- 
low that the values = - 9/2 is an eigenvalue and give rea- 
sons that other values ofs lead to spectra which do not satisfy 
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the requirement of scale invariance. 
We write down the terms in the set of KE ( 10) corre- 

sponding to decay processes (from our exposition it will be 
clear that for the Cherenkov processes a similar situation is 
realized). Denoting them by J 12', J 2 I 2  wh ere the first upper 
index denotes the number of equations and the two others 
indicate the form of the process, we get 

We consider the second term in Eq. ( 17). The conservation 
laws occurring in the factor D if&, require that the following 
conditions hold: 

Similarly the conservation laws in the integral J lZ2 have the 
following form: 

In Figs. 1 a,b we draw triads of vectors satisfying (18) 
and ( 19) and we choose the triangles to be similar ones. We 
turn the triangle q,kq, so that the direction of k is the same as 
the direction of k, of the first triangle kk,k, (Fig. 2) and we 
extend it by a factor k /k, after which the two triangles coin- 
cide. These operations are equivalent to a formal change in 
variables of the following form: 

Using the substitutions (20) and the homogeneity property 
of the quantities V;:  :;;: and w:n; we reduce the term we 
study to the following form: 

The second integral term in Eq. ( 17) thus differs from 
J lZ2  in ( 16) by a factor (k  /k, )' + 2" in the integrand. Similar 
calculations lead to the result that the first term in ( 17) takes 
the form of J l Z 2  with a factor (k  /k2)' + 2s under the integal. 
Then multiplying ( 16) by c, and ( 17) by c, and adding them 
we get 

a 

FIG. 1 

FIG. 2 

One sees easily that if 8 + 2s = - 1 (i.e., ifs = - 9/2) the 
first square bracket in (22) is the same as the argument of 
the frequency 8-function occurring in D Kk2 so that the inte- 
gral vanishes. Thus, irrespective of their dependence on the 
amplitudes A and B of the spectra, when s equals - 9/2 the 
quantities J lZ2  and J212 are connected by the following rela- 
tion: 

c,J~~~+c,J~ '~=O.  (23) 

In particular, if we choose the relation between A and B such 
that J lZ2 vanishes, J212 must also vanish. As a result the con- 
tribution to I,", from the decay processes in both Eqs. ( 10) 
vanishes. Contributions to the collision integral from non- 
linear processes "inside" each of the wave modes vanish au- 
tomatically when s = - 9/2, as the situation is completely 
analogous to AT in classical fluids described in Ref. 1. 
Therefore, by a choice of the relation between A and B (and 
putting s = - 9/2) we can make both collision integrals I: 
vanish, in other words, obtain a solution of the form ( 13) for 
the KE. The connection between the amplitudes A and B of 
the spectra can be established using either of the Eqs. ( 14), 
(15). The results of the calculations are shown in Fig. 3 
where we plot the ratio A /B as function of the temperature 
T. We draw attention to the fact that the ratio A /B is close to 
the value 4 ( 2 ~ , / ~ , ) ~ / ~  (the latter is shown in Fig. 3 by the 
dashed curve). One can give this fact the following physical 
explanation. Calculations show that the contribution to the 
quantities X, Y [see ( 14), ( 15) 1 from the decay processes is 
much larger than that from the Cherenkov processes. How- 
ever, it was shown in Ref. 2 that in the decay processes a 
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single first sound quantum with momentum k decays into 
two second sound quanta with momenta k,, k, while k,, 
k , z  (cl/2c2)k. As to order of magnitude the following rela- 
tion holds: n l (k)  ztn2(c,k /2c,), whence we get 2A / 
B z  ( 2 ~ , / c , ) ~ / ~ ,  if we take into account that n:, n: cc k 912. 

We show schematically the first and second sound spec- 
tra as functions of the quantity k (Fig. 4). Region I is the 
region where the source has an effect, and in region I11 the 
effects of the viscous damping of the waves are important. 
Region I1 is the inertial range in which the spectra found 
above exist. 

We estimate that energies E', E' stored in the wave 
fields: 

The cutoff of the integral is at the size k+  ( z L  - ') where L, 
we reiterate, is the size of the system. Similarly, we have for 
second sound E, = 8nc2B /k I+ . The ratio of the energies E' 

and E~ is equal to = : 4 ( 2 ~ ~ / ~ , ) ' / ~ ,  i.e., the energy stored 
in the second, softer mode is appreciably larger than the en- 
ergy of the first, more rigid sound. This is a peculiarity of the 
non-equilibrium distribution as these energies are equal for 
the Rayleigh solution (12), in accordance with the energy 
equipartition law. 

We consider the problem of energy fluxes in k-space. 
The set of Eqs. ( 10) conserves the total energy E = E' + 
and as a consequence can be written in the form of a contin- 
uity equation in k-space for the spectral density E, . In the 
stationary case which is of interest to us this equation has the 
following form: 

Here P, is the energy flux vector. On the right-hand side of 
Eq. (25) we introduced the source of the wave energy con- 
centrated at the origin k = 0. By analogy with electrostatics 
one finds easily that P, = (P /4nk ,) k/k. The absolute mag- 
nitude of the spherically normalized energy flux 
p, = 4nk 'IP, I is then independent of the vector k which 
means that the total flux through any surface surrounding 
the origin is constant. To obtain the connection between the 
amplitudes A and B of the spectra and the power of the 
source Pi t  is necessary to express p, in terms of the collision 
integrals. To do this we multiply the first of Eqs. (10) by 
4nclk and the second one by 4nc2k and add. Changing to 
the isotropic case and writing the sum in divergent form we 
get 

FIG. 4 

Here I,", are the collision integrals taken without the factor 
k It is clear that when s = - 9/2 the quantity P ,  is 
independent of k, i.e., the solutions found for the spectra n: 
guarantee that the energy flux is constant. To obtain the 
connection between the quantities A, B, and P i n  which we 
are interested we must resolve the undetermined expression 
{}/(9 + 2s), where {} is the expression in the braces. This 
uncertainty can be resolved by puttings different from - 9/ 
2 and then letting the expression 9 + 2s tend to zero. Separ- 
ating the contributions from the different forms of nonlinear 
processes we get 

For the sake of simplicity we have here again restricted 
ourselves to the decay processes. We consider the integral 
term in (27). The integrand contains the product of the two 
square brackets. The first of these vanishes (when s = - 9/ 
2) on the resonance surface given by condition (19). The 
second bracket vanishes by virtue of the fact that the connec- 
tion between A and B was chosen such that the collision 
integral I,', vanished (videsupra). Therefore, if the quantity 
s differs little from - 9/2 the integral expression is propor- 
tional to (9 + 2 ~ ) ~  whereas the denominator contains 
(9  + 2s) to the first power. As a result the contribution to 
the total energy flux from the cross interaction vanishes, i.e., 
notwithstanding the general state of non-equilibrium of the 
system, the "gases" of the first and second quanta are mutu- 
ally in equilibrium. As to the contributions to the energy flux 
from the nonlinear eigenprocesses, for them calculations 
show that the following relations hold: 

p k ' m ~ 2  ( 6 a i 2 ~ , l p ) ,  P L ' ~ B '  ( ~ ~ Z I C Z P ~ ~ P ~ ) .  (28) 

Here a,, a, are the coefficients of the first- and second-sound 
non-linearities (see, e.g., Ref. 8)  which are defined by the 
following relations: 

d In c, 
ai=l +- a z = -  

d l n p  ' (29) 

The sum of the expressions p k, Pt  is the total energy 
flux along the spectrum. Knowing the ratioA /B we can thus 
express the spectral amplitude A ( or B) in terms of the 
power P of the source. 

Concluding this section we discuss the problem of the 
uniqueness of the solutions found by us for the spectra 
n, z k -912.  Generally speaking, by virtue of the non-linear- 
ity Eqs. ( 14), ( 15) can have other eigenvalues of s which 
differ from - 9/2. However, one sees easily that in that case 
the energy flux F ,  cc k + '" depends in an essential way on k. 
As a result when investigating the connection between the 
spectral amplitudes A,B and the power P of the source we 
must introduce the external turbulence scale k+ which con- 

1189 Sov. Phys. JETP 63 (6) ,  June 1986 S. K. Nemirovskil 11 89 



tradicts the original assumption of scale invariance of the 
turbulence. 

2. ACOUSTIC PROPERTIES OF TURBULENT He II 

He I1 in which AT has been excited possesses acoustic 
properties which are different from those of the unperturbed 
liquid. Indeed, any sound wave propagating in turbulent he- 
lium will interact with the developed wave fields. The result 
of this interaction is an additional damping r and dispersion 
A. We evaluate these quantities. 

Assuming that the wave vector k of the external wave 
belongs to the inertial range (k+ 4 k 4  k- ), the required 
quantities are equal to the imaginary and real parts of the 
mass operator 2," = 8:q- ' evaluated on the mass surface 
w = w; [see (6) ,  (8)  1. The evaluation of the quantities Z; 
will be performed in first order of perturbation theory, i.e., 
we restrict ourselves to the first loops in the expansion (8).  
Taking higher orders into account will be done at the end of 
the section. 

We give first of all the calculations for first sound. The 
mass operator Xi is represented by the following loop: 

The analytical expression for this diagram has the following 
form: 

2: = I v:::: 1 'n:: G," dkpt d'fi. 
v,,vl-*1.2 

(30) 

Here n,' = n:q- ', G ,' = G :q-v. We consider the contribu- 
tion to Xi due to the interaction of the external wave with the 
wave field of a first sound wave. By analogy with the colli- 
sion integrals we denote this contribution by 2;". When we 
attempt to evaluate X:f2k using the "bare" Green function 
G& there arises the "standard" difficulty which appears, 
e.g., when one evaluates the damping of sound in a system of 
phonons with a linear dispersion relation (see Refs. 6, 9).  
This difficulty is related to the fact that for such systems 
resonance conditions are fulfilled for collinear vectors due to 
which the argument of the Green function 
w: - w:, - w: - ,, vanishes identically, whereas at the same 
time the phase volume of the integration also vanishes. The 
uncertainty is resolved when one takes interactions into ac- 
count due to which the S-function (the imaginary part of the 
bare Green function) is replaced by a narrow Lorents profile 
with width =: I X: I .  Referring to Ref. 9 for details of the cal- 
culations we give the final result: 

tit- ai2A k 
A k  --- c t  k 

In -. 
n2p k," I Zkt I 

(32) 

Here I'iL1, A:'' are the damping and dispersion of the first 
sound caused by the interaction with the wave field of the 
first mode. In evaluating (3  1 ) and (32) one has used the fact 
that the spectra n: = Ak - 9 f 2  and introduced a cutoff on the 
integrals at the lower limit k+  ( =:L - I ) .  

We find thus that a wave propagating in turbulent heli- 

um undergoes additional damping, proportional to k, and a 
dispersion the role of reduces by virtue of the linear depen- 
dence on k to a renormalized velocity, i.e., Ac:" = AF1/k. 

We now consider the contribution to 2: due to the de- 
cay interaction of the external wave, i.e., we put v, = 2, 
v2 = 2. The values v, = - 2 or v, = - 2 are forbidden by 
the conservation laws. In this case without fear of contradic- 
tions we can for the evaluation of C.? substitute the bare 
Green function. The damping r? is expressed by the fol- 
lowing relation: 

(33) 
The calculation of the integral reduces to integration 

over the resonance surface which is the ellipsoid 
cllkl = c21kll - c21k - k,I.Thequantities Ik,J, ( k  - k,l are 
here close to the value c,k /2c2. Integrating and neglecting 
terms of order (c,/c,)~ in relation to the others we find that 
the damping l?p is equal to 

Here 
n 

(ap)= J (a,-cos2 0) 2 d cos 0, 

I ( a 2 p / a ~ 2 ) ,  Pn P n P  3~n-I +- where a, = - - - - - ( a p  1. 2 (aT /ao) ,  2p. 2p. 

We turn to the evaluation of the contribution of the 
decay processes to the first-sound dispersion AF2 = Re ZF2. 
The analytical expression for A? has the following form: 

The integral in (35) must be understood in the sense of a 
principal value. Close to the resonance surface the integrand 
has a singularity of the ( k  - k,, ) - I  type with different 
signs on both sides of the surface of the resonance ellipsoid. 
Nonetheless the integral does not vanish, owing to the pres- 
ence of the fast decreasing function n:, c k , 9'2. We esti- 
mate approximately the dispersion A?, neglecting the de- 
pendence of the matrix element V:Ek _,, on direction, i.e., 
putting Vt i fk l  = const (klk2k3) ' I 2 .  In that case one can per- 
form the integration analytically over the angle between k 
and k,. As a result of the integration the (k  - k,,, ) - ' type 
singularity splits into two logarithmic type singularities; the 
integrand as function of Ik, 1 takes the form shown schemati- 
cally in Fig. 5. The main contribution to the integral comes 

FIG. 5 
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from the infrared region k, 4 0  and also the regions near 
k ; , k ;'. The first region leads to the following (order of 
magnitude) expression for 'A:22: 

The role of that part of the dispersion reduces to a renormal- 
ization of the sound speed A c ' ~ ~ ,  where A c ' ~ ~ ) ~ " ' .  

Estimates made for the regions close to k ; , k ; lead to 
the following result: 

The non-linear decay processes thus lead to additional 
damping and dispersion which has a square-root depen- 
dence on the wave number k. 

The contributions from the Cherenkov processes to the 
quantities r:, A: are evaluated in a similar way. Qualitative- 
ly the results are similar, i.e., additional r:I2, A:'' propor- 
tional to k 'I2. However, quantitatively these corrections are 
much smaller than the decay ones, formally because the 
Cherenkov vertices are small and also the phase volume for 
integration is small in the processes 

We turn to the problem of evaluating the correlation 
characteristics of second sound. By analogy with first sound 
there are here contributions to the damping rp2 and to the 
dispersion AF2; these contributions are connected with non- 
linear processes "inside" the second sound mode: 

Therefore, as in first sound, there is linear damping and dis- 
persion, the role of which reduces to a renormalization of the 
sound speed. 

Similarly to first sound, the cross-term nonlinear pro- 
cesses contribute to the damping and dispersion proportion- 
al to k 'I2. However, these contributions are small compared 
to T y ,  A?. We consider, e.g., decay processes. The mass 
operator Z:I2 consists of the following diagrams: 

The first graph contains the Green function 
G i, + ,, = (w; + w:, - w: + ,, ) - I .  The corresponding res- 
onance surface is almost a sphere with cross section cc (c2k / 
c,)'so that the integral is small because that factor is small. 
A similar situation occurs for the second diagram and also 
for the Cherenkov processes. 

We briefly summarize the results. A first sound propa- 
gating in turbulent helium undergoes damping and disper- 
sion caused by the interaction with the wave fields. The lar- 
gest contribution comes here from the decay processes due 
to which the quantities T: and A: have a square-root depen- 
dence on the wave number k and can easily be observed ex- 

perimentally. The damping and dispersion of second sound 
are first and foremost due to nonlinear eigenprocesses in the 
second mode. The quantities T': and A: are then linear in k 
and can also easily be distinguished from the normal viscous 
damping a fk2. 

We now consider the omitted higher order diagrams in 
the series ( 8 ) , ( 9 )  for 8,', @,'. We write, e.g., down the dia- 
grams of second order in the square of the interaction ( V I 2  
for the operator 8,': 

(39) 
It is clear from (39) that taking higher order diagrams into 
account reduces normally to a greater complication of one of 
the vertices. We give estimates for the more complicated ver- 
tices. We consider as example the case when the vertex 

is made more complicated in the following way: 

The analytical expression for the more complicated vertex 
A V " I  has the following form: 

To estimate the integral we use the fact that due to the pres- 
ence of the 8-function S(q - q, - 9,) the momenta k, and k2 
are "clamped" to the direction of the vector k (Fig. 6). The 
n i n  contribution to the integral comes from the resonance 
surfaces-regions where each of the factors in the denomina- 
tor vanish. These regions are Cherenkov spheres (see Ref. 2) 
which touch one another. The integral over each of such 
surfaces is a quantity of the order of the Cherenkov damping 
rkz2, while at the same time the other bracket in the denomi- 
nator gives a factor of the order l/w:. We have thus for the 
correction AVL:,? to the vertex V::jk2 

FIG. 6 
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The situation described here is typical for the cases when 
either the vertex V ' I '  ( VZ2') is made more complicated by 
another sound mode taking part, or when the decay and 
Cherenkov vertices are made more complicated. As a result 
the relative correction to the listed vertices does not exceed 
the quantity { = T;/w; < 1 where rl; is the total nonlinear 
damping while the series (8), (9) are expansions in the small 
parameter {. 

We now consider the case when the vertex V ' I '  is made 
more complicated by the ni, G i lines of first sound. In that 
case the calculations made to estimate the quantity A Vgf, 
are invalid as because of the linearity of the dispersion law 
the resonance surfaces are the same and merge into a narrow 
"tube" close to the vector k with a width which is deter- 
mined by the damping T. An estimate of the integrals such as 
(41 ), where we make the substitutions w2 -a1, VH2-V1" 
performed in the spirit of Ref. 9 shows that the relative cor- 
rection A V "'/V I" to the vertex V ' I '  equals 

Here TL1' is the first sound damping due to the non-linear 
eigenprocesses in the first mode, TL the total nonlinear first 
sound damping. As we have already mentioned the main 
contribution to r: comes from the decay processes and 
hence the ratio T:''/T: is small and with it also the correc- 
tions to the vertex. An exception in that sense is the vertex 

the relative correction A V 2 2 2 / ~ 2 2 2  to which is a quantity of 
order unity. Formally this follows from the fact that the 
main contribution to the damping comes from the eigenpro- 
cesses in the second-sound mode. This correction is, how- 
ever, small at temperatures T, where the second sound non- 
linearity coefficient a, [see (29)]  is small, i.e., near 
T, = 0.95 K ,  T, = 1.88 K .  Thus, in the vicinity of these 
temperatures the terms dropped in the expansions (8),(9) 
when the KE were derived contain small corrections which 
justifies the application of the KE method. 

It seems that in the other temperature regions, where a, 
is not a small quantity, there are also the grounds for using 
the kinetic equations to study stochastic wave fields. We ex- 
pound our considerations basing ourselves upon a qualita- 
tive theory of turbulence of waves with a linear dispersion 
law (in ordinary liquids), which was developed in Refs. 10, 
11 where it was shown that stochastic waves have a tendency 
to form separate narrow tubes ("jets") in k-space. A spec- 
tral distribution for the energy density E, of the form 
.ck a k -' is established inside each jet. The difference from 
the Zakharov-Sagdeev spectrum (E, a k -3/2) arises be- 
cause in each jet there is established a rigid correlation 
between the phases of the different harmonics and leads in 
the r-representation to a steepening of the wave profile and 
the formation of shock fronk3' Quantitative estimates given 
in Ref. 11 show, however, that the characteristic time for the 
formation of discontinuities rdisc, which gives a criterion for 

the time to establish correlations, is comparable to the char- 
acteristic time rkin following from the KE and serving as a 
criterion for the time in which the phases are ran- 
domized. The problem of three-dimensional turbulence of 
acoustic waves in classical liquids remains thus open. ' ' 

The situation is changed in He I1 where there is an addi- 
tional wave mode. Coherent wave processes of the cross in- 
teraction between the sounds are characterized by times rCoh 
which are considerably shorter than the kinetic time rkin 
(this is a consequence of Aw; 4 4  ) and, hence than the time 
to form discontinuities rdisc in the separate jets. As a result 
the nonlinear interaction "inside" the wave modes leading to 
the occurrence of discontinuities proceeds more slowly than, 
say, the decay of a wave or Cherenkov emission. The cross- 
term processes themselves do not prevent the randomization 
of the phases as the interaction of the waves proceeds at an 
angle. Formally this is reflected in the fact that the further 
complication of the vertices with the participation of both 
modes changes the bare vertex weakly. As a result the pro- 
cesses leading to the phase randomization dominate and this 
justifies the application of the KE method. 

3. CRITERIA, NUMERICAL ESTIMATES 

In the calculations performed above we used a number 
of parameters the relation between which is important for 
the operation of the calculations; we enumerate them. 

1. The nonlinear frequency shift Aw; (equal to the non- 
linear damping T; and also to the reciprocal of the time for 
the kinetic processes r;:) is much smaller than the frequen- 
cy of the sounds4' o;. 

2. The viscous boundary of the inertial range (IR) k- is 
much larger than the reciprocal of the size of the system L - ' 
( z k , )  (the region where the source has an effect), 
k +  4k-.  

3. The viscous damping y; is much smaller than the 
nonlinear damping T; . 

4. The characteristic time for the coherent processes 
rCoh is much smaller than the kinetic times rkin.  

Using simple estimates one can show that the last two 
conditions are a consequence of the first two. For instance, 
the viscous boundary of the IR can be estimated from the 
condition that the energy flux along the spectra equals the 
viscous dissipation. Bearing in mind that the wave energy is 
concentrated mainly in the second mode we have 

Comparing this expression with (28) we find that as to order 
of magnitude the viscous boundary k- equals 

Further expressing the second sound damping T i  [see 
(38)] in terms of k- we find that the condition yk <T, is 
equivalent to the relation ( k  /k- ) (k+/k- ) ' I 2 <  1, i.e., as 
was to be proved, condition 3 follows from condition 2. 

We prove the equivalence of conditions 1 and 4. The 
characteristic time for the coherent interaction rcoh is evalu- 
ated from the formula rc;L = I V la, where a is the amplitude 
of the monochromatic wave a, = a6(k - k,) . From the for- 

1192 Sov. Phys. JETP 63 (6), June 1986 S. K. Nemirovskil 1 192 



ma1 relation n, = a2S(k - ko) we have a2 = dm,, where E 

is the energy density of the wave and, hence, 

The reciprocal of the time for the kinetic processes T~~~ is as 
to order of magnitude equal to 

Comparing (46) and (47) we find the following equation 

The requirement w, ) TZ,,' follows thus from the conditions 
4 wk , TG,,' (T,;:. The last inequality shows the equiv- 

alence of conditions 1 and 4. 
One can easily explain the physical meaning of the crite- 

ria 1 and 4 using a quantum-mechanical analogy, i.e., the 
representation of wave fields by a system of quasiparticles. 
The requirement .r,,, <T,, is then equivalent to the fact that 
the time for interaction of the particles is much shorter than 
the free flight time which is important for the derivation of 
the KE. 

It has been often shown that the possibility of the KE 
method is connected with the randomization of phases of 
separate waves. Phase relations are conserved in coherent 
interaction processes so that in order that they are destroyed 
it is necessary that quasiparticles experience successive colli- 
sions with other sound quanta which are random with re- 
spect to them. In other words, it is necessary that there be 
sufficiently many other quasiparticles along a mean free 
path I,,,& = CT,, . Using the fact that the number of quasi- 
particles per unit volume is proportional to the phase-space 
volume (Ak)3 z k we get the necessary condition 

The condition I", (w, is thus necessary from the physical 
point of view for the randomization of the phases. 

If condition 1 requires for its fulfillment that there is a 
low level of nonlinearity (i.e., small A and B), in contrast to 
this, condition 2 requires large amplitudes as is clear from 
Eq. (45). To elucidate the simultaneous fulfillment of these 
conditions we express the damping r and the quantity k -  in 
terms of the external parameters of the problem. The simul- 
taneous fulfillment of criteria 1 and 2 leads to the following 
chain of inequalities: 

Substituting into (50) = lop4 cm2/s, k+  = L -' = lo-' 
cm-I, c = c2 = 2 x lo3 cm/s, we see that the right-hand side 
is larger than the left-hand side by a factor c2L /y2 z 10'. This 
estimate verifies the existence of a sufficiently wide margin 
for the inertial range. 

In reality there is, apart from the requirement T, go, ,  
yet another, often technical, restriction on the increase in the 
A1 intensity. Indeed, the wave energy is dissipated in the 

volume and the possibility to support a stationary situation 
is limited by the technical possibilities to remove the heat 
from the system. For instance, when the heat is removed by 
pumping away the vapor, realistic fluxes are of the order of 
magnitude of 1 W/cm2. For a volume L =: lo3 cm3 we see 
thus that F ,  -0.1 W/cm3. In accordance with Eq. (28) we 
find for the amplitude B the value B = (1 to 10) g/cm5'2.s. 
Substituting this value into (45) we find that the viscous 
limit k -  of the IR is of the order of magnitude lo4 cm-', i.e., 
from this point of view there is a sufficiently large margin for 
the inertial range. 

In conclusion the author expresses his gratitude to the 
participants in the Bakuriani colloquium for discussions of 
this paper and also to V. V. Lebedev who made a number of 
comments on reading a preliminary variant of this paper. 

"The notation used in this paper corresponds to Ref. 2. 
''Generally speaking, the derivation of the KE used in the cited papers 
refers to the case of a single wave mode ( v  = f 1). However, when 
Ao; (o;  this derivation applies to our case. Indeed, the terms in the 
tensors n, G which are off-diagonal in the indices v are proportional to 
the quantity 6'(0;: - oz ), where 6r is a &function which is smeared 
out by allowance for interactions. Therefore, under the conditions 
Ao; (0; one can neglect the off-diagonal terms after which the deriva- 
tion of the KE is the same as the one expounded in Refs. 4, 5 with only 
that difference that there are added terms corresponding to cross interac- 
tion between the sounds. 

3'It is well known (see, e.g., Ref. 6) that one of the main requirements 
which allows the possibility to use the KE method is that there be no 
correlations between the phases of separate waves. 

3'Generally speaking, there are several different times r,, (and also co- 
herent times rCoh ) which depend on the actual form of the nonlinear 
processes. However, they are all, on the one hand, described by similar 
formulae and, on the other hand, they are comparable as to order of 
magnitude. Therefore, in the following calculations we shall not actually 
define these parameters. 
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