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We study the effect of a striction nonlinearity on the structure of the quasistationary field 
excited by an external source of electromagnetic waves in a rarefied magnetized plasma. We 
obtain a contracted equation for the electric field of the source near the resonance surface; we 
find a set of its analytical solutions. We give a numerical analysis of the boundary problem for 
the corresponding equation. The results obtained enable us to trace the nature of the nonlinear 
modification of the field as function of the parameter (E,/Ep ) ( h  /r,, ). 

The heightened interest in the theory of electromagnet- 
ic-wave emission by a source in a magnetoactive plasma is 
due to the many applications in the fields of microwave heat- 
ing, diagnostics of laboratory and cosmic plasmas, and so on. 
The peculiar electrodynamic properties of a plasma, and 
especially the presence of electrostatic eigenoscillations (re- 
sonances) and spatial dispersion, lead to the occurrence of 
special features in the structure of the field of a source and 
are accompanied by a change in its impedance properties as 
compared to vacuum properties.' In the high-frequency case 
such changes are most important when the frequency of the 
radiation falls in the region where resonances are excited 
while the characteristic dimension of the emitter is small 
compared to the electromagnetic wavelength. The source 
field is then characterized by a steep increase on the charac- 
teristic surface (in a uniform plasma-on the resonance 
cone) while the impedance is characterized by the presence 
of a real part caused by the effective excitation of the plasma 
resonance. We study in the present paper the effect of a stric- 
tion-type nonlinearity on the structure of the field of the 
source under those conditions. We note that the power level 
of the sources in experiments which have been performed or 
are being planned is sufficient for the appearance of nonlin- 
ear effects.'-"' However, there is only a relatively small num- 
ber of papers devoted to the problem of the emission ofwaves 
by a source in a magnetoactive plasma with nonlinearity tak- 
en into account. In our view, this is due to the complexity of 
the problem: a consistent solution of the problem of the par- 
ticle distribution and the electric field structure in the vicini- 
ty of the emitter is very complicated even in an isotropic 
plasma.' Some problems of the effect of strictional nonlin- 
earity on the field structure have been discussed in the litera- 
ture for sources of a special 

We show in the present paper that even a weak nonlin- 
earity may lead to an appreciable redistribution of the field 
of a compact source under resonance conditions. We use 
here the transition to the contracted equation for the electric 
field near the resonance surface which was proposed for a 
study of lower-hybrid plasma heating problems (Refs. 8- 
10) ." We discuss the conditions under which the solution of 
the boundary problem for the equation obtained describes 
the field of a source placed in a plasma. We give the results of 
a numerical solution of the corresponding boundary prob- 

lem. We find a set of analytical solutions of the equation 
studied. 

1. We consider the field of the source of an external 
current which oscillates with a frequency o and which is 
located in a magnetized plasma (w, $ope ; wpe and a,, are 
the electron Langmuir and gyrofrequencies). We assume 
everywhere in what follows that the characteric size h of the 
source is small compared to the wavelength of the electro- 
magnetic mode. 

This enables us to use near it the electrostatic approxi- 
mation. Writing down the hydrodynamic equations for the 
hf plasma motions we find an equation connecting the ampli- 
tude $ of the hf potential with the magnitude of the low- 
frequency (quasineutral) perturbations Sn of the plasma 
density (cf. Ref. 7) :  

Here pext ( r )  = - (i/a)div j,,, ; no is the equilibrium den- 
sity of the electrons in the plasma, normalized, likeSn, to the 
critical density n, = mw2/4.rre2;v, is the electron thermal 
velocity; we assume that s = v/w 4 1 ( v  is the electron colli- 
sion frequency). The z-axis is directed along the external 
magnetic field; A, = a 2 / a ~ 2  + 6' 2/dy2. We shall look for sta- 
tionary field and density distributions under conditions 
where a striction-type nonlinearity dominates. The expres- 
sion for small charged-particle-density perturbations of the 
which are caused in a magnetized plasma only by the pres- 
ence of the E, field component has then the form 

8 n = - r ~ , , E ~ - ~  Id$ /3~1~,  (2)  

where Ep = [4mw2(Te + Ti )/e2]"2 is the plasma field. 
Neglecting collisions2' we get from ( 1 ) and (2)  an equation 
for the potential: 

If the charged-particle density exceeds the critical density, 
i.e., when the longitudinal permittivity is negative, quasipo- 
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tential waves of frequency w can propagate in the plasma. 
Neglecting nonlinear and dispersive terms in Eq. (3) ,  it fol- 
lows in this case that in the vicinity of the source a resonance 
cone is excited with an apex angle 9=arc tanp ,  
p = (no - 1)-]I2. 

We note that we obtained Eq. ( 3) assuming spatial dis- 
persion to be weak: h)v,/w. Therefore, if the external 
charge distribution is sufficiently smooth, the dispersive cor- 
rection becomes important at distances r z h (hw/v, ) ' % h 
from the source while for r 2 h it is sufficient to take into 
account the nonlinear c~rrect ion.~)  Under the action of the 
nonlinearity there arises an interaction between two sets of 
characteristics of the wave equation passing through the re- 
gion occupied by the source. This process can be studied 
only numerically when one considers hyperbolic equations, 
except for the simplest cases." Outside the interaction re- 
gion the solution can be simplified, but the boundary condi- 
tions are decided by this region. 

We can simplify Eq. (3) outside the interaction region 
by using a quasiuniform field near the characteristic surface 
(the resonance cone). Since in the neighborhood of the reso- 
nance cone the field is maximal and decreases slowly with 
increasing distance from the source, it just here that the non- 
linear and dispersive effects are most important. It is conven- 
ient to change to a frame of reference with the r-axis along 
the characteristic surface and the A-axis at right angles to it, 
i.e., turn the coordinate system around the y-axis: 

A =z sin 0-1 cos 0, z=z cos 0+x sin 0. (4) 

Neglecting the term d 2t,b/dr2 and writing E = - dt,b/dA we 
transform Eq. (3)  to the form 

where a = 3/2,ud,/3 = ,u/2nOE:. The boundary condition 
in r is obtained by starting from the solution of the wave 
equation (3) in the interaction region. The simplest case is 
when the characteristic value of the field E, near the source 
is sufficiently small: E -4 1. It  is clear from Eq. (3) that 
the non-linear interaction is then small and at distances r k h 
from the source its field is linear. However, in that case, too 
the non-linearity "accumulating" along the resonance sur- 
face can lead to a considerable change in the linear structure 
of the field. To prove this statment we study Eq. (5) with the 
boundary condition E(r = ro,A) = Eo(A), where Eo is the 
linear cold field specified for ro 2 h, of a compact source near 
the resonance cone. As an example of a source we consider in 
what follows an electric monopole: 
pext = qhn--'(? + h ')-' SO that the boundary condition 
has the form 

We use for the boundary conditions in A the conditions of 
emission as A - co and of a decrease in the field as A - - co 
for the asymptotic form of the plasma wave which appears 
against the background of the cold solution. 

2. When solving the boundary value problem (5),  (6) it 

is advisable to write these equations in terms of dimension- 
less variables 

where 

(we omit the primes in what follows), 

Equation (7 )  contains a single dimensionless parameter 
which under the conditions of the problem is small: a* 1. 
The parameter ro in Eq. (8)  satisfies the conditions a/ 
h 2 5 r 0 < 1 .  

We analyze first of all the simplest case when the evolu- 
tion of the boundary field (8 )  is mainly determined by non- 
linearity or the dispersion. Estimates show that the degree of 
the influence of the nonlinearity is determined by the param- 
eter a/ro and equals in dimensional variables 

If the factor a/ro is sufficiently large (u/r(,S lo) ,  one can in, 
neglect the region where the larger part of the energy of the 
boundary field is concentrated the third derivative in Eq. 
(7).  Writing E = T - ' ~ ~ A ~ ' P  it is convenient in that case to 
change to a set of equations for the amplitude and phase of 
the field: 

It follows from Eq. (9)  that the amplitude A is constant on 
the characteristics given by the relation dA/dr = - 3~7A '/ 
r. Hence one easily gets an expression which explicitly deter- 
mines the function A 2 ( A , ~ ) :  

A2= [If (A+30A2 ln (7/.co) ) 2 ] - g z .  (11) 

In accordance with the boundary condition at r = r, we 
have A ' = ( 1 + A2) -'I2. It is clear from Eq. ( 11) that as r 
increases the nonlinearity leads to a steeper boundary distri- 
bution of the field amplitude. When r, = r,exp(4fi/9a) 
the derivative dA '/dA becomes infinite (in the point 
A, = - 15/9), and then the function A ' (A)  becomes tri- 
pled-valued. However, as one approaches r, the spatial dis- 
persion becomes important so that it is no longer possible to 
neglect the term 3E /JA3. It follows from Eq. ( 1 1 ) that the 
dispersion term becomes comparable in magnitude with the 
nonlinear term when a/r, z [ 1-3aln(~, /r,) ] -'. Hence, 
wehaveforr, ~ u s m a l l a ( u g 1 ,  b ~ t a ~ r , ) a e ~ ( ' ~ ) - '  ) . I t  
will become clear from numerical calculations that as r in- 
creases further a solitary wave splits off from the main field 
distribution in the region of the steep front, and the mildly 
sloping front becomes jagged due to the appearance of a plas- 
ma wave against the background of the cold solution. 
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It is important to note that, if a4 1,  when one gets away 
from the source the nonlinearity accumulates rather slowly 
( T ~ , T ,  ,T,). This justifies taking the linear field of the 
source as the boundary condition. 

We consider a second limiting case when U / T ,  4 10 ,  i.e., 
we can neglect the nonlinear term in Eq. ( 7 )  which can be 
written in the form 

d E / d t + E / 2 ~ - d ~ E / d A ~ = O .  ( 1 2 )  

Taking the Fourier transform we get a solution which satis- 
fies the boundary value condition ( 8 )  : 

eo 

2 exp (-3in/4) 
E =  n % T ~ ~  klh e x p { - i [ k 3  (T-to) - k ( ~ + i )  ] )ah .  

0 ( 1 3 )  
One shows easily that if T,< 1  the solution of the boundary 
problem ( 1 3 )  is the same as the exact expression for the field 
of the source near the characteristic. For small T ( T ,  < T < 1  ) 
the magnitude of the integral ( 1 3 )  is completely determined 
by the vicinity of the point k = 0; this leads to Eq. ( 8 )  for the 
cold field. Therefore, if 7-4 1, the dispersion is unimportant 
and the field is determined by the characteristic size of the 
source. If T 2 1, using the steepest-descent method, we can 
find the asymptotic expansion of the integral ( 1 3 )  for 

1 A1 $ T " ~ :  

From the expressions obtained it is clear that in the region 
A > O  a plasma wave appears with a characteristic wave- 
length A - r ' l 3 r , .  The dispersion is thus substantial when 
the wavelength of the plasma wave becomes larger than or of 
the order of the size of the source. There is then formed a 
region occupied by field oscillations which broadens in a 
self-similar way as one gets away from the source. The role of 
the nonlinearity here reduces to the fact that with increasing 
T this region is displaced relative to the linear distribution to 
the side of negative A ,  but the rate of this process decreases 
with increasing T and the total displacement turns out to be 
small. Indeed, we consider the solution ( 1 4 )  in the range 
r ' I 3 < A  where the amplitude of the plasma wave is much 
larger than the magnitude of the cold field: 

Here fl = l A 1 3 ' 2 / ~ ' 1 2 .  We shall look for a solution of the 
nonlinear equation ( 7 )  in the form 

One easily checks that the equation is satisfied, provided 
f ( r )  = 4 u / 3 ~  + const. Since the dispersive structure devel- 
ops at T Z  1, we put const = - 4 u / 3 ,  which gives a rough 
estimate of the magnitude of the total displacement in 
A :  IA,,, 1 = u. We see that ~ A d i s P l  1 < 1; this fact is connected 
with the decrease of the field when one gets away from the 
source. 

3. The analysis given above of limiting cases, while mak- 
ing possible to comprehend the basic features of the behavior 
of the field of a compact source, at the same time enables us 
to proceed to a more detailed computer study of the prob- 
lem. It is convenient for what follows to eliminate the term 
E / 2 r  from Eq. ( 7 )  by putting E = U T - ' / ~ .  Equations 
( 7 ) , ( 8 )  take the form 

We note the presence of a number of integrals of Eq. ( 1 7 )  : 

As to its physical meaning, I ,T- 'I2  is the potential difference 
between the points A = + CQ , 12r - '  the energy of the field, 
I,T-' the Hamiltonian, and I,T-' the energy flux through a 
plane T = const per unit length along y. All these quantities 
decrease with increasing T because the field decreases when 
one moves away from the source along the characteristic. 
We did not succeed in finding other integrals of Eq. ( 1 7 ) .  
Apparently this indicates the impossibility of solving this 
equation by the inverse-scattering method. 

The results of a numerical analysis of the boundary 
problem ( 7 ) ,  ( 8 )  are given in Figs. 1  to 6 .  The boundary 

FIG. 1 .  The functions IE I2(A) (top), ReE (bottom, full drawn), and 
Im E (bottom, dashed) for T, = 0.1, T = T,. 
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FIG. 2. The distributions IE I2(A),  Re E ( A ) ,  and Im E ( A )  for T = 0.5 
and a = 0. 

condition (8)  was given at TO = 0.1 (Fig. 1 ). We show in the 
graphs the distributions of the real and imaginary parts of 
the field and also the square of the modulus IE 1 as functions 
of A for r = 0.5 for five values ofa: a = 0,0.5, 1,2, and 5. We 
note that under the conditions of the problem a is a small 
parameter but since the behavior of the system is qualitative- 
ly determined by the ratio O/rO we considered also for the 
convenience of the numerical calculations a= 1. The case 
a = 0 illustrates the development of the wave structure on 
the background of the cold solution in accordance with the 
analytical expressions ( 1 3 ) to ( 1 5 ) . It is clear that as r in- 
creases the region occupied by the oscillations increases and 
their relative amplitude grows as does the wavelength of the 
plasma wave. There also appear oscillations in the IE I 2  dis- 
tribution, and the maximum of this distribution shifts in the 
direction of positive A. A consideration of the cases u/rO = 5 
and a/r0 = 10 corresponding to weak and moderate nonlin- 
earity shows that the effect of the latter leads to a shift in the 

FIG. 4. The same as in Fig. 2 for o = 1 .  

pattern of the field in the direction of negative A. In the 
region of the field maximum characteristic deformations ap- 
pear in the distribution and when a/rO = 10 the maximum 
splits. The relative amplitude of the plasma wave as com- 
pared to the linear case decreases. When the nonlinearity 
increases (a/r0 = 20) the tendencies noted here manifest 
themselves more clearly: the distortions in the region of the 
maximum of J E  I* become deeper and the relative amplitude 
of the plasma wave decreases. Finally, in the case of a strong 
nonlinearity (u/T, = 50) a solitary wave splits off from the 
main part of the distribution in the region of the field maxi- 
mum; this solitary wave is shifted in the direction of negative 
A, but as r increases the rate at which it is shifted decreases. 
Additional analysis showed that as a/ro increases further 
the number of solitary waves formed from the given bound- 
ary distribution increases. A characteristic feature of the 
solitary solutions (Fig. 6) is that here the real and the imagi- 
nary parts of the field are shifted in phase relative to one 
another by an amount which is independent of r and is deter- 
mined by the boundary condition. This fact enables us to 
find an analytical expression'for the solitary solutions ob- 
served in the numerical e~periment.~'  

We shall look for a solution of Eq. (7)  in the form 

FIG. 3. The same as in Fig. 2 for a = 0.5. FIG. 5. The same as in Fig. 2 for a = 2. 
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FIG. 6 .  The same as in Fig. 2 for u = 5. 

A+cs ln (dr.1 } eiOo 
E = ~ - ' ~ F  ( c )  exp { ik.  Z1~ ,  1 

where c,,, , r,,,, k,, and 0, are real numbers and F is the 
required function. We require that the conditions 
21c,,, ( % (A + c,,, l n ( ~ / r , , ~  ) I be satisfied. After substituting 
(19) into (7) we then get an equation for the function F: 

F"'+3ikoF"- (c,+3k,Z) Ff- i  (ko3+koc2)F 
+o[ikoFJF12+(FIF12)']  =O. (20) 

If c, and c2 satisfy the conditions 
c, = p2 - 3 k $ ,c2 = 3p2 - k i, wherep is a real constant, Eq. 
(20) takes the form 

(F"-p2F+oF I F I 2 ,  '+3ikO (F''-p2F+i/30FI F 1 ' )  =0. (21 ) 

One easily finds for the case k, ( 1 a solution of Eq. (2 1 ) 
which decreases at infinity: F = ( 2 / ~ ) " ~ ~  sechpg such that 
for k, = 0 the field has the form 

It is clear that when r increases the solitary solution (22) 
decreases as T - " ~  and its width increases cc ?I2. The center 
of mass of the solitary wave is displaced along the nonlinear 
characteristic A = -p21n(r/rl) and with increasing r the 
rate of displacement decreases. The characteristic features 
of the solitary solutions, observed in the numerical analysis, 
are thus well described by Eq. (22). The parameters p, r,, 
and 0, are determined by the boundary condition. 

Using (2 1 ) we find for the case k,) 1 the solution of Eq. 
(7)  in the form of a wave packet: 

We note that when k, >p/fi the group velocity of the corre- 
sponding wave packet is negative, i.e., in the opposite direc- 

tion to the direction of the velocity of the solitary waves of 
the type (22). However, in a numerical analysis of the prob- 
lem (7),  (8)  packets such as (23) do not occur, since the 
field distribution at the boundary is rather smooth. Appar- 
ently, such solutions can be realized by the evolution of fields 
of more complex sources, e.g., of an electric quadrupole. 

It is expedient to write the solutions (22),(23) also in 
dimensional variables: 

( ) I h  {Ern ( T D  )" ( El=E,  - sech - - A Em2 
-+--1n- 

E p  6 n o ~  rD Ep2 4n0 't, 

'ti 

Here Em ,k0,0,,r,,, are real constants. 
Summarizing the results of the numerical calculations 

and the corresponding analytical discussion we can state 
that even a weak nonlinearity leads to an appreciable change 
in the structure of the quasistationary field of a source in a 
rarefied magnetoactive plasma. An obvious result of these 
changes must be the redistribution of the regions where hf 
energy is absorbed in the plasma volume surrounding the 
source. 

APPENDIX 

We showed above that if the parameter u/r, is large or 
small, the problem (7) , (8)  simplifies right from the start. 
The solution may also turn out to be simpler if it has a self- 
similar character. 

Equation (7) allows a self-similar change of variables 

5= ( A - A o )  T - ' / * ~  E = z - ' / * ~  ( 5 )  (A.1) 

where A, is an arbitrary number; the equation takes then the 
form 

Of most interest is the case when the linear cold field can also 
be written in self-similar variables. This occurs in the three- 
dimensional case only for a very special choice of the bound- 
ary conditions. In the two-dimensional case, however, the 
situation turns out to be more favorable. We consider, e.g., a 
source which is axisymmetric in the A,r-plane: 
pext = qh (277) -I(h + r2) -312 where q is the charge per 
unit length along y. In appropriate dimensionless variables 
the field near the resonance surface satisfies Eq. (7)  without 
the term E /2r while a = ,u2q2O /h 2. The self-similar substi- 
tution (A. 1)  leads to an ordinary differential equation 
which can easily be integrated once over 6: 
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The value of the constant can be determined by using the fact 
that as A -  the solution is the same as the cold field: 
Ecold = - ig -' (here A0 = - i )  whence const = - i/3. 
Using the substitution 7 = - i.3-'/3rl',< = - 3-lt3{' we 
are led to the equation 

For real 6 ', Eq. (A.4) has been studied before in connection 
with the problem of the deformation of the region of plasma 
resonance in a linear layer of an isotropic plasma under the 
action of a longitudinal hf field. l 2  In an obvious way one can 
use the results of that analysis to study the field of a point 
source in a magnetized plasma [for this Eq. (A.4) is also 
valid with 6 ' - A/T"~] while for a distributed source one 
needs an analytical continuation into the region of complex 
6 '. 

I )  We note that in Refs. 7 to 10 only systems with a planar geometry were 
studied where in the linear approximation the field does not decrease 
along the resonance surface. 

2 ,  It is clear from Eq. ( 1 ) that collisions may be neglected under the condi- 
tions s< (r,/h)*,s< (E,/E~ )*. 

''When there is a surface charge present and also in the case 
no- 1 ((no - 1 )  5 (rD/h)';rD = v,/mP, is the electron Debye radius) 
one needs special considerations; here one must take spatial dispersion 
into account already for r k h. 

4'A similar circumstance was noted in Ref. 10 for solitary solutions 
formed as the result of the nonlinear evolution of a wavepacket. 
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