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A method of integrodifferential equations associated with the optical Bloch equations is used 
to consider the problem of nonlinear reflection (refraction) of a laser beam scanning the 
surface of a resonant medium excited by traveling and standing surface electromagnetic waves 
of resonance frequency. An allowance is made for the phase memory effects exhibited by 
surface atoms in response to pulses of fields resolved in space and time. A polarization wave on 
the surface is regarded as the result of a nonlinear superposition of a reflected wave and a 
surface wave. A generalized Lorentz-Lorenz formula is derived for a nonlinear complex 
refractive index of an optical medium in the region of an absorption band when this index 
depends nonlinearly on the field inside the medium. An allowance is made for possible 
transient effects in the response of the medium to pulses because of the finite time needed to 
establish polarizing fields. A theory of quenching is used to obtain generalized reflection and 
refraction laws for a scanning beam. These laws can be used to determine the direction of 
propagation of a reflected (refracted) wave. It is shown that, in general, a reflected wave is 
inhomogeneous. An analysis is made of the case of reversal of a scanning beam by an excited 
surface, characterized by phase conjugacy of the wavefront. A study is made of the spectrum of 
transient nonlinear surface polaritons as a function of the area of an exciting pulse and of the 
depth of penetration of these polaritons in a resonant optical medium. 

INTRODUCTION 

Transient coherent effects of the optical echo type1 
which are due to the so-called phase "memory" effect are 
beginning to play an important role in optical studies of reso- 
nant media. A new and promising branch of laser spectros- 
copy, which can be called optical echo ~pectroscopy,~ has 
now been established. This spectroscopy has been used al- 
ready to study spectral and relaxation characteristics of par- 
ticles (atoms, molecules, ions) located inside a resonant me- 
dium. For practical reasons it is important to extend such 
studies to particles on the surface of a medium. However, 
this is not a trivial extension because the solution of the non- 
linear optical problem requires an allowance for the bound- 
ary conditions and this, in turn, needs a review of a number 
of important concepts applicable to bulk media. This prob- 
lem is important also because the discovery of a long-term 
optical memory in an LaF3:Pr3+ crystap has demonstrated 
that the theoretically predicted applications of phenomena 
of the optical echo type in dynamic holography and in con- 
struction of optical memory devices2 have now reached the 
stage of practical realization and technical importance. 
Further progress may be facilitated by the recently devel- 
oped method of scanning with a laser beam.4-6 The present 
paper deals with the solutions of all these fundamental prob- 
lems in echo spectroscopy of surfaces. Reversal of the wave- 
front has been realized in the optical echo experimenb2 It 
has been shown in Refs. 7 and 8 that under certain conditions 
(for example, with the aid of a standing wave) it is possible 

to reverse the direction of optical echo signals. In the case of 
stimulated optical echo signals the reversal effect occurs un- 
der conditions when two waves traveling in opposite direc- 
tions and forming a standing wave are separated in time. We 
shall consider in detail the case when the first exciting signal 
is in the form of a laser beam scanning the surface of a medi- 
um along a definite closed path. In the two-pulse excitation 
regime the second pulse is in the form of two counterpropa- 
gating pulsed surface light waves of the same resonance fre- 
quency as that of the scanning laser beam. The situation is 
explained by the diagram in Fig. 1. The reversed optical echo 
signal emitted by each part of the scanning path travels ex- 
actly opposite to the scanning beam. A beam splitter BS dir- 
ects this signal to a fast-response photomultiplier. The most 
promising is the three-pulse excitation regime because the 
time interval between the second and third pulses in some 
crystals can be very considerable (record results have been 
reported for an LaF3:Pr3+ crystal for which the stimulated 
optical echo signal due to the 3H4-3P0 transition at the 4777 
A wavelength appeared after up to 30 min from the action of 
the first pair of the exciting pulses). In this regime the first 
exciting signal is once again the scanning light beam; the 
second exciting signal is a pulse of a surface light wave of the 
resonance frequency in the direction k,, and the "readout" 
or reconstructing third pulse (which, in principle, can be 
applied even after several minutes) is the reversed pulse of a 
surface light wave traveling in the - k, direction. The signal 
of the reversed stimulated optical echo may be emitted by 
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active particles on the crystal surface in the direction - k,. 
We shall now consider the scanning laser beam. In prin- 

ciple, its function can be performed by a cw laser and the 
coherent nature of the interaction with a resonant medium is 
ensured by the fact that at scanning velocities us, satisfying 
the inequality D /us, < TI, T i  (where D is the laser beam 
diameter, TI and T; are the longitudinal and transverse irre- 
versible relaxation times), the duration of action of the beam 
decreases. Clearly, the beam path can be arbitrary and the 
storage and retrieval ("readout") by surface waves can be of 
the line-by-line type. 

Similar experiments can be carried out not only on the 
surfaces of crystals, but also in thin films, which may be of 
interest in integrated ~ptics.~-" However, solution of these 
problems depends on a detailed theoretical analysis of some 
of the fundamental topics in nonlinear optics of surfaces, 
which are dealt with in several sections below. We shall use 
the method of integral equations in a systematic study of 
various boundary-value problems in nonlinear optics. We 
shall consider specifically the reversal of a scanning beam by 
an interface between two media along which a surface elec- 
tromagnetic wave pulse is traveling. 

$1. SYSTEM OF INTEGRODIFFERENTIAL EQUATIONS 
DESCRIBING PROPAGATION OF OPTICAL WAVES IN A 
RESONANT MEDIUM 

Interaction of a scanning laser beam with a resonant 
medium can be investigated using a two-dimensional system 
of the differential Maxwell and Bloch equations subject to 
certain initial and boundary  condition^.^-^ An allowance for 
the boundary conditions in solving such boundary-value 
problems (particularly in the case of the spatial dispersion 
effects) complicates greatly a theoretical analysis.I8 There- 
fore, in contrast to the usual method based on the "match- 
ing" of the Maxwell equations for a resonant medium and 
vacuum, we shall solve the boundary-value problems by in- 
tegrodifferential equations for the propagation of light in an 
optical medium. This avoids the need to introduce explicitly 
the boundary conditions at refracting surfaces. The neces- 
sary integrodifferential equations suitable for the investiga- 
tion of the propagation of light in resonant optical media 

FIG. 1. Schematic diagram of the apparatus which can be usec! 
to excite the surface of a resonant optical medium (RM). LAS is 
a laser, ODL is an optical delay line, SD is a scanning device, BS 
is a beam-splitting plate, TRP is a total internal reflection prism, 
and PM is a fast-response photomultiplier. 

were obtained in Refs. 19 and 20. We shall write them as 
follows: 

E (r, t )  =E, (r, t )  + J rot rot D (r', t-R/c) dV'/R, ( 1 ) 

where E(r,t) is the intensity of the electric field at an obser- 
vation point r; E, is the intensity of the electric field of an 
external wave; R = Ir - r'l; r' is the radius vector of an arbi- 
trary point inside the medium; D is the induced electric di- 
pole moment per unit volume at the point r' inside the medi- 
um, dependent in some way on the field E. The 
differentiation in Eq. ( 1 ) is with respect to the coordinates of 
the observation point. Equation ( 1 ) is three-dimensional so 
that it can be used to study various optical resonances under 
conditions of three-dimensional scanning with a laser beam. 

Equations ( 1 ) are obtained from general laws of quan- 
tum electrodynamics, and the polarizing field created by 
atoms in the radiation field is regarded as third-order effects 
involving virtual exchange of photons of all polarizations 
betweeen atoms and also emission (absorption) of a real 
photon.I9 Obviously, such effects include spontaneous emis- 
sion of photons, because in this case the field E(r,t) should 
be regarded as a quantized field of spontaneous radiation. 
Consequently, the range of validity of the system ( I ) is very 
wide and these equations can be used for a theoretical study 
of a wide class of nonlinear optical phenomena, including 
the optical echo and the Dicke superradiance. Moreover, 
equations ( 1)  can be used also in the case of conducting 
media. In this connection we must point out that in their 
book2' Born and Wolf limit the range of validity of the sys- 
tem ( 1 ) to nonconducting media, which is unjustified. For 
example, formulas for polarizing fields created by moving 
charges (not necessarily atomic) at arbitrary observation 
points are obtained in Ref. 22 using retarded potentials. In 
this case the electric dipole moments in a medium are formed 
by charge clusters in elementary volumes which have linear 
dimensions much smaller than the distance to the observa- 
tion points. In all other cases we must obviously modify the 
system ( 1 ), which together with the equations for the medi- 
um, forms a general system of equations for the study of the 
propagation of high-intensity light in homogeneous and in- 
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homogeneous optical media in the region of an isolated ab- 
sorption band. We shall determine the dependence of the 
dipole moment d of an isolated atom on the field E inside an 
insulator, using Bloch's equations. We shall therefore use 
the representation of an effective spin and express d in terms 
of the Pauli operators uas  follows': d = d,a, - dig2, where 
d, and d, are the vectors in the coordinate space. The equa- 
tions of motion for local dipole moments and the differences 
between the populations of the resonance levels of an atom 
are derived, for example, in Ref. 1. We shall adopt the stan- 
dard notation used in that book. In the case of the Am = 0 
transitions we have d, = 0 (Ref. 1 ) and we note that (2d, E / 
f i )  -xo .  Then, in a coordinate (reference) system rotating at 
a frequency w, the equations of motion become 

where the frequency detuning is A = w, - w and E, is the 
amplitude of the field E in the medium. We shall also intro- 
duce a dimensionless quantity 

i 

e (r', t )  = x0 I Eo (r', tf)  dt', 
- - 

which represents the effect of a light pulse at a point r' inside 
the investigated medium. It can be used to write down the 
solutions of Eq. (2)  in accordance with Ref. 1. The solution 
can be used to find a polarization wave D(rl,t - R /c), which 
depends nonlinearly on the field E inside the medium. Intro- 
ducing D, = d, (N/V), where N/Vis the concentration of 
atoms, we obtain 

D* (r', t-Rlc, A )  

here, S + = u f iv and k is the wave vector of the polariza- 
tion wave in the medium. Substituting Eq. (3)  into Eq. ( l ) ,  
we obtain the field at an arbitrary observation point r at a 
moment 1. 

92. REFRACTIVE INDEX OF A NONLINEAR OPTICAL 
MEDIUM IN THE REGION OF AN ABSORPTION BAND. 
QUENCHING THEOREM 

We shall consider the processes of reflection of waves 
from an abrupt interface between two optical media, one of 
which is nonlinearly resonant. In this case an observation 
point is located outside the nonlinear medium so that the 
operation curl curl in Eq. ( 1 ) can be taken outside the inte- 
gral. Then, the field at the observation point becomes 

E (r, t) =El (r, t) + rot rot JD (rr, f-R/c) dV'/R. (4)  

The second term in Eq. (4)  represents a reflected wave E, . 
We shall assume that the function (3)  satisfies the 

Helmholtz wave equation V2D$ + ii2(o/c)'D$ = 0, 
where f i  is the complex refractive index of the optical medi- 
um in the region of an absorption band, and generally de- 
pends on the coordinates of the observation point and on 
time. Since the function G; = (l/R)eimR" represents a 
spherical wave in vacuum, integration of the volume integral 
by the Green theorem gives 

where 8 is the interface between the two media and the sym- 
bol d /av' represents differentiation along the outward nor- 
mal to the interface 8. Therefore, a calculation of the field 
above the interface Z reduces to a calculation of the surface 
integral ( 5 ) ,  where D,+ is governed by the field E on the 
surface 8. We shall denote the surface integral by I- +, so 
that instead of Eq. (4)  we now obtain a different integral 
equation depending on the state of the surface 8. 

The integrodifferential equation obtained in this way 
contains an unknown quantity ii which governs the velocity 
of propagation of the field inside the medium. We can find 
this quantity by returning to the initial system ( 1). We shall 
assume that an observation point is located inside the medi- 
um so that the operation curl curl cannot be simply taken 
outside the integral. Assuming that D,f is an arbitrary func- 
tion of the coordinates, we find that when the condition 
divD,f = 0 is satisfied, instead of Eq. ( 1 ) we now have 

E (r, t) =El (r, t) +rot rot [ (c2/02) (2- l )  -I] I-+ 
-8/snDo+ (r, t)  +4nfiZDo+ (E2-l)-i. (6)  

Equation (6)  can be separated into two equations if we iden- 
tify separately two groups of terms, each of which represents 
a wave traveling at its own velocity. The equation 

EI(r, t) + (cZ/oZ)rot rot I-+/ (E2-1) =O (7 )  
represents the quenching theorem which is satisfied by a 
nonlinear optical medium in the region of an absorption 
band. The equation 

E (r, t )  =-81,nDo+ (r, t) +4nE2Do+ (2-1) -1 (8) 

allows us to calculate the complex refractive index of a non- 
linear optical medium for an arbitrary dependence of D,f on 
E. If E = Ee, we find that (e  is a unit polarization vector of 
the field) 

where 6,f is found by dropping the phase factor 
exp [ - i(wt - k r ) ] from the quantity D,f . Equation (9)  
is obtained for observation points inside the medium. A 
modification of the lemma proposed in Ref. 2 1 can be used to 
calculate the complex refractive index at observation points 
located on the surface or close to it. Then, the refractive 
index depends on the depth of the observation point and, 
consequently, on the polarization of the medium at this 
depth. In linear optics the quantity D,f is proportional to the 
first power of E, and Eq. (9)  reduces to the Lorentz-Lorenz 
formula.21922 In general, the refractive index of Eq. (9)  de- 
pends on the amplitude E, in a complex manner and this 
dependence is governed by the equations of motion (2). We 
shall substitute Eq. (3)  into Eq. (9).  We shall represent the 
complex refractive index in the form n + itt, where n is the 
real refractive index and K is the extinction coefficient, 
which gives two equations for the determination of n and x 
expressed in terms of u and v. 
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Equation (9)  is a generalization of the Lorentz-Lorenz 
formula to nonlinear isotropic media in the region of an iso- 
lated resonance. In the case of strongly excited quantum di- 
poles in a medium the polarization D,f of the medium de- 
pends in a complex manner on the field amplitude E,, so that 
the values of n and x depend on E,, which is one of the 
manifestations of the nonlinearity of the medium. In the ap- 
proximation of a constant field, the parameters n and x are 
independent of the coordinates r of the observation point. 
When an allowance is made for the transmission effects, E, 
depends on r so that n and x also include a dependence on r, 
i.e., the optical medium becomes inhomogeneous and this is 
again a manifestation of its nonlinearity. It should be point- 
ed out that the dependence of the complex refractive index of 
Eq. (9) on the coordinates of the observation point should 
also be different, for example, it may be governed by the 
surface geometry. Therefore, we can allow in Eq. (9)  for a 
transition layer on the surface which may be of field or struc- 
ture origin. 

When ultrashort light pulses interact with a resonant 
medium, the problem of the origin of the refractive index is 
no longer trivial. This is due to the fact that the polarizing 
fields are then induced in a finite time T, , which can be long- 
er or shorter than the pulse duration At. The time 7, = W; ' 
is calculated in Ref. 23, where Wc is the probability of emis- 
sion of a photon by an arbitrary atom in a medium interact- 
ing with its environment. Obviously, in the former case 
(7, > At) the investigated medium cannot respond in the 
available time to the propagation of a pulse, there is no reac- 
tion by the medium, and the refractive index should not dif- 
fer from unity. In the latter case (At% rC ) the refractive in- 
dex of the medium can be calculated from Eq. (9). 
Depending on the method used to excite the resonance medi- 
um, we can have different values of the induced polarization 
and, consequently, different dependences of the refractive 
index on the field. When a resonant medium is excited by 
ultrashort light pulses of duration much less than all the 
relaxation times, the induced polarization of the medium is 
due to transient processes. After the necessary averaging of 
the polarization over the frequency detuning, we obtain a 
factor exp( - t / T : )  in the expression for the polarization 
of the medium and this factor indicates that the polarization 
decays rapidly because of inhomogeneous broadening of the 
atomic levels. Therefore, the optical properties of the medi- 

FIG. 2. Dependences of the permittivity of a nonlinear medium on the 
direction of an electric field of an ultrashort light pulse. The following 
numerical values of the physical parameters were used to plot these depen- 
dences:d, = 4 . 8 ~  lo-'' cgsesu, N / V =  1.6X 10'9cm-3, A = 107sec-I, 
T = 35 nsec. The characteristic time for inducing polarizing fields in the 
medium is T, = 2 / T ;  ( ~ $ 6  ), where E ;  is the amplitude of the polariz- 
ing field of the surrounding atoms.'" 

um change significantly during a characteristic phase mem- 
ory time T :  of atoms and this transient behavior of an opti- 
cal medium is also a manifestation of its nonlinearity. Figure 
2 shows the dependences of the permittivity components E' 

and E '  on the field intensity. Clearly, an increase in the field 
amplitude alters greatly E' and E". An analysis of Eq. (9) 
shows that pulsed illumination of a resonant medium from a 
high-intensity light source can be used to vary the optical 
properties of the medium within a wide range. 

$3. REFLECTION AND REFRACTION OF A SCANNING 
LASER BEAM BY AN INTERFACE BETWEEN TWO MEDIA, 
ONE OF WHICH IS RESONANT 

Let us assume that electromagnetic waves interact with 
an interface Z between two media, as shown in Fig. 3: 

sIa=--sin 0, cos cp,, sIY=sin O1 sin cp,, sIz=-cos Or ,  ( 10) 

where the angles 8, and p, generally depend on time. We 
shall describe an incident wave by 
EI (r,t) = Eiexp{i[(w/c) (rs,) - wt I}. In the case of 
three-dimensional scanning with a laser beam incident on an 
interface between two media, one of which is a nonlinear 
resonant medium, we must drop the usual concept of the 
plane of incidence. This is because the interaction of reso- 
nant laser radiation with a nonlinear medium may give rise 
to optical transient effects at the interface due to the phase 
memory of atoms. For example, it is shown in Ref. 10 that an 
ultrathin nonlinear layer of resonating atoms at an interface 
between two linear transparent media may give rise to non- 
linear components of reflected and refracted waves. In con- 
trast to the Fresnel components of reflection and refraction, 
the nonlinear components now result in afterglow of the in- 
terface between the two media for a period equal to the phase 
memory time. Therefore, in the case of three-dimensional 
scanning each direction of incidence of a scanning beam has 
its own history of reflection and refraction for the previous 
directions of incidence. This is the reason for introduction of 
two angles of incidence: 8, and p, . Obviously, in the case of 
two-dimensional scanning this complication of the problem 
is unnecessary. The field at an arbitrary observation point 
above the surface can be found from Eq. (4) where we need 
to know the polarization D,t at the interface 2, which is 
generally represented by Eq. (3)  with a wave vector k, the 
meaning of which will be defined later. Substituting D: into 
the surface integral I- +, we find that differentiation yields 

+ i6,k --, exp (ikrr--iot) . ( 11 ) "' a v 

Introducing a spectral response function F of Ref. 1 and the 
area under a pulse 8, we find that 

as+ dr' 1 
- - = [ T - ~ ( ~ - 1 ) + s i n O + i ~ c o s O ] ~ .  dr' av' u d z  (12) 

Then, the surface integral becomes 
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The exponential factor in Eq. ( 13) is a rapidly oscillating 
function of the variables x' and y'. Under these conditions a 
good approximation to the integral I- + is obtained by the 
application of the principle of stationary phase.,' Then, in- 
stead of Eq. ( 13 ), we obtain 

which includes the following quantities: 

where g, is calculated at a point on the surface B which has 
the coordinates x; = - k,r/p and y; = - kr/p.  We shall 
now substitute Eq. ( 14) into Eq. (7). The resultant equation 
applies at arbitrary observation points r provided 

- ( o l c )  cos 8,-{ ( o / ~ ) ~ - k ~ ~ - k y ' ) ' ~ ~ .  (16) 

In the case of a fixed plane of incidence (k, = 0), we find 
from Eq. ( 16) the following Fresnel reflection law: cos 8, 
= cos 6, , where 6, = n - 8, is the angle of refle~tion.~' In 

general, the quantity k in Eq. ( 16) represents the wave vec- 
tor of a polarization wave excited by high-intensity laser ra- 

FIG. 3. Schematic representation of the distribution of 
vectors: s, is a unit vector along the direction of incidence 
of a scanning beam reaching a surface 2; sc is a unit vec- 
tor along the direction of the Fresnel reflection; s: is a 
unit vector along the direction of the nonlinear reflection. 

diation on the surface in the region of an absorption band, 
i.e., it is defined by Ikl = (w/c)fi, where fi is the complex 
refractive index dependent on the field on the Z surface of an 
optical medium. All the quantities in the system (15) are 
affected by this value of the wave vector, because of the 
quenching theorem (7 ) . We shall assume that 

k,=- ( o / c )  sin OR cos ( P ~ + 2 k ~ ~ ,  
(17) 

k,= ( o / c )  sin O R  sin (~R+2k2,, 

where 8, and pR are the reflection angles, and k, is the wave 
vector of a resonance pump wave traveling along the inter- 
face 2. Then, the equality ( 16) represents the generalized 
law of reflection of a scanning laser beam. We shall consider 
a specific physical situation when a scanning beam describes 
a circle on the interface 2 (Fig. 3). We shall find the condi- 
tions under which the reflection applied from different parts 
of the circle produces an effect at an observation point P. 
Obviously, in linear optics it follows from the Fresnel reflec- 
tion law that such a formulation of the problem is meaning- 
less. However, in the situation considered here, there are 
additional possibilities for reflection which are associated 
with the phase memory of the interface. We shall substitute 
Eq. ( 17) into Eq. ( 16) and determine all possible values of 
the angies 6, for a fixed value of p, : 

sin OR= (112A) [ B f  (J12-4AC)'h], A= ( ~ I c ) ' ,  
B=4(o / c )  (-k?, sin cp~+k= cos ( c R ) ,  (18) 

C=- (o / c ) '  sinZ 01+4(kZXI+kZUZ). 

We can see that for any given value of the angle of incidence 
O R ,  we can generally have two complex directions of reflec- 
tion governed by the wave vector k, of a surface resonance 
pump wave. We shall consider in greater detail the case 
when k,llx corresponds to complete reversal of the scanning 
beam, i.e., we shall assume that sin 8, = sin 6, (Fig. 3). We 
then have 
-sin 01= ( c / o )  {2k= cos (CR* [4kU2 cos2 9,-C]'")=sin OR, 

(19) 
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which is satisfied if - 4k :, sin2pR + (w/~)~s in~8, )0 .  
When the condition C >  4k :, cos2pR , is obeyed, the angle of 
reflection is a complex variable. The concept of complex an- 
gles is used frequently in the optics of layer absorbing me- 
dia24 and the quantity 8, does not simply represent the angle 
of reflection. We shall introduce a vector sR , which describes 
the complex direction of propagation of a reflected wave. It 
is convenient to express s', in the forms', = qe:Y, where q and 
yare real. We shall then square this quantity. We can obtain 
equations for the calculations of q and y by equating the real 
and imaginary parts. A reflected wave is proportional to the 
phase factor exp(isR rw/c) and, therefore, we can use the 
values of q and y found in this way to identify the surfaces of 
constant amplitude of the reflected wave and surfaces of the 
real phase, which are generally not coincident, i.e., the re- 
flected wave is inhomogeneous. When the above conditions 
are satisfied, we can use the values of the components of the 
unit vectors s, and sR to obtain the following result: the 
phases of the reflected and incident waves are identical if 
pR = p, + 2rm, where m = 0,1,2 ,... . It follows that parts 
of the surface directing a reflected wave to an observation 
point P do not have to coincide when an allowance is made 
for the phase memory effects. Therefore, in the case of non- 
linear reflection of a scanning beam by an excited surface of a 
resonant medium, we may expect phase conjugacy of the 
reflected wave relative to the incident wave. 

We have considered above the case when an exciting 
pulse propagating along a surface (interface) is a traveling 
surface electromagnetic wave. A wave of polarization of a 
resonant medium is formed by nonlinear superposition of 
the reflected wave field and of the field of the traveling sur- 
face electromagnetic wave, so that the wave vector k of the 
polarization wave can be written in the form of Eq. ( 17). An 
equally important case is that of the excitation of a surface by 
standing surface electromagnetic waves. The method of so- 
lution of the optical Bloch equations for a bulk coherent 
response excited by standing waves can be found in Ref. 2. 
We can use the results given there to write down the relation- 
ships for the wave vectors participating in the process of 
nonlinear reflection, which can be done by analogy with Eq. 
( 17) but assuming that k ,, = k ,, = 0. 

We can similarly study the properties of light transmit- 
ted by the surface I; of an optical medium under selected 
conditions of illumination of this surface. In the case of a 
refracted wave, we find that Eq. ( 17) is replaced with 

k,=- (a/ c)  R sin 0 ,  cos (p,+21i,,, 

k,= (ole) ii sir1 0 ,  sill rpT+2kZY, (20) 

where 8, and p, are the refractive angles. In the limiting 
case of k, -0, ignoring nonlinear effects of refraction, we 
find from Eq. (20) the law of refraction of linear optics, i.e., 
sin 8, = ii sin 8,, where ii is a field-independent refractive 
index of the m e d i ~ m . ~ '  

$4. EXCITATION OF SURFACE ELECTROMAGNETIC 
WAVES. DISPERSION LAW OF NONLINEAR SURFACE 
POLARITONS 

The relationships obtained above include the wave vec- 
tor k, of a surface electromagnetic wave excited by an exter- 

nal pulsed light source. We shall now consider the properties 
of a surface electromagnetic wave in the case when the sur- 
face is illuminated with an external wave along the direction 
sj2' and the electric field intensity in this wave has the ampli- 
tude EA:'. We shall select a trial solution for a transmitted 
wave traveling along then axis in the form of a plane wave of 
amplitude EAZ,' (x,?) and with a wave vector k ,, = (w/c)ii,, 
where ii2 is the complex refractive index dependent on the 
amplitude EAZ,' and on the amplitude of the polarization 
wave D; in the illuminated part of the surface Z. The value 
of D ; is calculated from the equations of motion (2)  as a 
result of successive interactions with various parts of the 
surface of both the scanning beam and the surface electro- 
magnetic wave. 

The quenching theorem (7)  yields a formula relating to 
amplitude EA:' to the polarization of the resonant medium 
on the surface and it also gives the dispersion law of transient 
nonlinear surface polaritons. The term "transient nonlinear 
surface polariton" is introduced to distinguish those nonlin- 
ear surface polaritons which are due to transient processes in 
an optical medium when the quantum dipoles are induced by 
ultrashort laser pulses of duration much less than any of the 
relaxation times. In this case the phase memory of resonat- 
ing atoms is maximal and the relaxation terms can be omit- 
ted from the equations of motion (2) .  In our case a resonant 
medium has an arbitrary nonlinearity with respect of the 
field and the nonlinear polarization of this medium can be 
excited by fields which are separated in space and in time. 
We shall consider the Case of oblique incidence on the inter- 
face 2 of a single ultrashort laser pulse when the plane of 
incidence xz is fixed. The wave vector of the field in the 
medium is k, = - (w/c)ii sin 8, = - (w/c)sin p ;  then, 
the quantities in Eq. ( 15) simplify greatly. We shall assume 
that at a point x;,y; on the surface we have 
[ (ds+/ar l )  (ar1/dv' ) 1 ,  = 0; then, we find that 

The second term in the brackets vanishes if the point of 
observation lies far from the boundary 2. We shall not drop 
this term bearing in mind the need to investigate the bound- 
ary or surface region of a nonlinear medium. Equations of 
motion (2) can be used to find 6: , where 8, is the area under 
a laser pulse on the surface 2 at a point x; ,y; . For simplicity, 
we shall consider the case of thes polarization of the external 
wave. The quenching theorem (7)  yields the values of&' and 
E" and these can then be used to obtain the real refractive 
index n and the extinction coefficient x, so that the law of 
dispersion of transient nonlinear surface polaritons can be 
found. 

This dispersion law can be investigated as a function of 
changes in various parameters (angles of incidence of exter- 
nal radiation 8, = p,  depth of penetration of nonlinear sur- 
face polaritons into a nonlinear medium, duration of pulses, 
concentration of resonating impurity atoms, etc.). We shall 
study the dispersion law as a function of changes in the pa- 
rameter 8,. The dielectric properties of a nonlinear medium 
enter in the dispersion law, where they are represented by the 
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FIG. 4. Dispersion curves of transient nonlinear surface polaritons plot- 
ted as a function of the area under a pulse 0, incident on a surface: 1 )  
m = l . l ;  2) m = 0 . 5 ;  c/w,,r=O.l, cos6',=10W2, 6',=?rrn, 
b ,  = - 10-'/m. 

nonlinear polarization, which in turn is governed by the area 
8 ,  under a pulse at the boundary of the medium. If we as- 
sume that the field at the point xi ,y; is identical with the 
external field E :, and that the external pulse is rectangular, 
then in the case of weak fields we have cos 8, =: 1 and the 
dispersion law ceases to depend on the field, which agrees 
with the dispersion law of linear surface polaritons. Figure 4 
shows the dispersion curves for the real refractive index of a 
boundary region as a function of the parameter 8,.  Variation 
of 8, in a wide range of values m = 1.1-0.1 alters consider- 
ably the optical properties of the surface. A numerical analy- 
sis of the dispersion law of nonlinear surface polaritons 
shows that for selected values of 8, the extinction coefficient 
vanishes, indicating that undamped waves (solitons) can 
then travel along the surface. A second polariton branch 
appears beginning from m = 1, and this branch gradually 
broadens on increase in the parameter m. Therefore, smooth 
variation of 0, for fixed other parameters of the theory can 
result in excitation of nonlinear surface polaritons. An addi- 
tional criterion is then provided by the condition 
cos 8, = ( 1 - ii: ) ' I 2  which follows from the quenching 
theorem (7). 

$5. REFLECTIVITY OF AN INTERFACE BETWEEN TWO 
MEDIA CALCULATED ALLOWING FOR THE PHASE 
MEMORY OF THE SURROUNDING SURFACE 

The reflection law ( 16) allows us to determine the con- 
ditions under which a scanning beam is reversed to reach a 
point P (Fig. 3 ) .  We shall now calculate the electric field of a 
reflected wave using Eq. (4 ) .  Each part of the surface is 
illuminated twice for time intervals At, and At, first by a 
scanning beam and then, after a time T, by a surface electro- 
magnetic wave. If T, At ,, At2 4 T,, T i ,  where TI is the longi- 
tudinal relaxation time and T i  is the transverse irreversible 
relaxation time'.' of a system of surface atoms, then the con- 
dition for coherent interaction of light with the surface is 
obeyed and at a moment 27. we can expect afterglow of the 
surface Z directed toward the observation point P. The 

phase memory of the surface atoms is governed by the wave 
vector ( 17). We can calculate the field of the reflected wave, 
representing a coherent response of the surface atoms to the 
two-pulse interaction with light if we know the polarization 
wave D $ at moments after the end of the second pulse in a 
certain part of the surface. The induced polarization wave 
can be calculated during each of the light pulses by matched 
solution of the equations of motion for the atoms (2)  and of 
the equation for the field ( 1 ) . For each pulsed interaction we 
obtain equations that follow from the quenching theorem 
(7)  and have the relevant interaction parameters g,, a,, P I ,  
and y,. We must bear in mind that at the moment of arrival 
of the second light pulse on a certain part of the surface, the 
polarization of the medium differs from zero because it has 
been induced by the first pulse. Therefore, calculation of the 
polarization wave in a system of surface atoms resembles 
calculation of the microscopic dipole moment in the optical 
echo effect.", An important difference is the procedure of 
matching of the waves at the boundary of an optical medium. 
This procedure includes the following stages. 1)  The 
quenching theorem is used to find an equation relating the 
amplitude of an external wave to the polarization wave on 
the surface of the medium. The quantities u and v, governing 
the polarization wave, are found from the optical Bloch 
equations (2), where the exciting field is a certain field hav- 
ing a pulse area 8, at a point x; ,y; on the surface 2.  This field 
represents a nonlinear superposition of the reflected wave 
field and the field of the surface electromagnetic wave. When 
the conditions for reversal of the scanning beam are satisfied, 
we can find the quantitiesp, R ,, a , ,  PI ,  y,, andg, at the point 
x; ,y; on the surface 8. Using the generalized Lorentz-Lor- 
enz formula on Eq. (9),  we can express the complex refrac- 
tive index occurring in the quenching theorem in terms of 
the parameter 8,. After the curl curl operation on the coordi- 
nates of the observation point, we obtain the differential 
equation the solution of which allows us to find the relation- 
ship between 8, and the amplitude of the external wave. 2) 
The generalized Lorentz-Lorenz formula (9)  is then used to 
find the refractive index n and the extinction coefficient x of 
the surface after the end of the second pulse. Selecting suit- 
ably the conditions for such two-pulse illumination of the 
surface, we must satisfy the law of reflection ( 19) with rel- 
evant values of n and K on the surface of the investigated 
optical resonant medium. 

It follows from Eq. (4)  that the electric field intensity in 
the reflected wave can be described approximately by 

ER= [ c 2 / a 2 ( i j a - I ) ]  (nig, 1 a,/31-y 121-'G) rot rot (D2evP) , (21 ) 

where ii is the complex refractive index of the surface of a 
resonant optical medium, which depends nonlinearly on the 
polarization of the medium after the end of the second excit- 
ing pulse. In the linear approximation [when D,+ in Eq. (9)  
is a linear function of E,,] we can ignore the effects of the 
phase memory of the surface atoms and then Eq. (21 ), for a 
fixed plane of incidence, reduces to the Fresnel reflection law 
for the intensity of the electric field in the reflected wave. 
Equation (20), together with the formula ( 19) for the direc- 
tion of propagation of the reflected wave, describes the prop- 
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erties of a nonlinear mirror operating on the basis of the 
phase memory of the reflecting surface. We shall calculate 
the reflectivity of this mirror, selecting the reflecting surface 
of a ruby crystal activated with Cr3+ crystals. Applying the 
formulas from Eq. (IS), we find the reflectivity of the inter- 
face between vacuum and a nonlinear resonant medium 
R = lE 1 2/IE hi' 12, where E A:' is the amplitude of the elec- 
tric field in the scanning beam. In the case of the s polariza- 
tion of this beam, when the coherent response of the crystal 
surface is formed by a standing surface wave, we obtain the 
following formula from Eq. (2 1 ) : 

R= [ ( l -  w2)  / (E::') '1 ( D r q 2  cos4 e14n2 (6'-1) -', (22) 

where w is the inversion of the surface atoms which have 
interacted extensively with two light pulses. We shall as- 
sume that the fields on the surface are such that the areas of 
the pulses are 8 = n-/2 and 8 :' = n. It follows from the 
results in 94 that we have n -+ 1 in the limit 0 ? + n  when the 
extinction coefficient is x -0. The quantity E A:' can be esti- 
mated if we assume that x& Aj'Dv,, ~ n / 2 .  When the beam 
diameter is D = 0.1 cm and the scanning velocity is v,, = lo6 
cm/sec, we shall assume that E A:' = 1 cgs esu; then, a non- 
linear mirror utilizing the phase memory of a reflecting sur- 
face with a phase conjugacy of the wavefront of a scanning 
beam can have a high reflectivity (R -+ 1 ) if the optical prop- 
erties of the surface of such a resonant medium are modified 
suitably by a surface electromagnetic wave. 

We have thus investigated some laws governing a co- 
herent interaction between ultrashort light pulses and the 
surfaces of a resonant medium when the phase memory ef- 
fects are exhibited by surface atoms. The example of a two- 
pulse excitation of the surface by a scanning beam and a 
traveling surface electromagnetic wave is used to show how 
the problem can be solved completely, i.e., how the reflectiv- 
ity of the surface can be calculated. The proposed procedure 
for the calculation of the optical properties of surfaces can of 
course be generalized to more complex cases in which three 
or more exciting laser pulses are used. 
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