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The quantization of the chromoelectric flux and action of a relativistic string is derived from 
the condition of uniqueness of the solution of the effective field equations for the hadron phase 
of quantum chromodynamics. 

1. INTRODUCTION 

In a recent paper' an approximate method of calculat- 
ing hadron field correlators, based on the 1/N expansion and 
the quasiclassical approximation, was considered. In the 
framework of this approach the effective two-dimensional 
action S,, for the correlation functions of gauge-invariant 
operators was obtained. The Euclidean field equations asso- 
ciated with this action possess a topologically nontrivial so- 
lution. From a physical point of view, this solution described 
the chromoelectric field of an open, infinitely thin relativis- 
tic string with quarks at its ends and with a bare tension 
coefficient. In the present paper it is demonstrated that, be- 
cause of the topological properties of this solution, quantiza- 
tion of the chromelectric flux and of the action of the string 
arises. 

In Sec. 2 we give the basic stages of the derivation ofS,, 
and its explicit form. In Sec. 3 we give a description of the 
solution of the Euclidean field equations, with the accent on 
topological arguments. Section 4 is devoted strictly to the 
derivation of the quantization of the flux and action in the 
nonperturbative phase of quantum chromodynamics 
(QCD). In the Conclusion it is noted that when we take the 
limit of the Abelian theory all the pheomena considered dis- 

are regarded as the field operators of composite c--tended 
mesons. Here a, p are combined indices of the Lorentz 
group O(4) and the internal-symmetry group; c and c' are 
indices of the gauge group SU(N).  The integration over z, 
in formula (3) is performed along the contour r joining the 
points y and y' in the Euclidean space R 4. 

We shall list briefly the main stages of the derivation of 
S,,. Neglecting the quark loops (the 1/N expansion) and 
their spin, one can represent2.' the connected part of the 
correlator ( 1 ) as 

-z bP fi 5 Dx,{~xP [-  $I I d.l ($ + Am2) ]  
perm 9-1 TI 

where 

appear. and 6, is the parity of the permutation of the Fermi fields. 

2. THE EFFECTIVE ACTION The integration contour r in the expression ( 5 ) is shown in 
the figure It consists of the contours ri ( i  = 1, ..., n ) that are 

In Ref in the framework of the 'IN expansion (N is contained in the operators M ( r i  ) and whose ends are linked 
the number of cO1ors), the effective action 'eff for the by the quark trajectories xp ( y ) .  In leading order in 1/N it is 
clidean correlation functions was obtained: necessary to take into account only planar gluon diagrams. 
K(1,. . . , n)=B-' 5 dp(A)D$ D+{~xP[-SY-,(A, lp) I This means that in the integral 

x [ ~ ( r ~ ) . . . M ( r , ) i } ,  (1)  
where 

B = Jdp (A) D* D$ exp (-s,-,), 

s,-, (A, 1) = J d ' ~ { ~ / . ~ ; ~ , ~ + + ( i r . ~ . - m ) l p } ,  ( 2 )  

h" 
D,=d,+ie - A:=a,+ieA,. 

2 
The gauge-invariant quantities appearing in formula ( 1 ), 

~ ( r )  = ~ , @ ( r )  U' I: 4 K-. 
h" 

( s f )  [P eXp (-ie - dz,, A; (z) )] , ( PI;. I .  The contour r corresponding to the correlator ( 1 )  in four-dimen- 

1 
LC' sional space. The vertical lines depict quark trajectories and the horizon- 

(3)  tal lines depict the paths of integration in formulas ( 3 )  and ( 1 ). 
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(OW) ),=B-' J dp(A) s~p[-Sy-w (A) 1 

it is necessary to sum only over a certain subclass of the fields 
A  f: whose contribution is the most important in the indicat- 
ed approximation. In Ref. 1 this subclass was defined as fol- 
lows." We consider in R an arbitrary two-dimensional sur- 
face 2 ,  without holes or handles and resting on the contour 
I'. The surface is specified by the equation x, = z, ( p i  ), 
where p = 0, 1 ,  2, 3, and i = 0 ,  1 .  We shall determine the 
tangent components A  ; ( q )  = (6'2, /aqi )A f: ( z ( p )  ) of the 
fields. 

The approximate calculation of the average ( 6 ) ,  ac- 
cording to Ref. 1 ,  reduces to integration over A ; ( p )  
=A P(2) for a fixed surface 2 and subsequent summation 
over all surface 2 with the boundary 8 2  = I', i.e., 

(7 )  
Here, 

whereg = detgik , gik ( 7 )  = (Jz, /8rli ) (az, /apk ) being the 
metric tensor on 2. In order that the action ( 8 )  be dimen- 
sionless, we have changed the normalization of the fields in 
accordance with 

where d  is an arbitrary constant with the dimensions of 
length, E is the bare dimensional charge (the symbol - is 
henceforth omitted). Next, we represent O( r) in the form 
of an integral over the Grassmann fields 6, ( y  ) ( c  = 1 ,.. . ,N)  
(Refs. 2 , 4 ) :  

Here it has been taken into account that A, dz, [77(y) I 
dv 

- 8  . 
The variable y  parametrizes the closed contour I' = 8X, 

by x, = x,, ( y ) ,  and varies monotonically from zero to uni- 
ty, with x,, ( 0 )  = x, ( 1 ) .  After this, each term in the sum 
over permutations in ( 4 )  is written in the form 

n 

where 

s e , f = s o  (5) +SY-M (A) +S (E) 

The term S ( 6 )  has arisen from the total contribution of 
the ordered exponentials from the operators ( 3 )  and the 
quark propagotars. The action ( 14) takes into account the 
above-the-vacuum excitations generated by the operators 
( 3 ) .  It is invariant under arbitrary transformations of the 
coordinates rli and y. The kinetic quark term S,(x)  is invar- 
iantunderthereparametrization5 y  + y' = f ( y ) , A  -A ' = A / 
f( y ) .  The Euclidean involution operation 

ensures that S ( 6 )  is real. 

3. EXACT SOLUTION OF THE EUCLIDEAN FIELD 
EQUATIONS 

The leading quasiclassical approximation is determined 
by the contribution of the classical fields2' to the correlator 
(4):  

K ( 1 , .  . . , n) -iEcci (I) E:" (O)exp[-Setf (Aci', p i ,  xef, Aei) 1. 
( 1 6 )  

The equations of motion for these fields are obtained by var- 
iations of S,, ( 14). For the field A  4 we have the Yang-Mills 
equation on the surface 2: 

The surface term from the variation of S,-, is combined 
with the result of varying SS(c) /SA and leads to a bound- 
ary condition for the stress tensor on 8 2  = I': 

here eit is the two-dimensional antisymmetric unit tensor. 
The quark color-spin vector 

is real by virtue of the definition ( 15).  The classical Grass- 
man field e' ( y  ) appearing in it obeys the equation of motion 
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From formulas ( 2 0 )  and ( 2 1 )  follows the equation 
dT' 
-- &fbCA,DT" - = 0, (P)' - const. ( 2 2 )  

dy d~ 

The formal solution of Eq. ( 2  1 ) is expressed in terms of an 
ordered exponential: 

which is an element of the group S U ( N ) .  The field c' ( y )  is 
defined only on the boundary dB = I' and realizes a map- 
ping of the closed contour I' into the group S U ( N ) .  Since 
S U ( N )  for N ) 2  is simply connected, this mapping is topolo- 
gically trivial, i.e., P ,  ( S U ( N )  ) = 0. An exception is pro- 
vided by the case of the subgroup U ( 1 ) ,  for which 
P ,  ( U( 1 )  ) = P ,  ( S  I )  = Z,  where Z is the group of integers. 
Here, T ,  is the homotopy group of the mappings. 

It is known that the stable field configurations are topo- 
logically nontrivial solutions of the classical equations. 
Therefore, we shall consider the exact solution of Eqs. ( 18),  
( 19), (21 ), which spontaneously breaks the gauge group 
S U ( N )  to the local subgroup U(  1 ). 

We shall start from the ansatz 

G". ik ( q )  =gimgklG,l"=heiV ( q )  / [ g  ( q )  ] I h ,  ( 2 4 )  

where il is a constant factor, and 1" ( 7 )  is a function of vi 
that belongs to the adjoint representation of S U ( N ) .  Substi- 
tution of ( 2 4 )  into Eq. ( 18) gives 

i.e., the quantity ( 2 4 )  will be the solution of Eq. ( 18) if the 
vector I" ( 7 )  is covariantly constant. From the boundary 
condition ( 19) it follows that il = E and 

We note that in two dimensions the Bianchi relation 

DYbGi; ( q )  +DinbGklb ( q )  +DcbGL? ( q )  =O 

is fulfilled identically for the antisymmetric tensor G 2,. 
Thus, the field intensity has the form 

Q. ' y q )  =EeikZ" ( q )  l [ g  ( q )  

G i k a  ( l )  =~eik[g ( q )  ]''la ( q ) .  

We now determine the two-dimensional potential A ~ ( v )  
corresponding to ( 2 7 ) .  To begin we go over to a gauge in 
which the vector 1° ( 7  is constant. Since Ia ( 7 )  is defined on 
the open surface Z and satisfies Eq. (25 1, this can always be 
done. The expression 

where ai ( 7 )  is an Abelian field, satisfies Eq. (25 ). 
Substituing ( 2 8 )  into ( 9 ) ,  we have 

This expression will satisfy Eq. ( 18), i.e., will coincide with 

formula ( 2 7 ) ,  under the following condition: The quantity 
dual to Fik should be constant: 

This relation is not changed under arbitrary transformation 
of the coordinates 7 , .  Substituting the ansatz 

(which corresponds to the Lorentz condition a:, = 0 )  into 
the relation ( 3 0 ) ,  we obtain an equation for the function 
A ( 9 ) :  

g-lhai (g'"gikakA) =x .  ( 3 2 )  

The nontrivial solution of Eq. ( 3 2 )  for A ( 7 )  is found by 
going over to conformal coordinates. Then the equation will 
be satisfied if we set 

where g, is the metric of a surface of constant scalar curva- 
ture R, f is an arbitrary function satisfying the condition 
Af = 0, and A is the Laplacian in conformal coordinates. 
Thus, the equation of motion ( 18) has a solution of the form 
( 2 7 ) ,  ( 2 8 )  only on a surface of constant scalar curvature3' 
IR I = 2E2. Surfaces of other types do not provide an extre- 
mum of the action S,. ( 14).  

With the world tensor ( 2 7 )  we can associate a Lorentz 
O ( 4 )  tensor in accordance with 

az,, az, 
G, ,""(z(q))  =--- G"sik ( q )  . 

allL dqk  

We then obtain the expression 

where 

which coincides with the field intensity of a chromoelectric 
hadron string. Such a field was studied earlier in Refs. 7 ,  3, 
and 8, but its derivation from first principles of quantum 
theory was less systematic from a logical point of view than 
here. 

We shall determine the contributioli of the classical 
fields to S,, ( 14).  Substitution of the expression for G Pk 
( 2 7 )  into S,., ( A )  gives 

where A ( Z )  is the area of the surface B swept out by the 
string. The quantity 

where C2 ( F )  is the Casimir operator of the fundamental rep- 
resentation of S U ( N ) ,  plays the role of the bare tension coef- 
ficient of the string. It has the same structure as in lattice 
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gauge the~r i e s .~  The term S(r' ) does not make a contribu- 
tion to S,,, since it vanishes by virtue of the equation of 
motion (2 1 ). In the calculation of the kinetic quark term 
S,(x) it is necessary to take into account that the quarks 
situated at the ends of a string form parts of the boundary 
dB. By virtue of this, we write 

iz = ---- = 
dq' dqk dy dy 

gik(q ( 7 )  )G'Gk. 

The variation of the quark action 

with respect to 7' ( y )  leads to the equation of motion of a 
quark (in the natural parameter y = s) 

Variation with respect to A gives A'' = ( i , ~ ' ) ' / ~ / r n .  Taking 
this into account, we can express the kinetic term in (14) in 
terms of the length I of the quark trajectory: 

the form of which is determined by Eq. (38). 
As a result the correlator K (  1, ..., n) takes the form 

n 

=itc'' (1) E~"' (0) { e q [  -kJ (x) -z m q l q ] }  V. (40) 
'2- 1 

Here the factor Y takes into account all the nonleading (in 
1/N) contributions that arise from allowance for Gaussian 
fluctuations about the classical fields. Amongst these contri- 
butions, in particular, are sums over surfaces and quark tra- 
jectories (see formula ( 13 ) ), over zero modes, etc. 

To conclude this section we shall give a short explana- 
tion. The final answer for the correlator (1) should be a 
function of the contours ri ( i  = 1, ..., n) ,  while the area of a 
surface of constant curvature is a function of the entire 
boundary dZ = T, which includes not only the ri but also 
the quark trajectories. However, after these trajectories have 
been found (by solving Eqs. (38) ), they become functions of 
the ends of the contours I?, . This classical problem, like the 
problem of the determination of the coordinates of the sur- 
face B (the position of which is also determined by the con- 
tours Ti ), can be fully solved, if this is desired, but this is not 
the purpose of the present paper. 

4. QUANTIZATION OF THE CHROMOELECTRIC FLUX AND 
ACTION 

According to Eq. (21 ) the classical color spinor (the 
fundamental representation of SU(N)) ,  defined on the 
boundary dZ = r ,  is covariantly constant. As follows from 
the preceding section, into Eq. (2 1 ) it is necessary to substi- 

tute the gauge field A :(v) (28 ), which is the exact solution 
of the Yang-Mills equation ( 18 with spontaneous breaking 
of the gauge symmetry SU(N) to U( 1 ). According to the 
boundary condition ( 19), (26), the color vector (the adjoint 
representation of SU(N))  onthe boundary is replaced by 
the kernel (20) of the integral operator of the quark color 
spin, i.e., 

( ( y  y = i t *  / c d d ~  = (41) 

The action of such operators in the space of holomorphic 
functions f(( * and the action of a product of operators are 
specified by the  formula^'^ 

(43) 
(The extra factor i has arisen because of the Euclidean con- 
jugation rule ( 15) and ensures that the integration measure 
is real. ) By means of the expression (43 ) one can check that 
the quantities (20) satisfy the algebra of SU(N): 

and that 

where C,(F) = ( N  ' - 1 )/2N is the Casimir operator, and 
N 

is the kernel of the unit operator in the fundamental repre- 
sentation. 

Application of formula (42) to the right-hand side of 
the equation of motion (21 ) leads to the following result: 

Solving this equation, we obtain 

where the phase 
V V 

d rl ' 
~p ( 7 )  =Cz ( F )  j ds ds a* ( q )  = 1' j dsa. (48) 

0 0 

does not depend on the index c = 1, ..., N, this beinga conse- 
quence of the spontaneous breaking of theSU(N) symmetry 
to U( 1 ). The phasep ( y)  forms mappingss ' -S ', which can 
be decomposed into homotopy classes characterized by a 
winding number Q, since for the mappings the homotopy 
group T, (S ' ) = 2. In other words, for the spinor (47) to be 
single-valued as a function of the parameter y it is necessary 
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to require that the result of going round a closed contour 
lead to a phase that is a multiple of 2 ~ ,  i.e., 

Mappings of a given class cannot be continuously deformed 
into mappings of another class without destroying the sin- 
gle-valuedness of (= ( y )  . 

The relation (49) leads to quantization of the chromo- 
electric-field flux 

Using the expressions (30) and (36) we find that the action 
S ,-, (Ac' ) is also quantized: 

Another quantity that takes discrete values is the area A (8) 
swept out by the string: 

We note that, despite the relation (36), the action S,- 
, (Ac')  does not in fact depend on the magnitude of the 
arbitrarily introduced scale parameter d. This is a conse- 
quence of the fact that, according to (33), the surface I: has a 
constant scalar curvature R - l/d 2.  

The topological number Q can be written in an explicit- 
ly gauge-invariant form, using the last equality of (50) and 
(27): 

At the end of Sec. 3 we used a gauge in which the vector 
I" was constant. By means of gauge SU(N) transformations 
it is possible to rotate the vector locally from point to point. 
The dual quantity *Fis an invariant under such transforma- 
tions (see (53)),  despite the fact that its concrete relation- 
ship with the gauge-noninvariant quantities ai (7) and 
I" (7) depends on the choice of gauge. For example, if to the 
quantity (28) we apply a transformation from an SU(2) 
subgroup, then *F  is written in terms of new quantities a,! 
and I"' as 

The relation (50) gives the gauge-invariant flux of the 
field Fik . One quantum of this flux is equal to 

cDo=2nhc/C2 (F). (54) 

(If we had followed analogies with the theory of supercon- 
ductivity and considered the flux of the (total) field G:k 

(29), we should have obtained a gauge-noninvariant expres- 
sion for a,, which, moreover, would have contained the bare 
charge E ,  which is unreasonable.) It can be seen from the 
expression (54) that with increase of the number N of colors 
the flux quantum @, decreases, since 

By means of global SU(N) rotations it is possible to go over 
in a continuous manner from one value of lc (0) in formula 
(47) to another. This freedom of choice of lc (0) does not 
correspond to yet another homotopic classification. The sit- 
uation somewhat resembles that in the CP, model, but there 
is an important difference. In the CP, model the spinor field 
is specified on the entire surface, whereas in our case lc ( y) is 
defined only on the boundary ax. Henceforth, in calculating 
quantum fluctuations, one must regard the quantity l: ' (O) 
as the zero Grassmann mode and integrate over it. 

5. CONCLUSION 

In the preceding sections we have described a topologi- 
cally nontrivial solution of the Euclidean field equations that 
spontaneously breaks the gauge group SU(N) to the local 
Abelian subgroup U( 1 ) . The non-Abelian structure of the 
theory was used at the following points: 

1) the 1/N expansion in the number of colors in the 
derivation of S,, ( 14); 

2) the intensity G:k (7) (27) is expressed in terms of 
the vector I" (q ) ,  the magnitude of which is determined, 
with allowance for the boundary condition (26), by the col- 
or spin of the quark. This spin is nonzero for N>2 and there- 
by ensures a nonzero value of the intensity (27); the require- 
ment of covariant constancy of the vector I" (7) follows 
from the non-Abelian equation ( 18); 

3) the quantization of the action and of the flux @ is due 
to the single-valuedness of the color spinors lc (y)  defined 
on the closed contour r. We note that the quantities {, (y) 
themselves appear only in the non-Abelian theory (formula 
( 11 ) ). Thus, in the Abelian case we would have neither S,, 
( 14), nor flux quantization, nor the very field configuration 
that describes the bare string. 

The solution considered is nonperturbative in the 
charge E.  This follows from the fact that the metricg, (7) in 
terms of which the field A q(q) is expressed (see formulas 
( 18)-(33)) is the solution of a nonlinear equation (in con- 
formal coordinates, the latter reduces to the Liouville equa- 
tion). The topological classification should ensure stability 
of the solution. Together with the fulfillment of the quasi- 
classicality criterion Ssfi for Q >  1 this gives grounds for 
hope that the quasiclassical approximation can be success- 
fully applied (on the basis of the solution described) to the 
calculation of the remaining integrals ( 13) in terms of which 
the hadron correlators ( 1 ) are expressed. 

"The subclass of two-dimensional fields is distinguished from other field 
configurations in that it is this subclass which contains a topological 
section whose homotopy classes are characterized by the number Q (see 
Sec. 4) .  
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"The method of steepest descent in the presence of Grassmann variables is 
considered, e.g., in Ref. 6. 

3'This question is considered in more detail in Ref. 1. 
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