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The geometry of the early universe in the process of transition from the vacuum-dominated 
stage characterized by the equation of statep = - E to the radiation-dominated stage is 
discussed. The description of the geometry of the universe in the E = const stage (Guth model) 
by the nonstationary form of the de Sitter metric with exponentially increasing scale factor 
a ( t ) ,  which is interpreted as the scale of the universe, is based on the use of Lagrangian 
coordinates and a synchronous reference system comoving with the vacuum as the source of 
the geometry. This is inconsistent with the relativistic definition of the vacuum based on the 
absence of a distinguished frame of reference associated with it. In inflationary scenarios with a 
very slowly varying vacuum energy density at the start of the transition the universe remains 
vacuum dominated, and in the continuation of the &=:const stage the quantity a ( t )  describes 
mutual separation of test bodies, and in a vacuum-dominated universe this does not define the 
scale factor. This makes the estimates of the size of the universe at the end of the inflationary 
stage ambiguous. A study is made of a phenomenological cosmological model that describes 
the geometry of the universe in the course of the transition from the vacuum-dominated stage 
to the radiation-dominated stage. In this model it is not assumed that there is a stage with a 
very slow variation of the vacuum energy density at the beginning of the transition and in 
which the duration of the transition and the scale of the universe at the end of the transition 
stage are obtained by matching the transition metric to the metric of the standard Friedmann 
model and are expressed in terms of observational characteristics of the universe. Comparison 
of the results with the predictions of inflationary scenarios shows that the question of the 
determination of the scale factor for a universe that passes through a vacuum-dominated stage 
in the course of its evolution requires further investigation. 

The problem of the initial state of the universe is one of 
the most intriguing problems of physics and astronomy. The 
standard Friedmann cosmology describes well the evolution 
of the universe, but there exist observational facts that it does 
not fully explain. First, there is the isotropy and homogene- 
ity of the universe on large scales. This problem is usually 
formulated as the horizon problem. The homogeneous and 
isotropic Friedmann cosmology describes the geometry of 
the universe in a system of reference that is comoving with 
the matter, which moves at each point in a well-defined stan- 
dard manner as a cosmological fluid with 4-velocity u, . The 
time coordinate-the universal time-is chosen in such a 
way that at each instant of this time the metric is the same at 
all points and in all directions and is normalized in such a 
way that goo = 1; then it determines the proper time of a 
"fundamental observer" moving together with the matter 
with velocity u, . The absence of distinguished directions 
gives go, = 0. 

In the synchronous and cornoving system of reference 
chosen in this manner, the Friedmann metric, written in the 
Robertson-Walker form, is 

The dot denotes differentiation with respect to the time, G is 
the gravitational constant, c is the velocity of light, E is the 
energy density, andp is the matter pressure. At small t, the 
scale factor behaves as 

where fl characterizes the equation of state of the matter, 
p = f l ~ ,  and takes values O@< 1 In accordance with ( 1 ), 
during the time from the beginning of expansion to any finite 
tiine, to light can traverse only the finite distance 

1. 

~ . - a ( t ~ )  c a-l ( t )  d t .  (4) 
0 

i Because of this, sufficiently distant regions in the universe 
cannot exchange signals during the course of the expansion, 
and one must consider why the universe is so homogeneous 
and isotropic on large scales. 

Second, there is the flatness problem, which is as fol- 
lows. Given the very moderate difference between the cur- 

dsz=c2dtz-aa ( t )  [ d? -'+? (d62'sinz 'w)  ]. ( l ) rently observed density of the universe and the critical den- 
Here, r, 6, q, are the Lagrangian coordinates of the moving sity corresponding to the spatially flat model, it follows that 
matter; the scale factor a ( t )  determines the distances in the limit t-0 the matter density was close to the critical 
between any pair of fundamental observers; and the values value with extremely high accuracy. For k = 0, the mean 
k = 0, + 1, - 1 correspond to the spatially flat, closed, and matter density in the universe satisfies the relation 
open Friedmann models. The metric ( 1 ) satisfies the Fried- 
mann equations (Ref. 1, p. 47) 
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during the course of the entire evolution of the universe. As 
follows from Eq. (2b), the deviation of the density of the 
universe from the critical value varies during the evolution 
in accordance with the law. 

If we extrapolate the behavior (3)  of the scale factor to very 
small t, it is easy to see that J- 0 as t - 0. 

In 1981, to explain the flatness and horizon problems, 
Guth proposed the model of an inflationary universe4 based 
on the properties of phase transitions in gauge theories with 
spontaneous breaking of the vacuum symmetry. In accor- 
dance with this model, there exists in the history of the early 
universe a stage in which the universe is, as a reuslt of strong 
supercooling, in a symmetric vacuum state in which the en- 
ergy density of the relativistic particles is negligibly small 
compared with the vacuum energy density E = Ac2/ 
8n-G = const, where A is the cosmological constant. In such 
a situation, the physical state of the universe is characterized 
by the equations.6 

p=-E, (7) 

and the geometry is described by the de Sitter metric, which 
Guth writes in synchronous coordinates in the form ( 1) for 
k = 0. Then the gigantic exponential increase of a ( t )  in ac- 
cordance with the law 

a ( t )  =ao exp (Hot), Ho= (A/3) " (8) 

is interpreted as the inflation of a small causally connected 
region to a dimension that by many orders of magnitude 
exceeds the radius of the observable part of the universe, and 
this solves the horizon problem. After the inflation there 
must occur phase transitions with powerful energy release 
and production of entropy, these ensuring ultimately the 
transition to the radiation-dominated stage of the standard 
hot Friedmann model. 

The flatness problem is solved in Guth's model by the 
choice from the very beginning of the spatially flat metric 
with k = 0. Generally speaking, the de Sitter metric pro- 
duced by a vacuum with nonvanishing constant energy den- 
sity E can be written in the form ( 1 ) for all three values of 
k.3,7 We consider the geometry produced by the vacuum 
with the equation of state (7)  and described by the de Sitter 
metric in more detail. 

A universe described by the metric ( 1 ) with k = 0 and 
a ( t )  = aoexp(Hot) is stationary (Ref. 1, p. 135) in thesense 
that all its local properties are independent of the time. A 
scale transformation in combination with a shift of the ori- 
gin, - - - - 

r=r exp (Hoto) , t=t-to, (9) 
leaves the geometry unchanged. During the entire state de- 
scribed by the solution (8) the equation of state of the vacu- 
um has the form (7)  and remains unchanged. Therefore, 
during the entire stage of exponential inflation the metric 
(1) can be reduced to the static form described by the de 
Sitter interval (Ref. 8, p. 353 of the Russian translation) 

ds2= (i-?/ao') c2dt2-dP (4-3/aoP)-'-P (de2+sinP edcp'), 
(10) 

where 
ao2=3c2/A=3c'/8xG~o, 

by means of the Lemaitre-Robertson coordinate transforma- 
tion 

r=F(1-?2/ao2) - I b  exp (-tcla,), t=T+'12ao In (1-rz/a2). 

The situation is not changed if from the very beginning the 
metric ( 1 ) is chosen with arbitrary value of k. As is shown in 
Ref. 7, the condition p = - E is a necessary and sufficient 
condition for one to be able to reduce the Robertson-Walker 
metric ( 1 ) to the form ( 10) for all k. 

The de Sitter metric written in the form ( 1)  formally 
satisfies the Friedmann equations written in the synchro- 
nous reference system comoving with the expanding matter 
that creates the given geometry. On the other hand, the 
equation of state (7)  characterizes the vacuum, i.e., a form 
of matter which is determined by the absence of a distin- 
guished system of reference associated with it. A vacuum or 
vacuumlike state characterized by the equation of state ( 7 )  
is completely described from the macroscopic point of view 
within the framework of general relativity and corrresponds 
to one of the terms of the classification scheme of energy- 
momentum tensors in accordance with the types of the alge- 
braic structures (Ref. 5, and Ref. 9 , §  19). The vacuum ener- 
gy-momentum tensor 

is diagonal in any orthogonal frame, i.e., any system of refer- 
ence is comoving for the vacuum, the concept of a velocity 
relative to the vacuum has no meaning, and in this respect a 
vacuum that possesses a nonvanishing energy density be- 
haves in the same way as an ordinary vacuum with E = 0. 
Indeed, for the motion of any test body in a vacuum the 
system of reference comoving with it is also a comoving sys- 
tem for the vacuum. Therefore, everything that happens in it 
is independent of its velocity, i.e., the principle of the relativ- 
ity of the velocity is satisfied, as for motion in an ordinary 
vacuum with E = 0.537 

The question arises of whether it is correct to interpret 
the quantity a ( t )  defined by the relation (8)  as scale factor 
determining the size of the universe. Such an interpretation 
is based on the use of Lagrangian coordinates and the syn- 
chronous system of reference comoving with the vacuum as 
the source of the given geometry, but this, in accordance 
with what was said above, is inconsistent with the definition 
of the vacuum based on the principle of relativity of the ve- 
locity and on the absence for the vacuum of a distinguished 
comoving system of reference. Therefore, in the vacuum- 
dominated universe a ( t )  does not characterize the expan- 
sion of the matter of the radius of the universe, as in ordinary 
cosmology, but only the choice of the coordinate system, a 
conclusion that is confirmed by the possibility of reducing 
the metric to the static form.7 Formally, one can use a syn- 
chronous coordinate system (like any other), but questions 
arise: by what bodies can it be realized as a system of refer- 
ence?" To whom is it comoving? How can the matter pro- 
duced in the process of the phase transition know that it has 
been produced in a universe that has already been inflated to 
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a radius of lo7' cm (Ref. 4)? And how can this quantity be 
measured? 

According to Ref. 4, during the entire state of exponen- 
tial inflation nothing happens to the universe apart from the 
gigantic increase in a ( t ) .  But to an empty (without matter) 
universe in which nothing occurs except an inflation that can 
be eliminated by a coordinate transformation it appears nat- 
ural to apply Birkhoff 's theorem,' according to which any 
sperhically symmetric gravitational field in vacuum (and in 
the presence of a cosmological constant A = const #0)  is 
static. 

According to general relativity, the geometry of space- 
time is generated by the motion and distribution of matter. 
How can matter to which nothing happens give rise to such 
grandiose geometrical changes? In inflating the vacuum at a 
constant value of the Hubble parameter H,, Guth effectively 
uses the fact that nonstationarity is a characteristic property 
of the synchronous reference system itself (Ref. 2, p. 368). 
In such a case, the inflation of the vacuum is a coordinate 
effect, and the impossibility of associating with the vacuum a 
distinguished comoving system of reference suggests that 
this inflation is fictitious. 

Thus, the possibility of describing the real universe in a 
vacuumlike state withp = - E and E = const by the metric 
( 1 ) with an exponentially increasing scale factor a ( t )  that is 
interpreted as the radius of the universe raises doubts. Rath- 
er, one should conclude that any de Sitter stage character- 
ized by the equation of statep = - E when E = const is es- 
sentially static. 

On the other hand, in the de Sitter universe the gravita- 
tional effect of a medium that satisfies the equation of state 
(7)  leads to mutual separation of test bodies (in all coordi- 
nates, see Ref. 8, p. 357 of the Russian translation). This 
property makes the de Sitter universe unstable with respect 
to transition of the vacuum into matter.7.10.11 It is this physi- 
cally nonstationary process that can be meaningfully regard- 
ed as the cause of the transition from the static de Sitter 
universe to the nonstationary expanding Friedmann uni- 
verse. In other words, if one can speak of a stage of evolution 
characterized by an expoential dependence of a ( t ) ,  then the 
duration and development of this stage must be determined 
by the produced matter, i.e., such a stage is possible, not 
before, but during the phase transition, when the vacuum 
decays and relativistic particles are produced and heated. 

It is in this form that the problem is posed in modern 
scenarios of an inflationary universe (Ref. 12, p. 209). The 
results and prospects for the development of inflationary 
models and details of the modern formulation of the infla- 
tionary scenarios are presented in the review of Ref. 12. In 
these scenarios, the right-hand side of the Einstein equations 
is in fact the center of attention; for in these scenarios one 
investigates the physical conditions and puts forward defi- 
nite mechanisms for the realization of a stage in the evolu- 
tion of the universe in which its physical state is character- 
ized for a certain time by an equation of state close to ( 7 ) ,  
while the geometry is described by a metric close to the non- 
stationary form of the de Sitter metric and having the form 
(Ref. 13, p. 961) 

aaa0 erp [I ~ ( t )  dt 1. 
0 

At the present time it is assumed that a stage of exponential 
inflation in the early universe can be produced by quantum 
corrections to the gravitational field equations that are qua- 
dratic in the curvature tensor3." and by various scalar fields 
(see Ref. 12 and the references given there). An investiga- 
tion of multicomponent de Sitter stages produced by the 
joint influence of scalar fields and quantum-gravitational ef- 
fects was made in Refs. 14 and 15. Questions related to the 
generality and conditions of realization of the inflationary 
stages of the expansion are investigated in detail in Ref. 16, 
where it is shown that for a large class of solutions the uni- 
verse enters a regime in which the equation of state tends to 
Eq. (7 ) .  

A characteristic feature of modern inflationary scenar- 
ios is the existence of a stage of very slow variation of the 
vacuum energy density or the potential V(p) of the scalar 
field at the beginning of the transition of the vacuum into 
matter, the values of E or V(p) hardly changing during this 
period. V(p) =: V,, while the equation of state has the form 
p = - V, (see, for example, Ref. 12, pp. 195, 201, 204, and 
also Ref. 17, where this assertion is formulated directly in 
the abstract). During all this time the universe expands ex- 
ponentially, just as before the onset of the transition (Ref. 
12, p. 195), and it is precisely the fulfillment of the condition 
V(p) =:const which ensures the inflationary regime. During 
the stage of the slow variation of the vacuum energy density 
or the scalar field potential V(q) the expression of the solu- 
tion to the Einstein equations that determines the geometry 
of the universe effectively corresponds to fulfillment of the 
condition E = const. For example, in the random inflation 
scenario a ( t )  is determined by the expression 

which for small t gives (Ref. 13, p.962). 

a ( t )  --a, exp[ (2d.13) "cp~ZtlMpll 

whereq, is the value of the scalar field at t = 0, andR /4 is the 
constant coefficient of the term proportional to q, in the 
scalar field potential V(q). 

In such a case, we must again consider the question of 
the correctness of interpreting a ( t )  as the scale factor deter- 
mining the size of the universe (its radius in the case of the 
closed model), since as long as the equation of state is near 
p = - E the universe remains vacuum dominated and Eq. 
(2a) actually describes the mutual separation of test bodies 
and a ( t )  characterizes their relative distances. If a ( t )  is to be 
interpreted as a scale factor, one must choose as system of 
reference the space-filling matter itself (Ref. 2, p. 458; Ref. 
18, 894; Ref. 19), and such matter still remains a vacuum in 
the stage E = V(p) zconst. Since the mutual separation of 
test bodies in a vacuum-dominated universe does not define 
the scale factor, estimates of the scale of the universe at the 
moment at which it ceases to be vacuum dominated are am- 
biguous. 

11 13 Sov. Phys. JETP 63 (6), June 1986 I. G. Dymnikova 11 13 



This can be seen by considering a phenomenological 
cosmological model that describes the geometry of the uni- 
verse in the process of transition from a vacuum-dominated 
to a radiation-dominated stage in which one does not assume 
the presence of a stage of very slow variation of the vacuum 
energy density E and the duration of the transition and the 
size of the universe at the end of the transition are obtained 
by matching the transition metric to the metric of the stan- 
dard Friedmann model and they are expressed in terms of 
contemporary observational characteristics of the universe: 

The possibility of transition from a vacuum-dominated 
de Sitter universe to a nonstationary expanding'Friedmann 
universe due to instability of a vacuum de Sitter universe 
with respect to transition of the vacuum into matter was first 
considered in Ref. 7 as an alternative to the inescapability of 
a singularity in Friedmann cosmology. In Ref. 7, it was 
shown on the basis of an analysis of the equations of general 
relativity that a vacuum de Sitter universe 1 ) can under cer- 
tain conditions be the final state of a medium that undergoes 
gravitational collapse, and 2) can be the initial state for any 
of the three Friedmann models. A cosmological model of the 
transition was proposed in Ref. 10. In this model, the phys- 
ical state of the universe in the process of the transition is 
characterized by the phenomenological transitional equa- 
tion of state 

which in the limit E-E, goes over into (7) but in the limit 
into the ultrarelativistic equation of state 

The parameter a can take on values in the interval O ( a (  1 
and characterizes phenomenologically the rate of transition 
(corresponding, for example, to the steepness with which 
the scalar field potential decreases). Although, on the one 
hand, this equation of state is not tied to any definite transi- 
tion mechanism, it does, on the other, have a fairly general 
nature and gives a simple analytic model of the transition, 
permitting the obtaining of an analytic description of the 
geometry of the universe during the entire transition stage 
and the obtaining of predictions for the duration of the tran- 
sition and the size of the universe at the end of the transition, 
relating these quantities by a matching of the transition met- 
ric to the standard Friedmann metric with observable char- 
acteristics of the universe. The only assumption that is made 
concerning the onset of the transition is that the created mat- 
ter arises in a causally connected region bounded by a radius 
a, of the event horizon of the de Sitter universe determined 
by the expression ( 1 1 ). The conservation law T ",:, = 0, 
written down for the vacuum and the created matter in the 
form7 

controls the exchange of energy and momentum between 
them. The transition of the vacuum energy into the energy of 
the ultrarelativistic particles is described by the equation 

In a system of reference comoving with the created matter, 
ii > 0, the matter is brought into a state of expansion, its den- 
sity decreases, and by virtue of ( 16) and ( 17) the process of 
vacuum decay becomes irreversible. By this token, the rea- 
son for the onset of the expansion is to be found in the prop- 
erties of the initial 

During the transition stage, the connection beween the 
scale factor and the energy density is characterized by the 
relation 

Since the energy density of the radiation decreases during 
the subsequent expansion as a-4 (Ref. 1, p. 159), the quanti- 
ty E~ satisfies at the end of the transition stage the equation 

e,a,'=e,ca:, 

where in accordance with (2b) 

a:= (3c4/8nGe,) (1-3H,"c2/8nGec) -', 
which makes it possible to find the connection beween E,  and 
the contemporary values of the Hubble parameter H,,  the 
radius of the universe a,, the energy density E, , and the radi- 
ation energy density E, ,lo 

Setting a, equal to the de Sitter radius of the horizon ( 1 1 ), 
we obtain an equation for the energy density E, at the end of 
the transition: 

The metric of the transition stage for a = 1 has for the spa- 
tially flat model the form 

a=ao exp[B sin (tclaoB) I ,  3 (21) 

where the parameter B depends on E,  and on the initial vacu- 
um energy density as follows: 

In the spatially flat model, the initial expansion rate is very 
high: H, = (A/3)11'. One can give arguments for making 
the choice (a,) = 0. Indeed, since a vacuum is the initial 
state, correlation of the velocities of the produced particles is 
impossible and it would be natural to set (a,) = 0." It then 
follows from Eq. (2b) that k > 0, which corresponds to a 
closed universe with a, = (3c2/A) lf2 .  The dependence of 
the scale factor of the transition metric for the closed model 
for a = 4 is determined by the function 

a (t) =aoef('), 

where 

2 (c/ao) 'tZ, t<3adc, (23) 
B sin (tc/aoB) , t23ao/c. 

The behavior of the metric at small t is, apart from the coeffi- 
cient oft 2, described by the same function as in StarobinskiK's 
model3 at the end of the epoch of exponential inflation, when 
the vacuum decay and particle production commence (sca- 
laron stage of Starobinskii's model). 
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We note that in the considered phenomenological mod- 
el an expanding Friedmann universe arises from part of the 
vacuum de Sitter universe bounded by the event horizon a,. 
Since the event horizon in the de Sitter universe is an elimin- 
able singularity, it does not limit the extension of the vacuum 
universe, and this indicates the possibility of multiple pro- 
duction of universes from a common initial state. lo 

In contrast to inflationary models in which the scalar 4- 
curvature of space-time (the unique invariant characteristic 
of the de Sitter geometry) remains constant during the entire 
stage of exponential inflation (see, for example, Ref. 3),  in 
the considered transition model it decreases smoothly from 
the de Sitter value Ro = 1242; to the value R ,  = 0 corre- 
sponding to the equation of state ( 15) .  

The duration of the transition stage is determined by the 
relation 

8," sin (t,c/a,B) = (eo-e,) ". 
For the initial vacuum energy 80z5.10'4 GeV it is 
t ,  z 2 X sec. The radius of the universe at the end of the 
transition depends weakly on the value of the transition pa- 
rameter a and in the considered case is characterized by 
a, - 10' cm. 

Comparison of this value with the predictions of the 
inflationary universe scenarios, a, - loso0 cm,12 shows that 
the question of determining the scale factor for a universe 
that passes through a vacuum-dominated stage during the 
course of its evolution requires further investigation. 

I should like to take this opportunity of expressing my 
deep thanks to D. A. Varshalovich, A. 2. Dolginov, A. D. 
Kaminker, Ya. F. Smorodinskii, A. I. Tsygan, and A. D. 
Chernin for helpful discussions. 

"he possibility of associating the system of reference with test particles 
does not save the situation, since they, by definition, do not affect the 

metric, and the comoving system of reference in a cosmology that uses 
Lagrangian coordinates must be comoving with precisely the matter that 
creates the given geometry. 
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